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a  b  s  t  r  a  c  t

Data  assimilation  techniques  and  inverse  analysis  have  been  applied  to extract  ecological  knowledge
from  ecosystem  observations.  However,  the  number  of  parameters  in ecosystem  models  that  can  be
constrained  is limited  by  conventional  inverse  analysis.  This  study  aims  to increase  the  number  of  param-
eters  that  can be  constrained  in  parameter  inversions  by  considering  the internal  relationships  among
ecosystem  processes.  Our  previous  study  has  reported  thermal  adaptation  of net  ecosystem  exchange
(NEE).  Ecosystems  tend  to transfer  from  a carbon  source  to sink  when  the  air  temperature  exceeds  the
mean  annual  temperature,  and  attain  their  maximum  uptake  when  the  temperature  reaches  the long-
term growing  season  mean.  Because  NEE  is the  difference  between  gross  primary  production  (GPP)  and
ecosystem  respiration  (ER),  the  adaptation  of  NEE  indirectly  indicates  the  coupling  relationship  between
GPP  and  ER.  Five  assimilation  experiments  were  conducted  with  (1)  estimated  GPP based  on  eddy  flux
measurements,  (2)  estimated  GPP  and  coupling  relationship  between  GPP  and  ER, (3)  observed  NEE
measurements,  (4)  observed  NEE  measurements  and  internal  relationship  between  GPP  and  ER  and  (5)
observed  NEE,  estimated  ER  and  GPP.  The  results  show  that the  inversion  method,  using only  estimated
GPP  based  on  eddy  covariance  towers,  constrained  4 of 16 parameters  in the  terrestrial  ecosystem  carbon

model, and  the  improved  method  using  both  GPP  data  and  the  internal  relationship  between  GPP and  ER
allowed  us  to  constrain  10 of 16  parameters.  The  improved  method  constrained  the  parameters  for  ER
without  additional  ER  observations,  and  accordingly  improved  the  model  performance  substantially  for
simulating  ER.  Overall,  our method  enhances  our  ability  to extract  information  from  ecosystem  observa-
tions and  potentially  reduces  uncertainty  for  simulating  carbon  dynamics  across  the  regional  and  global
scales.
. Introduction

Ecosystem models have been relatively well developed and
xtensively applied to ecological research since the 1960s (Odum,
956; Watt, 1966). Most of the major ecosystems and community
rocesses have been incorporated into models (Parton et al., 1987;

astetter et al., 1991; Ågren and Bosatta, 1998). A major source
f model prediction errors has been partly attributed to uncon-
trained response functions and parameter values (Green et al.,
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1999; MacFarlane et al., 2000; Luo et al., 2003). Many parameters
in ecosystem models are difficult or impossible to directly measure
(Luo et al., 2001; Van Oijen et al., 2005). Various data-model assim-
ilation and inverse analyses techniques have been used recently for
parameter estimation in biogeochemical models, including gradi-
ent methods (Wang et al., 2001; Rayner et al., 2005), Kalman filter
(Williams et al., 2005; Gove and Hollinger, 2006) and Markov chain
Monte Carlo approach (Braswell et al., 2005; Knorr and Kattge,
2005).

However, almost all the parameter estimation studies have

shown that the number of parameters that can be constrained is
limited (Wang et al., 2001). For example, the analysis of the covari-
ance matrix in the parameter estimation conducted by Wang et al.
(2001) showed that only a maximum of 3 or 4 parameters could be
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http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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etermined independently from a short record of CO2 flux observa-
ion. Multiple years of NEE data constrain 13 out of 23 parameters
n a simplified photosynthesis and evapotranspiration (SIPNET)

odel using stochastic Bayesian inversion (Braswell et al., 2005).
ix datasets of soil respiration, woody biomass, foliage biomass,
itterfall and soil carbon content from the Duke Forest free-air CO2
nrichment experiment (FACE) were able to constrain 4 out of 7
arbon transfer coefficients at ambient CO2 and 3 at elevated CO2
Xu et al., 2006). This situation has been identified as a major source
f uncertainty in model prediction (Schulz et al., 2001).

Whether some model parameters can be well constrained by the
ata depends upon the amount and quality of information in the
easurements. Santaren et al. (2007) found that model parameters

elated to photosynthesis and energy partitioning are well resolved
y eddy flux measurements, whereas model parameters related to
espiration are poorly resolved due to limited information about
espiration processes included within eddy flux measurements.
he assimilation experiments showed that only biometric data
ffectively constrain carbon transfer coefficients from plant pools
n leaves, roots, and wood, and that more coefficients were con-
trained when using both biometric and NEE data because NEE
rovided the information about other carbon pools such as litter,
icrobial biomass, and SOM pools, from which CO2 was released

Zhang et al., 2010). Using multiple-constraint model data assimi-
ation (MCMDA) methods which combines the observations from

ultiple sources such as biometry, eddy covariance tower, and
emote sensing in such a way as to maximize consistency among
ll datasets simultaneously, has become an effective procedure for
stimating model parameters (Wang and Barrett, 2003; Wang and
cGregor, 2003; Richardson et al., 2010).
Although combinations of various observations can effectively

mprove the parameter information, shortcomings unfortunately
xist in the multiple-constraint method. Ecosystem models include
lmost all physiological processes which range across hourly, daily,
onthly, yearly even century timescales; additionally, these pro-

esses occur within one or more ecosystem components (e.g.,
oil, atmosphere, and vegetation). However, few sites can con-
uct the measurements for nearly all ecosystem variables, and
ost ecosystem observations require a great deal of time and

nergy.
Moreover, recognition is growing of the impacts of the

ncertainties inherent in these measurements (Hollinger and
ichardson, 2005). In the context of model-data fusion, Raupach
t al. (2005) argue that measurement errors are as important as
ata values themselves because the specification of data uncer-
ainties will affect not only the uncertainty of the model, but also
he model predictions. Model-data fusion experiments showed

easurement errors had significant effects on the probability
istribution function of parameters, which means they affected

nformation retrieval and the uncertainties of predicted variables
ncreased with increase of measurement errors (Weng and Luo,
007).

Similarly with various observations, interior relationships
mong physiological processes within an ecosystem also provide
mportant information about various ecosystem processes. For
xample, plant stomatal conductance determines both diffusion of
O2 into the leaf and diffusion of water vapor. Leaf level measure-
ents have demonstrated the strong correlation between carbon

ssimilation and transpired water and the ratio of carbon assimi-
ation to transpiration is a function of vapor pressure deficit (VPD),

hich is consistent across various ecosystem types (Beer et al.,
009). However, to our knowledge, the estimate of model param-

ters using the interior ecosystem processed relationships has still
ot been investigated. This study was designed to assess the impact
f the interior coupling relationship between photosynthesis and
espiration on model parameter inversion.
elling 240 (2012) 29– 40

2. Method and data

2.1. Data source

We  used eddy covariance (EC) measurements from the Ameri-
Flux site at Howland, ME,  USA, in our inverse analysis. The flux site
is located in a mid-latitude coniferous forest ecosystem (45.20◦N,
68.74◦W).  The forest is unmanaged and described in detail in other
publications (Hollinger et al., 1999, 2004). The five datasets from
2000 to 2005 used to derive optimized parameter values are esti-
mated gross primary production (GPP) and ecosystem respiration
(ER) based on EC measurements of CO2 flux, air temperature at
canopy top (Ta), photosynthetically active radiation (PAR), relative
humidity (RH), and leaf area index (LAI) derived from the MODIS
(MODerate Resolution Imaging Spectroradiometer) LAI product.
Among them, daily GPP, ER, NEE, Ta, PAR, and RH were taken
directly from the eddy tower; whereas, daily LAI data were inter-
polated from 8-day measurements. ER was  estimated from 2nd
order Fourier regressions between Julian day and nocturnal respi-
ration when the friction velocity (u*) exceeded 0.2 m s−1 (Hollinger
et al., 2004; Richardson et al., 2006). This method is not sensitive to
diurnal (hourly) changes in respiration. GPP was calculated as the
difference between NEE and ER. No attempt was  made to fill the
data gaps. Daily values were excluded when missing hourly data
represented >20% of the time on a given day (Yuan et al., 2009).

2.2. Model description and parameters

The model used here is a flux-based ecosystem model (FBEM)
(Wu et al., 2009), which is fully described with equations in
Appendix.  In brief, the FBEM describes the short-time processes of
GPP and ER as regulated by environmental variables. Canopy photo-
synthesis was estimated from LAI and leaf photosynthesis (Sellers
et al., 1992). The latter was described using the model developed
by Farquhar et al. (1980) for both carboxylation and electron trans-
port process together with a stomatal conductance model (Leuning,
1995; van Wijk et al., 2000; Chang, 2003). Ecosystem respiration
was modeled by a function of temperature with the widely used
Q10 function (Van’t Hoff, 1899). Net ecosystem exchange of CO2 to
the atmosphere (NEE) was  calculated by:

NEE = GPP − ER (1)

In total, there were 16 parameters that governed the model’s
behavior (Table 1, Appendix).

2.3. Thermal adaptation of net ecosystem exchange

All ecosystem models for predicting NEE use separate algo-
rithms to describe the changes of GPP and ER with temperature
(Running and Coughlan, 1998; Running and Gower, 1991; Potter
et al., 1993). However, there are no effective constraints on temper-
ature functions for GPP and ER in these models due to insufficient
knowledge about physiological connections. Idealized response
functions of (a) plant photosynthesis and ecosystem respiration
and (b) net ecosystem production to temperature were illustrated
in this study (Fig. 1; Luo, 2007). Gross photosynthesis increases with
temperature at its low range, reaches a maximum at optimal tem-
perature, and then declines due to physiology constraints at higher
temperatures. Ecosystem respiration consisted of autotrophic and
heterotrophic components that increase exponentially with tem-
perature in a very broad range when the respiration rate is mainly
limited by biochemical reactions. At the low temperature range,

heterotrophic respiration was  constrained by substrate supply, and
autotrophic respiration always followed the relative constant of
GPP, so ecosystem respiration was less than the GPP. Above the
optimal temperature of GPP, although the transport of substrates
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Table 1
Symbols, definition, unit, initial value and range of parameters that were used in the model-data assimilation.

Parameter Definition Unit Value Minimum Maximum Source

˛q Canopy quantum efficiency of photon conversion mol  mol−1 photon 0.28 0 0.5 1
D0 Empirical coefficient in Leuning model kPa 2.74 1 10 2
EKc Activation energy of K25

c J mol−1 59,356 30,000 90,000 1
EKo Activation energy of K25

o J mol−1 35,948 10,000 60,000 1
EVm Activation energy of V25

m J mol−1 58,520 10,000 100,000 1
ER0 Whole ecosystem respiration at 0 ◦C � mol  CO2 m−2 s−1 2.5 1 5 3
E� 25

∗
Activation energy of CO2 compensation point at 25 ◦C J mol−1 60,000 30,000 100,000 1

fci Ratio of internal CO2 to air CO2 – 0.87 0.5 0.9 1
gl Empirical coefficient in Leuning model – 1657 100 2000 2
Kn Canopy extinction coefficient for light 0.8 0.7 0.9 1
K 25

c Michaelis–Menten constant for carboxylation � mol  mol−1 460 50 600 1
K25

c Michaelis–Menten constant for oxygenation mol  mol−1 0.33 0.2 0.5 1
� 25

∗ CO2 compensation point without dark respiration � mol  mol−1 42.5 10 200 1
rJmVm Ratio of Jm to V25

m at 25 ◦C – 1.79 1 5 1
Q10 Temperature dependency of ecosystem respiration – 2 1 3 3
V25

m Maximum carboxylation rate at 25 ◦C � mol  CO2 m−2 s−1 29 10 300 1

1, Knorr and Kattge (2005); 2, van Wijk et al. (2000); and 3, Novick et al. (2004).
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Fig. 1. Idealized response functions of (a) plant photosynthesis and ecosystem res-
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while negative values indicate that carbon is released by the ecosystems to the
atmosphere. Tb: transition temperature from ecosystem carbon source to uptake;
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about model parameters based upon a given set of measure-
rom ecosystem carbon uptake to source.

nd products of the metabolism mainly via diffusion processes
ecomes a limiting factor to autotrophic respiration, the abundant
upply of substrates promotes the increase in heterotrophic res-
iration. As a result, ER increases beyond GPP. However, with still
urther increase in temperature, heterotrophic respiration drops
ith decreasing substrate supply. During the whole progress, there

re two important response temperature points of NEE: the transi-
ion temperature from ecosystem carbon source to uptake (Tb) and
ptimal temperature at which NEE is maximized (To) (Fig. 1).

In the previous study, we constructed response curves of NEE

gainst temperature using 380 site-years of eddy covariance data
rom 72 sites located at latitudes ranging from ∼29◦N to ∼64◦N
Yuan et al., 2011). The constructed response curves were used to
define two critical temperatures Tb and To. The transition tempera-
ture Tb was  strongly correlated with mean annual air temperature.
The optimal temperature To was  strongly correlated with mean
temperature during growing season across the spatial scale (Fig. 2;
Yuan et al., 2011). Temperature curves of NEE at Howland were
characterized over 9 years, and Tb and To shifted to a higher tem-
perature in the warmest year (Fig. 3). The standard deviation of Tb
and To at Howland are 1.41 ◦C and 2.10 ◦C, respectively (Fig. 3).

NEE is the balance between the carbon uptake by photosynthetic
carbon uptake and plant and microbial respiratory losses, suggest-
ing that the coupling of two  thermally dependent processes should
be further examined to evaluate the mechanisms driving thermal
adaptation of ecosystem. The thermal adaptation of ecosystem NEE
across latitudes suggests the intrinsic physiological connections
between thermal responses of GPP and ER, and the responses of GPP
and ER to temperature are not independent but coupled (Yuan et al.,
2011). Therefore, temperature functions of GPP and ER in these
models can be constrained by each other, which will be used in this
study to examine the function of the interior coupling relationship
between GPP and ER to model parameters inversion.

Our observation regarding Tb was consistent with a previous
study by Baldocchi et al. (2005),  which showed that net carbon
uptake occurs at the period when the mean daily soil temperature
equals the mean annual air temperature. Other lines of evidence
also support this finding that photosynthesis demonstrates strong
correlation with respiration at the ecosystem level (Baldocchi,
2008). The variation of soil respiration and its temperature sen-
sitivity are both strongly correlated with GPP at diurnal, seasonal
and annual scales (Janssens et al., 2001; Tang et al., 2005; Ma
et al., 2007). Increasing evidence further shows that this complex
influence on plant growth rate also determines the microbial pro-
cessing of carbon in the soil. Chemical properties that promote high
physiological activity and growth in plants and low lignin content
also promote rapid decomposition (Hobbie, 1992). Furthermore,
the quantity of litter input provides a second critical link between
CO2 uptake and decomposition because plant growth governs the
quantity of organic matter inputs to decomposers (DeForest, 2009).

2.4. Simulation experiments and statistical analysis

A Bayesian method is used to derive posterior information
ments. According to Bayesian theory, posterior probability density
functions (PDFs) of model parameters c can be obtained from
prior knowledge of parameters and information generated by
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omparison of simulated and observed variables, and can be
escribed as (Mosegaard and Sambridge, 2002):

(c|Z) = p(Z|c)p(c)
p(Z)

(2)

here p(c) represents prior probability density distributions, p(Z) is
he probability of observed data, and p(Z|c) is the conditional prob-
bility density of observed data with prior knowledge, also called
ikelihood function for parameter c. To carry out the data-model
ssimilation, we first specified ranges for model parameters as prior
nowledge (Table 1). The initial values, lower and upper boundaries
f parameters, were from Wu  et al. (2009) with some modifica-
ions on extinction coefficient (Kn) and gl according to Leuning et al.
1995) and White et al. (2000).

Assuming the errors ei(t) follow a Gaussian distribution with a
ero mean, the likelihood function can be expressed by

(Z|c) ∝ exp

⎧⎨
⎩−

∑
i

1

2�2
i

∑
t ∈ obs(Zi)

(ei(t))2

⎫⎬
⎭ (3)
here ei(t) is the error for each modeled value Yi(t) compared with
he observed value Zi(t) at time t, expressed by

i(t) = Zi(t) − Yi(t) (4)
emperature from ecosystem carbon source to sink (Tb) and the optimal temperature
ate that carbon is absorbed by the ecosystem, while negative values indicate that

and �2
i

is the measurement error variance of each data set. We
assumed that each of elements ei(t) was independent over the
observation times and the covariance is zero, so �2

i
was  expressed

by the variance for each observation data set.
The posterior PDFs for model parameters were generated

from prior PDFs p(c) with observations Z by a Markov chain
Monte Carlo (MCMC) sampling technique. This study used the
Metropolis–Hastings (M–H) algorithm (Metropolis et al., 1953;
Hastings, 1970) as the MCMC  sampler. Whether a new point c
new was  accepted or not according to the value of ratio R =
(p(cnew|Z)/p(ck−1|Z)) compared with a uniform random number
U from 0 to 1. Only if R ≥ U, then the new point was accepted;
otherwise ck = ck−1 (see Xu et al. (2006) and Zhang et al. (2010)
for detailed description on MCMC  sampling procedure). We  for-
mally made five parallel runs of the M–H  algorithm with 20,000
simulations for each run.

We  used the Gelman–Rubin (G–R) diagnostic method (Gelman
and Rubin, 1992; Xu et al., 2006) and calculated the G–R statistics
to examine whether Markov chains converged. The G–R test for
each parameter in all experiments satisfied the convergence (G–R
statistics approaches to 1) (data not shown). Furthermore, means

and standard deviations of posterior parameter sets were approxi-
mately stabilized after the first 10,000 samples. Thus, we regarded
the first 10,000 times as the burn-in period for each MCMC  run.
All accepted samples from five runs after burn-in periods (about
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Fig. 4. Comparisons between observed and modeled gross primary production (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) at the Howland site
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fter  the target parameters listed in Table 1 were optimized using the GPP observa
eries  and by correlation respectively. At the left panels, the solid lines indicate the 

ositive  values indicate the net ecosystem carbon uptake, and the negative values i

0,000 samples) were used to compute posterior parameter statis-
ics of modes, correlations, and 90% confidence intervals.

We designed several simulation experiments to investigate the
ffectiveness of physiological processes to constrain model param-
ter estimation via inversion. In the first experiment (experiment
), we simulated the GPP value through the FBEM model by using
he parameter vector generated in the proposing step and then
ompared the modeled GPP with estimated GPP based on EC
easurements. In the second experiment (experiment 2), the prob-

bility of accepting new parameters not only depends on model
erformance for simulating GPP, but also the model fit of Tb and
o of temperature curves derived from the simulations and obser-
ations. In the second experiment, for each model simulation run,
emperature curve of NEE was characterized based on NEE sim-
lations, and Tb and To determined accordingly. Then, these two
emperature points of NEE were compared with those derived from
bserved data. Similarly, we conducted two other experiments
here we used observed NEE data as a substitute for GPP to investi-

ate the effectiveness of co-occurring physiological processes. The
hird experiment used only observed NEE data (experiment 3), and
he fourth experiment also took into account observed NEE data
nd the model fit of Tb and To of temperature curves derived from
he simulations and observations (experiment 4). Moreover, the
fth experiment was designed using observed NEE, estimated ER,
nd estimated GPP data based on EC measurements in a prob-
bilistic inversion (experiment 5). For these model experiments,
easurement error variance of each data set was expressed by the

tandard deviation for each observation data, 1.53 g C m−2 d−1 for
EE, 3.06 g C m−2 d−1 for ER, 3.88 g C m−2 d−1 for GPP, 1.41 ◦C for Tb
nd 2.10 ◦C for To (Fig. 3).

Two metrics were used to evaluate the performance of model

xperiments in this study:

1) The coefficient of determination, R2, representing how much
variation in the observations was explained by the models.
nly. For each set of plots, the left and right panels present the comparison in time
ted GPP, ER, and NEE, and the open dots indicate the observed values. For NEE, the
e the net ecosystem carbon release.

(2) Relative predictive error (RPE), computed as:

RPE = S − O

O
× 100% (5)

where S and O are mean simulated and mean observed values,
respectively.

3. Results

We  evaluated the performance of MCMC  simulations by com-
paring observed and modeled GPP, ER, and NEE. Figs. 4 and 5 present
the simulated GPP, ER, and NEE at the Howland site from the first
and second assimilation experiments using estimated GPP based
upon EC measurements. The model fitted GPP very well for both
of the two experiments, but failed to simulate ER as well as NEE
when only GPP observations were used in the first experiment. If
model parameters were inferred from GPP data together with phys-
iological processes (the second experiment), the modeled ER and
NEE were improved. Relative predictive error (RPE) between mod-
eled and observed GPP, ER, and NEE values was 3.01%, 21.77%, and
−58.41% in the second experiment 2, averaging better than 1.87%,
101%, and −324% in the first experiment.

The third and fourth experiments used the observed NEE data in
a probabilistic inversion to compare the effectiveness of the inte-
rior coupling relationship between GPP and ER. The results showed
the model simulated NEE very well for both of the experiments,
but failed to fit GPP and ER at the third experiment (Fig. 6). In the
fifth experiment, GPP, ER, and NEE were simulated very well using
observed NEE as well as the estimated GPP and ER based upon EC
measurements (data not shown). The averages for RPE of GPP, ER,

and NEE were 2.95%, 16.72%, and 34.61% in the fifth experiment.

Generally, estimated parameters by probabilistic inversion
can be divided into three groups: well-constrained, poorly con-
strained, and edge-hitting depending upon the shape of posterior
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specially well constrained in the second experiment without any
xtra ER observations. Similarly, compared with the third experi-
ent, which only used observed NEE data, the fourth experiment

ncreased greatly the number of constrained parameters by using
he relationship between GPP and ER (Table 2). Combining the esti-

ated GPP, ER, and observed NEE data at the fifth experiment, the
odel constrained up to 13 parameters total (Table 2).

. Discussion

Many studies have been conducted to improve data assimi-
ation methods in order to increase the number of constrained
arameters. Two recent studies (i.e., OptIC and REFLEX project)
ompared a number of parameter estimation methods applied
o common datasets and models (Trudinger et al., 2007). In
oth the OptIC and REFLEX projects, choices in the implemen-
ation of optimization methods, such as data weights, priors,
nitialization, and method-specific choices such as accept/reject
riterion in Metropolis methods, were more important than
he choice of the optimization method itself. However, many
ublished studies aim at improving model parameter inversion
uccess by increasing data used (Richardson et al., 2010; Zhang

t al., 2010), altering model structures (Chatfield, 1995), and
mproving optimization methods (Wu et al., 2009). Luo and his
olleagues (Luo et al., 2003; Xu et al., 2006), for example, pre-
cribed partitioning coefficients of photosynthates into plant pools,
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calculating initial values of pool sizes, and using parameters that
describe carbon flows into receiving pools in the inverse anal-
ysis with six datasets from a forest CO2 experiment. Here we
have used additional constraints on model structure suggested
by interior coupling relationships among ecosystem physiological
processes.

Our study showed that the coupling relationships between GPP
and ER can effectively constrain the parameters on ecosystem res-
piration without extra observations. In the first model experiment,
using GPP observations only, ecosystem respiration parameters
(i.e., ER0 and Q10) could not be constrained; there were large
errors in ecosystem respiration simulations when compared with
observations from these unreasonable parameters values (Fig. 4).
Similarly, the study by Williams et al. (2005) showed respiration
parameters to be poorly constrained by NEE measurements alone,
and complementary measurements, such as soil respiration and
carbon pool sizes provided useful constraints on those parame-
ters. The improved inversion method, using observed GPP and the
model fit of Tb and To of temperature curves, constrained well the
model parameters on ER. Meanwhile, simulated ER agreed very
well with observations (Fig. 5). The underlying reason is that the
observed GPP and interior relationships among various ecosys-

tem processes limit the acceptable range of ecosystem parameters.
At the third experiment, although observed NEE data significantly
improved the amount of constrained parameters compared to GPP,
the parameters did not fall into the a priori defined “reasonable”
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Table 2
Optimized parameter values at the five model experiments and comparison with parameter ranges published in the literature.

Parameter Maximum likelihood estimates, mean estimates, 95% high-probability intervals (lower limit, upper limit) Ranges in literature Ref.

First experiment Second experiment Third experiment Fourth experiment Fifth experiment Min Max

˛q 0.24 [0.31] (0.18–0.46) 0.29 [0.32] (0.19–0.56) 0.05 [0.07] (0.04–0.16) 0.06 [0.05] (0.04–0.08) 0.12 [0.14] (0.10–0.21) 0 0.5 Farquhar et al., 1980; Larcher,
1995; Verbeeck et al., 2006

K25
c Pa [300] (78–562) P [304] (77–571) P [287] (83–536) 86.3 [225] (66–508) Eb [550] (470–596) 50 600 Bernacchi et al., 2003; Campell and

Norman, 1998; Harley and
Baldocchi, 1995

EKc P [63,487]
(33,960–87,360)

P [63,591]
(33,720–87,840)

P  [57,472]
(32,520–86,040)

P [59,436]
(33,600–85,440)

E [85,819]
(79,920–89,760)

30,000 90,000 Bernacchi et al., 2003; Harley et al.,
1992; Wang et al., 2004

EKo P [32,683]
(12,600–56,800)

P [33,846]
(12,600–57,300)

E  [39,131]
(14,900–58,300)

P [33,320]
(12,300–57,400)

13,200 [17,334]
(10,800–30,800)

10,000 60,000 Bernacchi et al., 2003; Harley et al.,
1992; Wang et al., 2004

K25
o P [0.36] (0.22–0.48) P [0.35] (0.22–0.48) P [0.35] (0.22–0.48) P [0.36] (0.24–0.48) 0.29 [0.27] (0.21–0.42) 0.2 0.5 Bernacchi et al., 2003; von

Caemmerer et al., 1994
� 25

∗ P [147] (99–190) 146 [148] (102–190) 168 [162] (124–195) 176 [163] (119–195) 23 [39] (13–98) 10 200 Chabot and Mooney, 1985; Larcher,
1995

rJmVm 1.44 [2.21] (1.17–3.79) 2.44 [2.73] (1.34–4.47) 2.34 [2.89] (1.47–4.68) 2.15 [2.79] (1.30–4.62) 2.48 [2.6] (2.19–3.08) 1 5 Carswell et al., 2000; Wullschleger,
1993

V25
m 134.7 [159] (81–264) 117 [154] (79–251) 188 [192] (99–283) 108 [162] (81–281) 97 [106] (82–139) 10 300 Dreyer et al., 2001; Rey and Jarvis,

1998; Wullschleger, 1993
fci P [0.71] (0.53–0.87) 0.68 [0.70] (0.53–0.87) 0.65 [0.66] (0.52–0.83) 0.77 [0.73] (0.55–0.87) 0.56 [0.55] (0.50–0.69) 0.5 0.9 Haxeltine et al., 1996; Rey and

Jarvis, 1998
Kn P [0.79] (0.71–0.88) 0.84 [0.83] (0.74–0.88) E [0.81] (0.72–0.89) P [0.81] (0.71–0.89) 0.83 [0.85] (0.78–0.89) 0.7 0.9 Larcher, 1995; Wang and Leuning,

1998
E� 25

∗
P [68,880]
(42,880–94,820)

69,340 [68,438]
(43,020–93,700)

61,086 [63,982]
(35,600–93,700)

89,200 [82,351]
(57,860–98,180)

40,120 [49,152]
(32,380–77,180)

30,000 100,000 Harley et al., 1992; Jordan and
Ogren, 1984

gl P [1001] (210–1859) P [1116] (252–1897) P [1042] (202–1874) P [1045] (248–1867) P [875] (172–1844) 100 2000 –
D0 P [5.65] (1.61–9.49) P [5.33] (1.50–9.37) P [4.75] (1.36–9.29) 4.51 [5.62] (1.86–9.33) 7.98 [7.12] (3.50–9.62) 1 10 –
EVm 83,800 [83,515]

(72,820–94,240)
83,620 [84,729]
(73,540–95,680)

95,680 [90,928]
(75,880–99,100)

E [93,747]
(83,620–99,460)

72,460 [73,580]
(67,060–80,920)

10,000 100,000 Aalto and Juurola, 2001; Kosugi
et al., 2003; Leuning, 1995

ER0 P [3.03] (1.29–4.75) 2.18 [2.24] (1.88–2.62) 1.22 [1.34] (1.07–1.69) 1.51 [1.52] (1.25–1.81) 1.81 [1.83] (1.67–2.00) 1 5 Davidson et al., 2006; Goulden
et  al., 1996; Hollinger et al., 2004

Q10 P [2.03] (1.12–2.88) 1.94 [1.99] (1.74–2.27) E [1.11] (1.01–1.24) 1.12 [1.10] (1.01–1.22) 1.89 [1.90] (1.81–1.99) 1 3 Janssens and Pilegaard, 2003

Values indicate maximum likelihood estimates. Values at square brackets indicate mean estimates and one in parenthesis indicate 95% high-probability intervals (lower limit, upper limit). The first experiment only used GPP
data  in probabilistic inversion. The second experiment used GPP and temperature adaptation of NEE. The third experiment only NEE observations, and the fourth used NEE and thermal adaptation of NEE. The fifth experiment
used  GPP, ER and NEE observations.

a P, poorly constrained parameters.
b E, edge-hitting parameters.
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ange of parameters and the model failed to simulate GPP and ER
Fig. 6). Because NEE is the difference between GPP and ER, the

odel cannot simulate GPP and ER reasonably when aiming at the
est NEE match.

Theoretically, the fifth experiment can constrain the largest
umber of model parameters by integrating the observed NEE
s well as the estimated GPP and ER based upon EC measure-
ents, which provides information about GPP, ER, and NEE. The

esults showed more constrained parameters than other experi-
ents (Table 2). Compared with using the full set of observations,

he interior relationship between GPP and ER also provided enough
nformation for constraining model parameters. The second exper-
ment using GPP data and process relationship constrained model
arameters very well; the constrained parameters are quite close
o those from the fifth experiment, which implied an interior rela-
ionship among various ecosystem processes is equivalent with
cosystem observations.

In this study, we used the estimated GPP and ER based upon EC
easurements and a simple, statistical model to inversely recover
odel parameters. Methods to partition NEE to its component

uxes, GPP and ER, have been developed as a way  to assess car-
on pathways in ecosystems (Reichstein et al., 2005; Stoy et al.,
006). Previous studies have reported that the partitioning method
ay  affect the estimated GPP and ER. For example, when ana-

yzing NEE time series from the same site as the present study,
agen et al. (2006) reported that GPP estimates for a given year
ould vary by over 100 g C m−2 depending upon the partitioning
lgorithm (neural network vs. physiologically based) and fitting
ethod (maximum likelihood vs. ordinary least squares) used.
ore recently Desai et al. (2008) applied 23 different methods to

0 site-years of temperate forest flux data in order to investigate
he effects of partitioning method choice on estimated GPP and ER.
he results showed that most methods differed by less than 10%
n estimating both GPP and ER and were consistent in identifying
ifferences in GPP and ER across sites, which increased confidence

n estimated GPP and ER using the current partition methods. The
ethod used in the present study generally performed well when

ompared with other GPP/ER partitioning approaches (Desai et al.,
008).

Almost all ecosystem physiological processes are linked with
thers within ecosystems. For example, the ratio of carbon assimi-
ation to transpiration is a function of vapor pressure deficit (VPD),
nd this function is consistent across the various ecosystem types
Beer et al., 2009). The implication of interior coupling relation-
hips for inverse estimation of model parameters has significant
dvantages compared with other parameter inversion methods.
irst, using the interior physiological relationship can effectively
educe the requirements for measuring the various ecosystem vari-
bles. The previous studies already showed that the amount and
uality of information in the measurements directly determines
hether model parameters can be well constrained (Zhang et al.,

010). However, any measurement of ecosystem variables requires
ime and energy, and some critical ecosystem variables are difficult
r impossible to measure.

Second, the interior coupling relationships among ecosystem
hysiological processes can be easily extrapolated to regional scales
rom individual sites. Traditionally, model parameter inversion was
nly conducted at a single site using various observations, and then
xtrapolated using the parameters to regional and global scales.
owever, there are large heterogeneities at the spatial patterns of
bservation sites. For example, the eddy covariance towers, which
rovide the extensive datasets for net ecosystem exchange of CO2

NEE) are biased toward forests, grasslands, and croplands, and are
eldom located in deserts or tundra. Geographically, most sites are
ocated in North America, Europe, and East Asia with few sites setup
n the Africa and South America.
elling 240 (2012) 29– 40 37

Lastly, from the regional simulations standpoint, the interior
coupling relationships among the various ecosystem physiolog-
ical processes can improve model performance at regional and
global scales. Rayner et al. (2005),  using a top-down approach
to estimate land surface carbon fluxes, found that 500 surface
CO2 concentration measurements from about 40 monitoring sta-
tions per year globally provided little information about model
parameters related to leaf photosynthesis or soil carbon turnover
rate. An interpretation of the results shows that monthly CO2
concentrations provide reasonable constraints on the net carbon
exchange (i.e., the difference between net primary production and
heterotrophic respiration), provided that fluxes from fire, land use
change, and so on are well quantified. Little information is available
on the atmospheric CO2 concentration measurements about model
parameters related to net primary production and heterotrophic
respiration, as the estimates of these two  fluxes are often negatively
correlated and poorly resolved by surface CO2 concentration mea-
surements only (Wang and McGregor, 2003). Our study can provide
an effective method to improve substantially the estimations of GPP
and ER as well as the related model parameters by using the inte-
rior coupling relationships among ecosystem processes across the
large scales.

5. Summary

Almost all published studies using data assimilation approaches
report that the number of parameters that can be constrained is
limited. In this study, we examined the function of interior cou-
pling relationship among ecosystem physiological processes on
model parameter estimation. The results showed that the cou-
pling relationships between GPP and ER can effectively constrain
the parameters relevant to ER without extra observations, and
significantly improve model performance for ER as well as NEE.
Such improvement in parameter estimation effectively reduced
the requirements for the observations of various ecosystem vari-
ables, and allowed extrapolation of parameters inversion results
to the regional or global scales from the site scale with reduced
uncertainty for simulation of carbon dynamics.
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Appendix A. Appendix: model structure description

A.1. Leaf-level photosynthesis

Leaf-level photosynthesis was described by a model developed
by Farquhar et al. (1980). For C3 plants, gross leaf CO2 uptake (A,
�mol  CO2 m−2 s−1) is calculated as:

A = min{Jc, Je} (A.1)

where Jc and Je represent the rate limited by carboxylation enzymes
and by light electron transport, respectively.
The carboxylation processes (Jc, �mol  CO2 m−2 s−1) are:

Jc = Vm
Ci − �∗

Ci + Kc(1 + (Ox/Ko))
(A.2)
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Ci is the leaf internal CO2 concentration (�mol  CO2 mol−1 air),
xpressed as

i = fci
× Ca (A.3)

ith Ca is ambient CO2 concentration (365 �mol  CO2 mol−1 air) and
ci is ratio of leaf internal CO2 to ambient air CO2 concentration. Ox is
xygen concentration in the air (0.21 mol  O2 mol−1 air). Vm is max-
mum carboxylation rate (�mol  CO2 m−2 s−1), which is related to
anopy temperature Tk (K) and activation energy EVm by Arrhenius’
quation:

m = V25
m × exp

(
EVm × (Tk − 298)

R × Tk × 298

)
(A.4)

here V25
m is maximum carboxylation rate at 25 ◦C and R is univer-

al gas constant (8.314 J K−1 mol−1). The CO2 compensation point
ithout dark respiration is represented as � * (�mol  CO2 mol−1). It

s also adjusted by Arrhenius’ equation in:

∗ = � 25
∗ × exp

(
E� 25∗

× (Tk − 298)

R × Tk × 298

)
(A.5)

here � 25∗ is the CO2 compensation point without dark respi-
ation at 25 ◦C and E� 25∗

describes the temperature dependence
f �∗. Two Michaelis–Menten constants have a temperature
ependence based on the Arrhenius’ equation similar to Vm, Kc,
ichaelis–Menten constant for carboxylation (�mol  mol−1), was

epresented by:

c = K25
c × exp

(
EKc × (TK − 298)

R × TK × 298

)
(A.6)

ith an activation energy EKc , where K25
c is the Michaelis–Menten

onstant for carboxylation at 25 ◦C. Ko, Michaelis–Menten constant
or oxygenation (mol mol−1), was represented as:

o = K25
o × exp

(
EKo × (TK − 298)

R × TK × 298

)
(A.7)

ith an activation energy EKo , where K25
o is the Michaelis–Menten

onstant for oxygenation at 25 ◦C.
The light electron transport processes (Je, �mol  CO2 m−2 s−1)

re:

e = ˛q × I × Jm√
J2
m + ˛2

q × I2
× Ci − �∗

4 × (Ci + 2�∗)
(A.8)

hen I is absorbed photosynthetically activated radiation (PAR)
�mol  m−2 s−1). ˛q is quantum efficiency of photon capture
mol mol−1 photon) and Jm is maximum electron transport rate
�mol  CO2 m−2 s−1). Jm depends on temperature and is computed
y:

m = rJmVm × V25
m × exp

(
EVm × (TK − 298)

R × TK × 298

)
(A.9)

here rJmVm is the ratio of Jm to V25
m at 25 ◦C.

.2. Stomatal conductance

The stomatal conductance (Gs) is coupled with leaf-level pho-
osynthesis by Leuning model (Leuning, 1995) so that the carbon
nflux of the top leaf layer (An) is estimated by:

An = Gs × (Ca − Ci)

A (A.10)

Gs = gi ×

(Ci − �∗) × (1 + (D/D0))

here gl and D0 (kPa) are empirical coefficients and D is vapor
ressure deficit (kPa).
elling 240 (2012) 29– 40

A.3. Canopy-level photosynthesis

In order to scale up leaf-level photosynthesis to canopy-level
photosynthesis, an approach of Sellers et al. (1992) was used to
describe the relationship between the canopy photosynthesis (Ac)
and the carbon influx of the top leaf layer, derived as:

Ac = An × 1 − exp(−kn × LAI)
kn

(A.11)

where kn is light extinction coefficient and LAI is leaf area index.

A.4. Ecosystem respiration

Ecosystem respiration (ER) is modeled as a function of temper-
ature (Ta, ◦C) with the widely used van’t Hoff equation (Van’t Hoff,
1899):

ER = ER0 × Q Ta/10
10 (A.12)

where ER0 us ecosystem respiration at 0 ◦C and Q10 is the relative
increase (ER/ER0) in respiration for every 10 ◦C rise in temperature.
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