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Summary

• It is well established that individual organisms can acclimate and adapt to temperature to

optimize their functioning. However, thermal optimization of ecosystems, as an assemblage

of organisms, has not been examined at broad spatial and temporal scales.

• Here, we compiled data from 169 globally distributed sites of eddy covariance and quanti-

fied the temperature response functions of net ecosystem exchange (NEE), an eco-

system-level property, to determine whether NEE shows thermal optimality and to explore

the underlying mechanisms.

• We found that the temperature response of NEE followed a peak curve, with the optimum

temperature (corresponding to the maximum magnitude of NEE) being positively correlated

with annual mean temperature over years and across sites. Shifts of the optimum temperature

of NEE were mostly a result of temperature acclimation of gross primary productivity (upward

shift of optimum temperature) rather than changes in the temperature sensitivity of eco-

system respiration.

• Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably

reflecting associated evolutionary adaptation of organisms within ecosystems, and has the

potential to significantly regulate ecosystem–climate change feedbacks. The thermal optimal-

ity of NEE has implications for understanding fundamental properties of ecosystems in

changing environments and benchmarking global models.

Introduction

Ecosystems are represented in most Earth system models in order
to simulate the responses and feedbacks of land processes to
climate change (Chapin et al., 2002; Friedlingstein et al., 2006).
Virtually all ecosystem carbon cycle models use temperature
response functions that have been developed from our under-
standing of biochemical processes of enzymes and ⁄ or physio-
logical processes of leaf photosynthesis and organic matter
decomposition (Enquist et al., 2003; Friedlingstein et al., 2006)
because we lack essential knowledge about ecosystem-level
responses to temperature change.

The integrated response of ecosystem processes to temperature
change is influenced by the responses of its constituents, includ-
ing plants, animals, microbes, and their interactions. It is well
documented that plants (Mooney et al., 1978; Berry &
Bjorkman, 1980; Atkin & Tjoelker, 2003), animals (Parmesan,
2006), and microbes (Bradford et al., 2008) acclimate and ⁄ or
adapt to prevailing environmental conditions in a way that can
optimize their functioning under varying temperatures, which is
collectively termed optimality (Parker & Maynard Smith, 1990).
Thus, we hypothesize that the integrated response of an eco-
system, as an assemblage of interacting organisms, might also
demonstrate thermal optimality under temperature change
(Loreau, 2010). Nevertheless, thermal optimality at the eco-
system level has not yet been carefully examined.

Net ecosystem exchange (NEE) of carbon dioxides is an eco-
system process that reflects the balance of gross primary produc-
tivity (GPP) and ecosystem respiration (Re), and is often used to
approximate net ecosystem productivity (NEP = )NEE)(Chapin
et al., 2006). Previous studies have shown that plant photosyn-
thesis and GPP can acclimate to temperature change via an
increase in optimum temperature in a warmer environment

(Mooney et al., 1978; Baldocchi et al., 2001; Niu et al., 2008).
It has also been documented that Re responds exponentially to
temperature as long as there is no soil water limitation (Law
et al., 1999), and its temperature sensitivity (Q10) decreases in a
warmer environment, a process also described as temperature
acclimation (Lloyd & Taylor, 1994; Luo et al., 2001; Tjoelker
et al., 2008; Piao et al., 2010). The temperature acclimation of
either GPP or Re can lead to changes in the temperature response
of NEP. As illustrated in the conceptual Fig. 1, if GPP acclimates
to temperature by increasing its optimum temperature in a
warmer environment while Re stays unchanged (Fig. 1a), the
optimum temperature of NEP at the maximum differences
between GPP and Re may also shift upward. Alternatively, if Re

acclimates to temperature with decreasing Q10 at higher tempera-
ture, while GPP stays unchanged (Fig. 1b), the optimum temper-
ature of NEE will also increase. If both GPP and Re acclimate,
the optimum temperature of NEE will likely increase more than
that in the previously described two conditions (Fig. 1c). A
recent study suggests thermal adaptation of NEE based on a
positive relationship between the optimum temperature of NEE
and the average summer temperature across space (Yuan et al.,
2011). Still, we do not know yet which of the these possible pro-
cesses contributes to the shift of optimum temperature of NEE,
and whether or not the optimum temperature of NEE shifts over
time.

With the advent of eddy-covariance measurements of NEE,
together with detailed meteorological variables (Baldocchi et al.,
2001), it has become possible to characterize the ecosystem-level
temperature response. In this study, we quantified temperature
responses of NEE to determine whether NEE exhibits thermal
optimality over time and space, and we further explored the
underlying mechanisms. Here, we define acclimation as
short-term reversible adjustments of NEE over time and
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adaptation as geographical changes which are the result of
long-term genetic and species compositional changes in eco-
systems and the physiological adjustment of those organisms to
the prevailing environment. The thermal optimum of NEE and
its acclimation and adaptation together are described as thermal
optimality. Thermal optimality of whole ecosystem carbon
exchange is here assumed to represent ensemble responses of
multiple temperature optima of productivity, metabolic, and
decomposition processes among organisms within the ecosystem.

Materials and Methods

Site information and data analysis

Ecosystem carbon fluxes and meteorological data used in this
analysis were taken from standardized files from the North Amer-
ica Carbon Program (NACP), AmeriFlux, CARBOEUROPE,
and the FLUXNET-LaThuile datasets. These data have been
quality-controlled and gap-filled using consistent methods
(Papale et al., 2006; Moffat et al., 2007). We analyzed only those
sites that have at least 1 yr of complete meteorological data
because we needed to calculate mean annual temperature, precip-
itation and solar radiation. In total, 169 sites with 818 site-years
were used to investigate the optimum temperature of NEE
(T NEE

opt ). The sites included eight major terrestrial biomes: decid-
uous broadleaf forests (DBF), mixed forests (MF), evergreen
needleleaf forests (ENF), grasslands (GRA), evergreen broadleaf
forests (EBF), wetlands (WET), savanna (SAV) and shrubs
(SHR) (Supporting Information, Table S1, Fig. S1). The cli-
matic zones of the sites included the polar tundra arctic, conti-
nental temperate, subtropical Mediterranean, and tropical areas.
The quality-controlled and gap-filled database, including
eddy-covariance fluxes of CO2 (NEE), GPP and Re, were used
together with solar radiation, air temperature, and precipitation
in this study.

We used daily accumulated NEE rather than half-hourly values
to obtain the temperature response curve with the intention of
avoiding diurnal variations caused by asynchrony between cyclic

changes in photosynthesis and respiration. Daily values, which
integrate diurnal cycles of photosynthesis and respiration, are
more robust than hourly values in reflecting ecosystem responses
to temperature over the season. Hourly data during a few h near
midday were used to test the robustness of the temperature
response functions of NEE as discussed in the supplementary
materials.

For each site or year, temperatures were binned in 1�C daily
temperature. The daily air temperature and NEE were averaged
in each temperature bin to quantify the temperature response of
NEE. In practice, the running mean of every three temperature
bins was calculated, and the value T NEE

opt , at which the maximum
carbon uptake was attained, was determined from the curve relat-
ing NEE with temperature. The robustness of the parabolic
pattern of NEE response to temperature was analyzed as shown
in the supplementary materials (Figs S2–S7). We used the same
method of calculating T NEE

opt to estimate the optimum tempera-
ture of GPP (T GPP

opt ).
To determine the temperature dependence of Re, we fitted

the daily mean temperature and Re data to a modified Van’t
Hoff equation: Re = RbebT (Lloyd & Taylor, 1994). The para-
meter b determines temperature sensitivity of respiration (Q10)
and can be expressed in terms of the Q10 coefficient as b =
ln(Q10) ⁄ 10. Although there are other types of Re acclimation,
for example, changes in absolute Re rates with a constant Q10

(type II), and functional switches in both absolute Re and Q10

(type III) (Atkin & Tjoelker, 2003; Bradford et al., 2008), we
only assessed type I acclimation (changes in Q10) in this study
as a result of the limitation of eddy flux data to address the
other two types.

Uncertainty assessment

The bootstrapping method, which is a statistical technique based
on building a sampling distribution by resampling from the
dataset, was used to estimate the uncertainty of each optimum
temperature (Banks et al., 2010). We constructed a number of
resamplings of the observed dataset (of equal size to the observed

(a) (b) (c)

Fig. 1 Conceptual figure for the shifts of optimum temperature of net ecosystem productivity (NEP; NEP = )NEE (net ecosystem exchange)) as a result of
the changes in optimum temperature of gross primary productivity (GPP) or the temperature sensitivity of respiration. (a) Here it is assumed that in a
warmer year or at a warmer site, the optimum temperature of NEP shifts higher owing to a shift of optimum temperature of GPP. In (b) it is assumed that
the shifts in the optimum temperature of NEP are the result of the temperature acclimation of Re (decrease of Q10). In (c) it is assumed that the optimum
temperature of NEP shifts higher owing to acclimation of both GPP and Re. The dashed curves represent the temperature response curve in a warmer year
or at a warmer site. The vertical lines refer to the maximum NEP.
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dataset), each of which was obtained by random sampling with
replacement from the original datasets. We estimated one opti-
mal temperature from each resampled dataset. This was done
5000 times to obtain 5000 optimum temperatures, from which
we computed a mean and standard deviation of T NEE

opt , as well as
the distribution of statistics for each site or year (Fig. S8). The
same methods were used to obtain the mean and standard devia-
tion of T GPP

opt and Q10.

Statistical analysis

To examine the potential thermal acclimation of T NEE
opt and the

underlying mechanisms, we analyzed the relationship of T NEE
opt

with environmental factors and with T GPP
opt and Q10 across the

years within each site and across all site-years at 12 sites with
>10 yr of data. Because each site has relatively few yr of data,
we used standardized residual analysis to remove outliers by
using a magnitude of ± 2.0 to omit points from the regression.
One outlier was removed from each of IT-Ren (Renon, Italy,
2007) and Ru-Fyo (Fyodorovskoye, Russia, 2006). To examine
the potential thermal adaptation of T NEE

opt , we used linear regres-
sion to analyze the relationship of T NEE

opt with environmental
factors and with T GPP

opt and Q10 across all the 169 sites. All the
regression analyses were performed using SPSS 11.0 for
Windows (SPSS Inc., Chicago, IL, USA).

Results

We used results from the five sites (Fig. 2) to illustrate the general
pattern of peak-curve temperature responses of NEE with the
optimum temperature shifting over different temperature zones
(from cold to warm). NEE increased (i.e. became more negative)
with temperature in the lower temperature range to reach a maxi-
mum, and then declined (became less negative) as temperature
increased further (Fig. 2). The temperature responses of NEE
were caused by the relative changes in GPP and Re. At low
temperatures, GPP increased more than Re for a unit of tempera-
ture change. Nevertheless, at higher temperatures, Re increased
further with temperature (without water limitation), while GPP
leveled off or even decreased (Fig. S9). As a consequence, there
was always a well-defined T NEE

opt , at which NEE attained the
maximum value (Fig. 2).

Twelve sites with measurements longer than 10 yr in our
database were examined to illustrate interannual shifts of
T NEE

opt . In comparison with the values obtained in the average
year, T NEE

opt shifted to a higher temperature in warmer years
at each site (Fig. 3). Across all years, T NEE

opt tended to increase
with annual mean air temperature at all sites, although this
was statistically significant only at some sites (Fig. 4a). Across
all years of the 12 sites, annual air temperature explained
35% of the changes in T NEE

opt . Solar radiation had no signifi-
cant relationship with T NEE

opt across years within any site or
across all site-years (P > 0.05, Fig. 4b). Although there was
no significant relationship of T NEE

opt with precipitation across
the years within any site (P = 0.11–0.97), we found that
across all site-years, precipitation explained 23% of the

changes in T NEE
opt (P < 0.01, Fig. 4c). Multiple (stepwise)

regression analysis showed that air temperature and precipita-
tion together explained 39% of changes in T NEE

opt , while
temperature and precipitation alone explained 31 and 8%,
respectively, of the changes in T NEE

opt , suggesting that tempera-
ture was the main factor regulating the shifts of T NEE

opt across
site-years.

Across all site-years, T NEE
opt was correlated positively with

T GPP
opt , but negatively with Q10 (Fig. 5). Multiple regression anal-

ysis showed that T GPP
opt and Q10 together explained 36% of the

changes inT NEE
opt , but the contribution of T GPP

opt was greater (29%)
than Q10 (7%). The optimum temperature of GPP (T GPP

opt ) was
positively related to mean annual air temperature across the
site-years at the Canadian sites and at the other 10 sites
(Fig. S10a). Solar radiation and precipitation contributed little to
the shifts of T GPP

opt . Changes in Q10 correlated negatively with
temperature and precipitation, but were not related to the
changes in solar radiation (Fig. S10).

Globally, T NEE
opt was higher at warmer than at cold sites, leading

to a positive relationship between T NEE
opt and annual mean air

temperature regardless of climate zone (Fig. 6a). Mean annual
precipitation and solar radiation together only explained 5% of
the changes in T NEE

opt based on multiple regression analysis. Across
all sites, T NEE

opt had a positive linear relationship with T GPP
opt , but

no significant relationship with Q10 (Fig. 6b,c).

Discussion

We found an universal peak-curve pattern of NEE in response to
temperature, a phenomenon which was first reported in a high-
elevation subalpine forest (Huxman et al., 2003). The peak pattern
of the temperature response curve could be explained by relative

Fig. 2 The general pattern of peak-curve temperature response of net
ecosystem exchange (NEE) at five representative sites over different tem-
perature zones (mean annual temperature ranges from )1.17 to 12.5�C).
At all five sites, net ecosystem CO2 uptake (negative NEE) increased with
temperature in the low range, reached a maximum, and then declined in
the high range.
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changes in GPP and Re. The increase in carbon uptake at low tem-
perature resulted from a relatively larger increase in GPP than Re

for a given change in temperature. The decrease of carbon uptake
at higher temperatures resulted from the continuous increase in Re

against the leveling-off or decline of GPP (Figs 1, S9).
Shifts of T NEE

opt across years were primarily caused by tempera-
ture (Fig. 4), suggesting thermal acclimation at interannual
scales. The upward trend of T NEE

opt with increasing temperature
was largely the result of the shifts of optimum temperature in
photosynthesis (Fig. 5), which has been well documented at
plant level (Mooney et al., 1978; Berry & Bjorkman, 1980; Niu

et al., 2008; Gunderson et al., 2010) and primarily results from
increased electron transport capacity and ⁄ or greater heat stability
of Rubisco (Sage & Kubien, 2007). In addition, extended grow-
ing seasons, increased nitrogen mineralization, and enhanced root
growth (Penuelas & Filella, 2001; Churkina et al., 2005; Luo
et al., 2009) may also have contributed to the increased CO2

uptake under higher temperatures, leading to the upward shift in
the optimum temperature of GPP in warmer years (Fig. S10a).
For example, fine roots in boreal ecosystems are more active in
warmer years, allowing greater access to water and nutrients
(Jarvis & Linder, 2000; Pregitzer et al., 2000). Although respiration

Fig. 3 Shift of the optimum temperature of net ecosystem exchange (NEE) to a higher value in a warmer year compared with the average of all studied
years at the 12 sites with > 10 yr of data length. Black closed circles, average over all years; red closed circles, represent a warmer year (mean ± 1 SD). Ta is
annual mean temperature. The numbers labeled in the figures are the optimum temperatures of NEE and their standard deviation.
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normally increases with temperature, water stress and respiratory
acclimation during high temperatures can offset or reverse the
direct temperature effect (Luo et al., 2001; Irvine et al., 2008;

Scott et al., 2009). Increases in GPP overcompensated for any
respiration increases at higher temperature, leading to the upward
shift of T NEE

opt in warmer years. The relative roles of these pro-
cesses may vary at different sites, leading to site-specific responses
of T NEE

opt to temperature (Fig. 4). Thus, the mechanisms under-
lying thermal optimization of NEE across temporal scales most
likely vary among sites and require further investigation.

Shifts of T NEE
opt with annual mean air temperature across space

are consistent with previous studies on geographical shifts of opti-
mum temperature of GPP and NEE with summer or growing
season temperatures (Baldocchi et al., 2001; Yuan et al., 2011),
also suggesting thermal adaptation of NEE. Such spatial shifts in
T NEE

opt likely result from processes at several hierarchical scales and
may involve adaptive changes of various organisms. At the eco-
system level, thermal adaptation of NEE likely reflects associated
changes in the structure and function of plant, animal, and
microbial communities, which are likely the result of both
long-term genetic changes and physiological adjustment to the
prevailing environment (Diaz et al., 2001; Janssens et al., 2001;
Knohl et al., 2005; Larsen et al., 2007). At the community level,
species competition may also be a very important determinant of
the changes inT NEE

opt . The universal existence of T NEE
opt and its

(a)

(b)

(c)

Fig. 4 The relationship between optimum temperature of net ecosystem
exchange (NEE; mean ± SD) and annual mean air temperature (a), global
solar radiation (b) and precipitation (c) at the 12 sites with > 10 yr of data.
* and *** indicate that the relationship was significant at the P < 0.1 and
0.001 levels, respectively. Site abbreviations and names are as follows:
CA-Man, BOREAS NSA, Canada; CA-Oas, Sask.SSA Old Aspen, Canada;
IT-Ren, Renon, Italy; Ru-Fyo, Fyodorovskoye, Russia; US-Ha1, Harvard
Forest, USA; BE-Vie, Vielsalm, Belgium; IT-Col, Collelongo, Italy; DE-Tha,
Anchor Station Tharandt, Germany; DK-Sor, Soroe, Denmark; FR-Hes,
Hesse Forest, France; NL-Loo, Loobos, Netherlands; and BE-Bra,
Brasschaat, Belgium.

(a)

(b)

Fig. 5 The relationship of optimum temperature of net ecosystem
exchange (NEE) to optimum temperature of gross primary productivity
(GPP) (a) and temperature sensitivity of respiration (Q10) (b) across the
site-years at the 12 sites with > 10 yr of data.
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acclimation and adaptation to temporal and spatial temperature
changes strongly suggest thermal optimality of NEE. Compared
with previous studies (Baldocchi et al., 2001; Yuan et al., 2011),
this study holistically reveals the thermal optimality of NEE via
acclimation and adaptation and withstands more rigorous uncer-
tainty analysis. A particularly novel point found here is the identi-
fication of the relative roles of photosynthesis and respiration.
The shifts of T NEE

opt are mostly attributable to changes in GPP
rather than in Re. Although respiration has been documented to

be the main determinant of intraregional forest carbon balance
variation (Valentini et al., 2000), our study clearly showed that
the temperature response of GPP overrides Re in determining
thermal optimality of NEE. According to Atkin & Tjoelker
(2003) and Bradford et al. (2008), changes in Q10 as used in this
study only reflect type I acclimation. However, if the type II and
type III acclimation occur, the upward shift of T NEE

opt in a warmer
environment can also happen. Owing to the limitations of eddy
flux data, we can only address type I acclimation in this study.
This might cause partial assessment on Re acclimation.

Thermal acclimation ⁄ adaptation of NEE, in conjunction with
the adaptation of GPP (Baldocchi et al., 2001) and plant and soil
respiration (Atkin & Tjoelker, 2003; Bradford et al., 2008), will
influence the long-term responses and feedback of ecosystem
carbon storage to global temperature changes. Shifts of T NEE

opt

with interannual variations in temperature may dampen
short-term temperature effects on ecosystem carbon balances and
could contribute to a lower apparent sensitivity of global
ecosystem carbon uptake to temperature than to rainfall (Tian
et al., 1998; Angert et al., 2005). These shifting thermal optima
with temperature over time and space may lower the sensitivity
of the carbon cycle feedback to future climate warming (Frank
et al., 2010; Mahecha et al., 2010).

The observed patterns of thermal optimality over time and
space represent a useful benchmark for evaluating the capability
of Earth system models (Randerson et al., 2009; Frank et al.,
2010). Benchmarking against these observed sensitivities is not
sufficient to validate models but represents an important first
step in assessing model capabilities on centennial time
scales(Randerson et al., 2009; Frank et al., 2010). Models that
replicate short-term patterns of ecosystem optimization are not
guaranteed to succeed on longer timescales. However, models
that do not replicate these observed temperature sensitivities will
almost certainly fail to simulate biosphere and carbon cycle
responses to climate change accurately. Further research is needed
to explore whether land process models can reproduce this
thermally optimal pattern across space and time.
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