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Abstract

Aims

Accurate forecast of ecosystem states is critical for improving natural

resource management and climate change mitigation. Assimilating ob-

served data into models is an effective way to reduce uncertainties in

ecological forecasting. However, influences of measurement errors on

parameter estimation and forecasted state changes have not been care-

fully examined. This study analyzed the parameter identifiability of

a process-based ecosystem carbon cycle model, the sensitivity of pa-

rameter estimates and model forecasts to the magnitudes of measure-

ment errors and the information contributions of the assimilated data to

model forecasts with a data assimilation approach.

Methods

We applied a Markov Chain Monte Carlo method to assimilate eight

biometric data sets into the Terrestrial ECOsystem model. The data were

the observations of foliage biomass, wood biomass, fine root biomass,

microbial biomass, litter fall, litter, soil carbon and soil respiration, col-

lected at the Duke Forest free-air CO2 enrichment facilities from 1996

to 2005. Three levels of measurement errors were assigned to these data

sets by halving and doubling their original standard deviations.

Important Findings

Results showed that only less than half of the 30 parameters could be

constrained, though the observations were extensive and the model was

relatively simple. Higher measurement errors led to higher uncertainties

in parameters estimates and forecasted carbon (C) pool sizes. The long-

term predictions of the slow turnover pools were affected less by the

measurement errors than those of fast turnover pools. Assimilated data

contributed less information for the pools with long residence times in

long-term forecasts. These results indicate the residence times of C

pools played a key role in regulating propagation of errors from meas-

urements to model forecasts in a data assimilation system. Improving

the estimation of parameters of slow turnover C pools is the key to better

forecast long-term ecosystem C dynamics.
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INTRODUCTION

Forecasting the states and functions of terrestrial ecosystems is

important for dealing with environmental issues (Clark et al.

2001; Luo et al. 2011). This task is especially urgent in face of

rapid climate change and enhanced human activities. For sus-

tainable support of human’s welfare by terrestrial ecosystems

and mitigation of negative impacts of global change, model-based

projections of ecosystem responses to climate change have been

made (e.g. Friedlingstein et al. 2006; Qian et al. 2010). However,

these predictions involve large uncertainties due to the high

complexity of biogeochemical models and poor constrained

parameters and processes (e.g. Knorr and Heimann 2001),

making it difficult to provide effective information for ecosystem

management or policy making (Pielke and Conant 2003).

Data assimilation approaches have been applied in ecolog-

ical and biogeochemical modeling studies recently to improve

model parameterization and structure (Raupach et al. 2005;

Wang et al. 2009; Williams et al. 2009). For example, assimila-

tion of eddy covariance data into a biosphere model to opti-

mize the photosynthetic parameters can improve the

simulation of water and carbon fluxes (Wang et al. 2007). Op-

timization of the residence times of a carbon cycle model by

assimilating biometric data can greatly improve the agreement

between observations and simulations of the vegetation and

plant C pools (Luo et al. 2003; Xu et al. 2006). Model structure
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can also be improved by data assimilation approaches. Buly-

gina and Gupta (2009) optimized the mathematical form of

the dependence of the output on the inputs and state variables

of a hydrological model by a Bayesian data assimilation ap-

proach. These studies show that data assimilation approaches

can effectively combine the information from observations

and process-based models to improve parameterization of bio-

geochemical models and the accuracy of forecasts.

Parameter identifiability, the capability of model calibration to

constrain parameters of a model based on available observations

(Doherty and Hunt 2009), is usually poor for ecosystem models.

Wang et al. (2001), e.g., showed that only a maximum of 3 or 4

parameters could be determined independently from 3 weeks of

CO2 flux observations. Braswell et al. (2005) found that 13 of 23

parameters were well constrained in a simplified photosynthesis

and evapotranspiration model (SIPNET). Six data sets of soil res-

piration, woody biomass, foliage biomass, litter fall and soil car-

bon content from the Duke Forest free-air CO2 enrichment

(FACE) experiment were able to constrain 4 of 7 carbon transfer

coefficients at ambient CO2 but only 3 at elevated CO2 (Xu et al.

2006). The poor parameter identifiability is a result of complex

model structure but limited data for calibration (Beck 1987;

Doherty and Hunt 2009).

Multi-sourced observations are valuable in constraining pro-

cess-based biogeochemical models for their abundant informa-

tion of ecological processes at a variety of scales. Biometric data,

e.g. plant biomass, litter production, soil carbon content or soil

respiration rates, have information directly related to carbon (C)

pools and are useful in constraining ecosystem C-cycle models.

Eddy covariance data can provide information on fast processes,

e.g. photosynthesis and evaporation (Braswell et al. 2005;

Ricciuto et al. 2011), while combining biomass data and other

measurements with flux data can improve the number of

parameters that could be constrained and reduced the uncer-

tainty of model flux predictions (Carvalhais et al. 2010;

Richardson et al. 2010; Zhang et al. 2010).

Biometric data are usually from multiple sources with varied

sampling methods and temporal scales and therefore different

measurement errors. Measurement errors can considerably in-

fluence parameter estimates, model forecasts and their uncer-

tainties in a data-model fusion framework (Wang et al. 2009).

Lasslop et al. (2008), showed by a synthetic data set that system-

atic errors in eddy flux data led to drifts in estimated parameters

away from true values while random errors affected the con-

straints of parameters. Also, Braswell et al. (2005) showed that

the uncertainties in most of the estimated parameters were pos-

itively correlated with the magnitude of measurement errors of

NEE. It is not clear yet how measurement errors of multi-sourced

observations affect parameter identifiability and the propagation

of uncertainty from measurement to forecasted state variables of

ecosystem models in data assimilation.

This study analyzed the parameter identifiability of a process-

based ecosystem C-cycle model, Terrestrial ECOsystem (TECO)

model, the sensitivity of parameter estimates and model forecasts

to the magnitudes of measurement errors and the information

contribution of the assimilated data to model forecasts. We assim-

ilated the biometric data collected at Duke Forest FACE facilities

into the TECO model and quantified the uncertainties in param-

eters and state variables (i.e. C pools) by a Markov Chain Monte

Carlo (MCMC) technique. Three levels of measurement errors,

original, halved and doubled observed standard deviations (OSDs),

were assigned to the observed data. This study was to address the

following three questions. (i) How did the measurement errors af-

fect parameter identifiability? (ii) How did measurement errors in-

fluence the uncertainties in different C pools? (iii) How did

measurement errors affect uncertainties in long-term predictions?

MATERIALS AND METHODS
Model description and parameters

The TECO model is a variation of the CENTURY model (Parton

et al. 1987), designed to simulate carbon transfer among the C

pools. It has been used to study carbon sequestration processes

(Luo et al. 2003; Xu et al. 2006; Zhang et al. 2010). In this study,

we used the same version with Zhang et al. (2010) and Weng

and Luo (2011), which has eight C pools, including three plant

C pools, two litter pools and three soil organic matter (SOM)

pools (Fig. 1). The model can be represented by the following

first-order ordinary differential equation:

dXðtÞ
dt

= n
�
t
�
ACX

�
t
�
+BU

�
t
�

Xð0Þ=X0

ð1Þ

Figure 1: the schematic diagram of carbon transfers and partitioning

among eight pools in a forest ecosystem. The carbon transfer and par-

titioning were described by Equation (1) with 8 3 8 matrices A and C

and 8 3 1 vectors B and X.
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whereX(t) = (X1(t),X2(t), . . .X8(t))
T is an 83 1 vector.X0 is an 83

1 vector containing the initial values of X(t).A is a matrix given by

A=

0
BBBBBBBBBB@

� 1 0 0 0 0 0 0 0

0 � 1 0 0 0 0 0 0

0 0 � 1 0 0 0 0 0

f4;1 f4;2 f4;3 � 1 0 0 0 0

f5;1 f5;2 f5;3 0 � 1 0 0 0

0 0 0 f6;4 f6;5 � 1 f6;7 f6;8
0 0 0 0 f7;5 f7;6 � 1 0

0 0 0 0 0 f8;6 f8;7 � 1

1
CCCCCCCCCCA

MatrixAdefines carbon movements among theC pools as illustrated

in Fig. 1. The elements in matrix A represent the proportion of car-

bon leaving the jth (column) pool and entering the ith (row) pool,

termed ‘transfer coefficients’. The zeros in matrix A mean that there

are no direct carbon transfers between the two pools. Since f4,1 +

f5,1 = 1; f4,2 + f5,2 = 1; f4,3 + f5,3 = 1, there are only 11 free parameters

in matrix A. C is an 8 3 8 diagonal matrix, C=diagðcÞ. The diagonal

elements are c= (c1, c2, c3, . . . c8)
T, representing theamountsof carbon

per unit mass leaving each of the pools per day, termed ‘exit rates’.

B=ð b1 b2 b3 0 0 0 0 0 ÞT is a vector that shows the

ratios of assimilated carbon by photosynthesis (GPP) partitioned

Table 1: the free parameters of TECO model and their prior ranges

Parameters Description Units LL UL Initial values

X0(1) Initial value of foliage pool g C m�2 200 400 310

X0(2) Initial value of woody pool g C m�2 3 000 6 000 4 577

X0(3) Initial value of fine roots pool g C m�2 200 400 287

X0(4) Initial value of metabolic pool g C m�2 40 120 80

X0(5) Initial value of structural pool g C m�2 400 700 500

X0(6) Initial value of fast SOM pool g C m�2 80 160 133

X0(7) Initial value of slow SOM pool g C m�2 1 000 2 000 1 647

X0(8) Initial value of passive SOM pool g C m�2 200 400 314

c1 Exit rate of C from foliage pool g C d�1 g C�1 1.76 3 10�4 9.95 3 10�3 1.54 3 10�3

c2 Exit rate of C from wood pool g C d�1 g C�1 0.01 3 10�7 1.24 3 10�4 7.95 3 10�5

c3 Exit rate of C from fine root pool g C d�1 g C�1 1.76 3 10�4 9.95 3 10�3 3.64 3 10�3

c4 Exit rate of C from metabolic litter pool g C d�1 g C�1 5.48 3 10�3 2.74 3 10�2 8.08 3 10�3

c5 Exit rate of C from structural litter pool g C d�1 g C�1 5.48 3 10�4 2.74 3 10�3 7.45 3 10�4

c6 Exit rate of C from fast SOM g C d�1 g C�1 2.74 3 10�4 5.00 3 10�2 1.13 3 10�2

c7 Exit rate of C from slow SOM g C d�1 g C�1 0.01 3 10�7 5.24 3 10�4 2.82 3 10�4

c8 Exit rate of C from passive SOM g C d�1 g C�1 0.01 3 10�7 9.24 3 10�6 5.04 3 10�6

b1 Allocation of GPP to leaves — 0.1 0.3 0.12

b2 Allocation of GPP to woody biomass — 0.1 0.3 0.27

b3 Allocation of GPP to fine roots — 0.1 0.3 0.18

f4,1 Fraction of C in foliage pool transferring to

metabolic litter

— 0.7 1.0 0.7

f4,2 Fraction of C in woody biomass transferring to

metabolic litter

— 0.0 0.3 0.15

f4,3 Fraction of C in fine roots transferring to metabolic

litter

— 0.7 1.0 0.9

f6,4 Fraction of C in metabolic litter transferring to fast

SOM

— 0.3 0.7 0.45

f6,5 Fraction of C in structural litter transferring to fast

SOM

— 0.1 0.4 0.275

f7,5 Fraction of C in structural litter transferring to slow

SOM

— 0.1 0.4 0.275

f7,6 Fraction of C in fast SOM transferring to slow SOM — 0.3 0.7 0.296

f8,6 Fraction of C in fast SOM transferring to slow SOM — 0.0 0.008 0.04

f6,7 Fraction of C in slow SOM transferring to fast SOM — 0.1 0.6 0.42

f8,7 Fraction of C in slow SOM transferring to passive

SOM

— 0.0 0.02 0.01

f6,8 Fraction of C in passive SOM transferring to fast

SOM

— 0.3 0.7 0.45

LL = lower limit and UL = upper limit.
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Figure 2: the posterior probability distribution of the 30 free parameters at the three OSD levels. Solid, dotted and dashed lines represent the PDFs

obtained at original, halved and doubled OSD levels, respectively. X0(1)–X0(8) are initial values of carbon content in pools corresponding to X1–X8

in Fig. 1. c1–c8 are exit rates of the eight C pools. b1–b3 are the allocation coefficients of GPP to leaves, woody biomass and fine roots, respectively. fj,is

are the carbon transfer coefficients from pool i to pool j.

Table 2: the biometric data that were used in data assimilation

Data type Frequency Number of observations Mean SDa (g C m�2) Mean CV (%) Reference

1. Foliage biomass Yearly 9 62.0 15.3 Pippen et al.

(unpublished data)b

2. Woody biomass Yearly 9 1066.9 16.1 Finzi et al. (2006)

3. Fine roots Yearly 9 21.6 7.0 Pritchard et al. (2008)

4. Litter fall Yearly 10 65.6c 19.5 Finzi et al. (2006)

5. Forest floor carbon 3 years 4 216.2 24.6 Lichter et al. (2008)

6. Microbial carbon Five times in total (1997–

98)

5 20.7 21.5 Allen et al. (2000)

7. Soil total carbon 3 years 4 163.7 7.3 Lichter et al. (2008)

8. Soil respiration Monthly 89 0.6d 65.7 Bernhard et al. (2006),

a The SD for each data point was calculated based on the data collected in the three ambient rings.
b On the website http://face.envi.duke.edu.
c The unit is g C m�2 year�1.
d The unit is g C m�2 d�1.
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to the eight pools, termed ‘allocation coefficients’. U(t) is the carbon

input (GPP) at time t. n(t) is a environmental scalar, as a function of

temperature (T) and soil moisture (x) (Equation 2).

n
�
t
�

= min
�

0:5:W ; 1:0
�
� QðT � 10Þ=10

10 ð2Þ

whereW is volumetric soil moisture (vol/vol), Q10 is temperature

quotient to describe a change in decomposition rate for every

10�C difference in temperature and was set to be 2.0 in this study.

This study estimated a total of 30 parameters: 8 initial values of

C pools (Xi(0)), 8 exit rates (ci), 3 allocation coefficients (bi) and

11 transfer coefficients (fj,i). The prior probability density distri-

butions of these 30 parameters were assumed to be uniform dis-

tributions within the ranges estimated by the measurements at

Duke Forest FACE facility and/or published papers from litera-

ture (Table 1). Fixed parameter values were used for the envi-

ronmental scalar (n(t)) according to the rationales described in

Luo et al. (2001, 2003) (Equation 2) since the responses to

changes in climate were not explored in this study.

Data source

The data used in this analysis were obtained from a FACE ex-

periment at Blackwood Division, Duke Forest, Orange County,

NC (35�58#N, 79�5#W). The site is a loblolly pine forest planted

in 1983 after harvesting the similar vegetation and has not

been managed since planting. The FACE experiment has been

conducted since 1994, designed for quantifying the responses

of an intact forest ecosystem to the atmospheric CO2 concen-

tration ([CO2]) expected in ;2050 (ambient + 200 ppm) (Hen-

drey et al. 1999).

We used the data collected from the plots with ambient at-

mospheric CO2 concentration. The 10 years air temperature,

precipitation, soil moisture and GPP data (1996–2005) were

used as the input to drive the TECO model. Air temperature

and precipitation were from the observations at Duke Forest

FACE. Daily values of GPP were derived from gap-filled eddy

flux data (1998–2005) or the simulations of MAESTRA model

(1996 and 1997) (Luo et al. 2001) when eddy flux data were

not available. A non-rectangular hyperbola method was used

to derive GPP from eddy flux data (Stoy et al. 2006). The eight

data sets that were used to constrain parameters in inversion

procedures were biometric measurements conducted at Duke

FACE from 1996 to 2005. They were foliage biomass, woody

biomass (Finzi et al. 2006), fine root biomass (Pritchard et al.

2008), microbial biomass (Allen et al. 2000), litter fall, litter,

soil carbon (Lichter et al. 2005, 2008) and soil respiration

(Bernhard et al. 2006) (Table 2). The mean values and original

OSDs were calculated based on the observations of the three

plots at ambient [CO2]. Three levels of measurement errors,

original, halved and doubled OSDs, were obtained by halving

and doubling the original OSDs of observations.

Data assimilation approach

We used a probabilistic inversion approach developed by Xu

et al. (2006) to assimilate the biometric data sets. The probabi-

listic inversion is based on Bayes’ theorem (Equation 3).

p

�
hjZ

�
=
pðZjhÞpðhÞ

pðZÞ ð3Þ

where the posterior probability density function (PDF) of the

parameters, p(hjZ), is obtained from prior knowledge repre-

sented by a prior probability density of parameter, p(h), and

information in the eight data sets represented by a likelihood

function p(Zjh). p(Z) is the probability of observations Z.

The prior PDFs of the estimated parameters p(h) were as-

sumed to be uniform distributions over a set of specific inter-

vals (Table 1). The likelihood function p(Zjh) was calculated

using Equation (4) based on the assumption that each compo-

nent is Gaussian and independently distributed.

Table 3: information gain of parameters

Parameters

Information gain

Original OSD Halved OSD Doubled OSD

X0(1) 0.27 0.97 0.03

X0(2) 0.92 1.71 0.40

X0(3) 1.09 2.23 0.24

X0(4) 0.04 0.03 0.03

X0(5) 0.07 0.33 0.03

X0(6) 0.07 0.42 0.03

X0(7) 1.65 2.42 1.10

X0(8) 0.15 0.63 0.04

c1 2.67 3.67 1.73

c2 1.37 1.55 1.16

c3 1.65 2.28 1.06

c4 0.02 0.12 0.01

c5 1.40 1.77 0.85

c6 2.60 2.93 2.09

c7 0.29 0.41 0.14

c8 0.00 0.00 0.00

b1 2.65 3.61 1.78

b2 0.90 1.43 0.44

b3 1.11 1.74 0.54

f4,1 0.05 0.20 0.02

f4,2 0.01 0.01 0.01

f4,3 0.06 0.21 0.02

f6,4 0.24 0.31 0.08

f6,5 0.04 0.10 0.02

f7,5 0.02 0.06 0.02

f7,6 0.04 0.04 0.02

f8,6 0.00 0.00 0.00

f6,7 0.06 0.06 0.02

f8,7 0.01 0.01 0.01

f6,8 0.00 0.00 0.00
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P
�
Zjh

�
aexp

(
� +

8

i=1

+
t2Zi

½ZiðtÞ � uiXðtÞ�2

2r2
i

�
t
�

)
ð4Þ

where Z(t) is the vector of measured values and uX(t) is the

simulated vector of those values, u is the mapping vector that

maps the simulated state variables (the carbon content of the

eight pools) and fluxes to observational variables (i.e. plant

biomass, litter fall, soil carbon and soil respiration) (for detail,

see Appendix A, online supplementary material). r is OSD.

The probabilistic inversion was conducted using a Metropolis–

Hastings (M–H) algorithm to construct posterior PDFs of parame-

ters. M–H algorithm samples parameter values in high-dimensional

PDFs via a random sampling procedure based on a MCMC tech-

nique (Gelfand and Smith 1990; Hastings 1970; Metropolis et al.

1953). The detail of this algorithm was provided by Xu et al.

(2006). The M–H algorithm was run by repeating two steps: a pro-

posing step and a moving step. In each proposing step, the algorithm

generated a new parameter vector hnew (which contains the 30 free

parameters) on the basis of the previously accepted parameter

vector hold with a proposal distribution P(hnewjhold) (Equation 5).

hnew = hold + r
�
hmax � hmin

�
ð5Þ

where hmax and hmin are 30 3 1 vectors containing the maxi-

mum and minimum parameter values, respectively (Table 2).

r is a diagonal matrix with elements r1–r30 whose values were

randomly taken from a uniform distribution between �0.5 and

+0.5 for each proposal step.

In each moving step, parameter vector hnew was tested against

the Metropolis criterion to examine whether it should be accepted

or rejected. Metropolis criterion is the probability of accepting the

proposed parameter vector, which is derived from the likelihood

functions of proposed parameters and the parameters accepted

last time (Xu et al. 2006). The probability of accepting the new

parameters (moving to the next step) is calculated by:

P
�
hold; hnew

�
= min

(
1;
pðZjhnewÞ
p
�
Zjhold

�
)

ð6Þ

Gelman–Rubin (G–R) diagnostic method (Gelman and

Rubin 1992) was used to monitor convergence of MCMC sim-

ulation. By starting with different initial parameter values and

Figure 3: correlations of the 30 free parameters. Solid lines represent positive correlations, while dashed lines negative. The weights of the lines

represent the values of correlation coefficients in three categories: jrj > 0.5, 0.25 < jrj < 0.5, and 0.1 < jrj < 0.25. X0(1)–X0(8) are initial values of the

eight C pools. c1–c8 are exit rates of the eight C pools. b1–b3 are the allocation coefficients of GPP to leaves, woody biomass and fine roots, re-

spectively. fj,is are the carbon transfer coefficients from pool i to pool j.
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running three parallel chains, we compared the within-run

variation with the between-run variations to examine conver-

gence of accepted parameter series.

The posterior PDFs of the 30 parameters were constructed by

assimilating the 8 sets of observed data into the TECO model with

the three levels of OSDs: original, halved and doubled OSD. Ap-

proximately 300 000 sets of parameter values and modeling out-

puts were obtained by iterating M–H algorithm after convergence

for each error level. The accepted parameter sets were used to

simulate carbon contents of the eight pools in 100 years by re-

peatedly using the forcing data of 1996–2005. Statistics describing

the uncertainties in model outputs were derived from these sam-

ples. The correlations between parameters were derived based on

the accepted parameter sets at the three OSD levels.

Information gain by data assimilation

To quantitatively measure the identifiability of parameters and

the changes in the PDFs of simulated carbon contents of the eight

C pools at the three OSD levels, we calculated the information

gains (Kullback and Leibler 1951; Rényi 1960) of these param-

eters and C pools at the assimilation of biometric data at the three

OSD levels. The prior PDFs of parameters were uniform distribu-

tions in their corresponding ranges as defined in Table 1. The

prior PDFs of the carbon contents were obtained by a Monte

Carlo run of the TECO model with parameters sampled in their

prior PDFs. The information gain for each of the parameters or C

pools was calculated using Equation 7 based on its prior and pos-

terior distributions.

DKL

�
P
�
Vposterior

�
jjP

�
Vprior

��
= +

n

i=1

p
�
vposterior;i

�
log2

p
�
vposterior;i

�
p
�
vprior;i

�
ð7Þ

where P(Vprior) and P(Vposterior) are the prior and posterior dis-

tributions of a parameter or a C pool, respectively. n is the

number of bins with equal width in the range between the

minimum and maximum values of the variable. p
�
vprior;i

�

Figure 4: comparison of the observations and the mean values of the simulated observational variables with the parameters accepted at the three OSD levels.
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and p
�
vposterior;i

�
are the probability of Vprior and Vposterior in bin

i, respectively.

RESULTS
Constraints of parameters at the three error levels

The initial values of leaves (X0(1)), woody biomass (X0(2)), fine

roots (X0(3)), slow SOM (X0(7)) and passive SOM (X0(8)) pools

were well constrained at the three OSD levels (Fig. 2). Exit rates

of foliage biomass (c1), woody biomass (c2), fine roots (c3), struc-

tural litter (c5) and fast SOM (c6) were well constrained at the

three OSD levels. c4 (metabolic litter) and c8 (passive SOM) were

not constrained. The allocation coefficient of woody biomass

(b2) was well constrained, while b1 and b3 had long tails to

the right (Fig. 2). No transfer coefficients were constrained at

the three OSD levels. The PDFs of well constrained parameters

(e.g. X0(1), X0(2), X0(3), X0(7), X0(8), c1, c2, c3, c5, c6, b2 and b3)

were narrowed or widened by halved or doubled OSDs overall,

but their maximum likelihood estimates (MLEs) were not sig-

nificantly changed. The PDFs of most of the unconstrained

parameters were no significant changed by the OSD levels,

e.g. X0(4), X0(6), c7, c8 and most of transfer coefficients (Fig. 2).

The information gains of the 30 parameters at the three OSD

levels, which were quantitative measures of the changes in

PDFs comparing to their corresponding uniform distributions,

were used to quantify the identifiability of parameters in such

a data assimilation system (Table 3). The well-constrained

parameters had high information gains, e.g. c1, c2, c3, c6, b1,

b2 and b3, while the unconstrained low, e.g. c4, c8 and the car-

bon transfer coefficients. The information gains of well con-

strained parameters (e.g. c1, c2, c3, c6, b1, b2 and b3) changed

a lot with changes in the OSDs of the assimilated data, while

those unconstrained had little changes or no changes at all

(e.g. c4, c8, f4,2, f8,6, f8,7 and f6,8) (Table 3).

Parameter correlations

Correlation coefficients between parameters had little changes

at the three OSD levels (Appendix Tables B1 and B2, see online

supplementary material). We defined three levels of correla-

tions between parameters according to their correlation coef-

ficients at the original OSD level (Table B1 in Appendix B, see

online supplementary material): high (jrj > 0.5), modest (0.25

< jrj < 0.5) and low (0.1 < jrj < 0.25), represented by the lines

with different weights (Fig. 3). The highly correlated parame-

ters are b1 and c1 (0.94), b2 and X0(2) (�0.74), b3 and c3 (0.99),

c6 and f6,4 (0.73), c6 and c7 (0.67), f7,6 and c7 (0.72). More initial

values (X0(1), X0(3), X0(6) and X0(7)) and transfer coefficients

(f6,7, f7,6 and f6,4) were correlated modestly with either an al-

location coefficient or an exit rate (Fig. 3). Overall, all of the

highly and modestly correlated parameter pairs had at least an

exit rate (cs) or an allocation coefficient (bs).

Model performancewith accepted parameters at the

three OSD levels

The model generated similar mean values of the observational var-

iables with the parameters optimized with the data at the three

OSD levels overall (Fig. 4). For woody biomass, fine roots, forest

floor C and soil respiration, the mean values were almost the same.

For foliage biomass, litter fall and fast SOM, they were slightly dif-

ferent at the three OSD levels. While for soil carbon, doubled OSD

resulted in highest mean values among the three OSD levels.

The carbon contents of the eight C pools at the end of 2005

were constrained well generally (Fig. 5). Seven of the eight C

pools were constrained at all the three measurement error levels.

Only the metabolic litter pool (X4) was not constrained at any of

the OSD levels. High OSD resulted in high variances in forecasted

carbon contents. For the constrained pools, OSD levels changed

SDs but not the mean values of carbon content statistically (Fig.

5). However, the MLEs of litter and soil C pools (X4–X7) shifted.

The MLE of metabolic litter (X4) at halved OSD shifted to high

end, whereas the MLE of structural litter (X5) shifted to low end.

The MLE of fast SOM (X6) shifted to high end at halved OSD,

while that of slow SOM (X7) shifted to its low end (Fig. 5).

Uncertainties in forecasted C pools

The temporal patterns of the eight C pools fell into two categories

following their residence times. For the pools with short resi-

dence time (i.e. foliage biomass (X1), fine roots (X3) and meta-

bolic litters (X4)), the carbon content was stabilized within 20

Figure 5: the posterior probability distribution of simulated carbon con-

tent in the eight pools at the end of 2005.X1–X8 are the pools corresponding

to the poolsX1–X8 in Fig. 1. Solid, dotted and dashed lines represent PDFs of

the simulated carbon content with original, halved and doubled OSD, re-

spectively. The unit is g C m�2.
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years and the variations in carbon contents did not increase after

that. Whereas the carbon contents of the pools with long resi-

dence times (i.e. woody biomass (X2), slow SOM (X7) and passive

SOM (X8)) steadily increased and so did their variations with time

(Fig. 6). The coefficients of variation (CVs) of slow turnover pools

(e.g. structural litter, slow and passive SOM pools) increased

more than those of fast turnover pools (e.g. foliage and fine roots

pools) at the three OSD levels (Fig. 7). Changes in measurement

errors altered the increasing trends of the CVs of the slow turn-

over pools differently. The structural litter and slow SOM C pools

were affected more than other pools (Fig. 7).

Changes in the uncertainties of forecasted carbon content in-

duced by the OSD levels, represented by the ratios of SDs of fore-

casted carbon content at the halved or doubled OSDs to those at

the original OSDs, varied with C pools and the time of forecasts

(Table 4). For the 10-year forecasts, the uncertainties in fore-

casted biomass pools (X1–X3) proportionally changed with the

uncertainties of assimilated data. While the uncertainties of litter

and soil C pools (X4–X8) had less changes with the uncertainties

in assimilated data. For 100-year forecasts, the pools of foliage

(X1), fine root (X3) and metabolic litter (X4) had the same ratios

with those 10-year forecasts at halved and doubled OSDs. The

woody biomass (X2) and structural litter (X5) had lowered h/o

ratios at the halved OSD level, which meant that the long-term

forecasts of biomass and structural litter were constrained more

strictly at halved OSDs than those at original or doubled OSDs.

The pools of slow (X7) and passive (X8) SOM had the ratios

approaching to 1.0 at both halved and doubled measurement

errors, indicating their uncertainties at the three measurement

error levels converged in long-term forecasts.

Figure 6: simulated carbon contents of the eight C pools in 100-year forecasts based on the accepted parameters at the three OSD levels. Box plots

show visual summaries of carbon content distributions in the 5% (bottom bar), 25% (bottom hinge of the box), 50% (the lined across the box),

75% (upper hinge of the box) and 95% (upper bar) intervals.
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Information gains of the forecasts with data

assimilation

The information gains of the eight C pools in 100-year forecasts

measured the effects of assimilated data on the distribution of sim-

ulated results (Fig. 8). Generally, the information gains at halved

OSDs changed most over the 100 years’ predictions among the

three OSD levels. The information gains of fast turnover pools

(e.g. foliage and fine roots pools) stabilized in around 20 years

with the pools approaching their equilibrium states and changed

little since then. However, the information gains of slow turnover

pools (e.g. slow SOM and passive SOM) at the three OSD levels

decreased over time and converged in long-term forecasts.

The convergence of the information contributed by the data

with different OSD levels was related with the residence times of

the C pools (Fig. 9). The index of information convergence was

calculated as Ci=Ihð10Þ � Idð10Þ=Ihð100Þ � Idð100Þ, where Ih
and Id are the information gains at halved and doubled OSD, re-

spectively. It represented the ratios of short-term to long-term

differences of information gains between halved and doubled

OSDs. Figure 9 showed that the information gains of long res-

idence time pools (e.g.X8,X7 andX2) converged more than those

of short residence time pools (e.g. X1, X3 and X4) generally.

DISCUSSION
Parameter identifiability

Less than a half of the total 30 parameters were constrained in

this study. The allocation coefficients of GPP to plant C pools

and the exit rates of C pools were better constrained than the

transfer coefficients overall (Fig. 2). According to the measures

of information gains of these parameters, reduced measure-

ment errors can increase the identifiability of well-constrained

parameters but has little effects on those unconstrained ones

(Table 3). Over-complicated model structure with limited

observations is the main reason for poor parameter identifi-

ability. For instance, the exit rate of the metabolic litter (c4)

cannot be constrained partly due to lack of enough informa-

tion differentiating structural and metabolic litter in available

observations. When the two litter pools are combined to-

gether, the exit rate of the litter pool then can be well con-

strained (data not shown). The reason that no transfer

coefficients are constrained seems to be that the observations

of plant and soil C pools, and soil respiration do not contain

much information of the chemical transformations of litters

and SOMs in the processes of decomposition.

Parameter correlation is also a factor affecting parameter iden-

tifiability (Doherty and Hunt 2009). Once the key parameters are

fixed, the parameters that highly correlated with the key param-

eters may be constrained (Wu et al. 2009). For the TECO model,

the sensitive parameters (e.g. initial values of large C pools, exit

rates of the C pools and allocation coefficients) can be constrained

by the eight data sets (Weng and Luo 2011). These parameters

define the states and fluxes of ecosystem C cycling. The initial val-

ues of plant biomass (X0(1)–X0(3)) and SOM (X0(7)) define the

initial state of an ecosystem, whereas allocation coefficients (b1–

b3) and some exit rates (c2, c6 and c7) govern the rates of carbon

input and output. Most of the highly and modestly correlated

parameters are among these parameters and are identifiable with

the available data sets. Generally, the highly correlated parame-

ters are a subset of the parameters that define initial state and the

pattern of carbon movements in an ecosystem.

The patterns of parameter correlations illustrate how these pa-

rameter values are adjusted to make the model fit observations. Fore

example, the initial values of woody biomass [X0(2)] is negatively

correlated with the allocation coefficient of GPP to woody biomass

Figure 7: coefficients of variance of the forecasts of the eight C pools at

original (a), halved (b) and doubled (c) OSD levels.

Table 4: effects of measurement errors on the uncertainties of

forecasts

10 years 100 years

h/oa d/ob h/o d/o

X1 0.50 1.77 0.50 1.76

X2 0.51 1.94 0.37 1.54

X3 0.50 1.97 0.50 1.97

X4 0.99 0.78 1.00 0.74

X5 0.70 1.61 0.29 1.29

X6 0.65 1.46 0.64 0.97

X7 0.54 1.85 0.72 1.17

X8 0.57 1.43 1.02 1.16

a The ratios of SDs of simulated carbon contents at halved measure-

ment errors to those at original measurement errors (h/o).
b The ratios of SDs of simulated carbon contents at doubled measure-

ment errors to those at original measurement errors (d/o).

10 Journal of Plant Ecology

 at P
rinceton U

niversity on July 13, 2011
jpe.oxfordjournals.org

D
ow

nloaded from
 

http://jpe.oxfordjournals.org/


(b2), while the latter is positively correlated with exit rate of woody

biomass (c2). The same pattern can be found in the correlations be-

tween the pairs of initial value, allocation coefficient and exit rate of

leaf biomass (X1). These correlationships mean an accurate estima-

tion of initial values of C pools is necessary for correctly estimating

allocation coefficients and exit rates, which govern the long-term

dynamics of an ecosystem (Weng and Luo 2011).

The three types of parameters, allocation coefficients, exit rates

and transfer coefficients, determine the carbon residence time of

ecosystem total carbon (Zhou and Luo 2008). Therefore, this

study explored two types of parameters at ecosystem level actu-

ally: initial values and residence times, which determined the tra-

jectory of ecosystem carbon content over time. The results reflect

the fact that Duke Forest is still on its early stage of secondary

succession, recovering from previous disturbances (Allen et al.

2000; Finzi et al. 2006). Since the slow turnover pools determine

carbon accumulation of ecosystem, an accurate prediction of car-

bon dynamics in recovery stage is important for reducing the un-

certainty in forecasted ecosystem carbon storage.

Carbon residence time and error propagation

Residence time is a key parameter of compartmentalized material

cycle models (Eriksson 1971). For C-cycle models, the residence

time of a C pool determines the time that a C pool needs to reach

equilibrium state and the rate of carbon outflow. Most current eco-

system models shared similar C pool structure and the carbon trans-

ferring processes among the pools of vegetation, litter and soil (e.g.

LPJ, Sitch et al. 2003; IBIS, Kucharik et al. 2000; VAST, Barrett

2002). The fast turnover pools can generally be stabilized within

a short period and are highly susceptible to environmental condi-

tions. While the slow turnover pools need a long time to be equil-

ibrated. The uncertainties in forecasted carbon content of the slow

turnover pools, e.g. woody biomass, structural litter and soil carbon

pools, increase over time; but those of the fast turnover pools, such

as foliage biomass and fine roots, change little over time since the

pools have been equilibrated at the beginning of forecasting (Fig. 6

and Fig. C1 in Appendix C, see online supplementary material).

Residence time can also influence information contribution of

assimilated data and the effects of measurement errors on long-

term projections. As shown by Fig. 8, the information contrib-

uted by assimilated data increased with time for the forecasts

of fast turnover pools, whereas it decreased for the slow turnover

pools. The data with different OSD levels contributed similar in-

formation for slow turnover pools in long-term predictions.

Figure 9 showed that the information contributions of observa-

tions converged in long-term predictions for the pools with long

residence times. Table 4 also showed that the differences of SDs of

simulated C content with assimilation of the data at the three

OSD levels decreased in 100-year’s predictions for the slow turn-

over pools (especially for X7 and X8). These results indicate that

the uncertainties of fast turnover pools are more subjective to

Figure 8: information of the eight C pools and ecosystem total carbon. Solid, dotted and dashed lines represent original, halved and doubled OSD

levels, respectively.

Figure 9: the convergence of information contribution of the data

with different OSD levels as affected by residence times of carbon

pools. The convergence index (Ci) is calculated as

Ci=Ihð10Þ � Idð10Þ=Ihð100Þ � Idð100Þ, where Ih and Id are the informa-

tion gains at the halved and doubled OSD levels, respectively. The

numbers in parentheses (10 and 100) denote the year of simulation.
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measurement errors than those of slow turnover pools, and

short-term predictions were affected more than long-term pre-

dictions. Another study (Weng and Luo 2011) has shown that

the slow turnover pools (long residence times) have more model

information contributed in long-term predictions and therefore

are affected less by measurement errors than fast turnover pools.

Overall, residence time regulates relative information contribu-

tions of model and data to model forecasts, affecting the propa-

gation of errors from measurements to model forecasts.

Measurement errors

We used the SD of each data point in the cost function (Equation 3)

rather than the SDs of one data set or artificial weighing factors. This

allows us to test the effects of measurement accuracy on parameter

estimation and uncertainty of simulated results. The actual errors

would by no means uniformly increase or decrease due to the var-

ied methods of measurement. Uniformly doubling or halving the

SDs of the observations is just for testing the sensitivity of parameter

identifiability to the errors of observations and the behavior of error

propagation in such a process-based C-cycle model. Artificially re-

ducing SDs may increase the possibility of conflicts among data sets,

making it impossible to find out parameters to fit all data sets (Wang

et al. 2009). Doubling or halving SDs actually changed the weights

of the eight data sets, leading to varied mean forecasts of the C pools

(Fig. 5). The weighting of observations is an important issue in

multi-constraints of an ecosystem model (Barrett et al. 2005; Car-

valhais et al. 2010) and should be further examined in future stud-

ies.

Error distributions determine the form of the likelihood func-

tion, therefore leading to different parameter estimates and model

outputs. The distribution of errors is usually assumed to be Gauss-

ian (e.g. Braswell et al. 2005; Ricciuto et al. 2008), yet the distribu-

tion of eddy flux errors, e.g., was more like a Laplace distribution

(Hollinger and Richardson 2005) though it is still in debate (Lasslop

et al. 2008; Williams et al. 2009). If it is a Laplace distribution, the

form of cost function should be the sum of absolute deviations

rather than ordinary least squares (Richardson and Hollinger

2005). The errors of biometric data are treated as Gaussian com-

monly. So, it is still highly desirable in future studies to examine

the error distributions of biometric data sets and their influences

on estimated parameters and forecasted state variables.

CONCLUSIONS

Our results showed that less than half of the total 30 parameters

can be constrained even the model is relatively simple while the

observations are very extensive. None of the C transfer coefficients

can be constrained, indicating that the carbon transfers among the

pools of the model are too complicated, though these transforma-

tions are obvious conceptually. The magnitudes of measurement

errors changed uncertainties of posterior PDFs of the parameters

and the uncertainties in forecasted C pool sizes. The error propa-

gation patterns over time were affected by the residence times of

the C pools. For the slow turnover pools, the uncertainties of the C

pools increased with time at the three OSD levels but had a trend of

being convergent. However, for the fast turnover pools, uncertain-

ties increased in the first decades and then were stabilized. Resi-

dence times affected error propagation via regulating the

information contribution of assimilated data sets and model.

The model contributed more information for the pools with long

residence times in long-term predictions, leading to low effects of

measurement errors. These results indicate the residence times of

C pools played a key role in the propagation of errors from meas-

urements to model forecasts in a data assimilation system. For re-

ducing uncertainties in long-term forecasts, accurate estimation of

the parameters of slow turnover pools is required.

SUPPLEMENTARY MATERIAL

Supplementary Appendixes A–C are available at Journal of

Plant Ecology online.
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