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Abstract
It is increasingly being recognized that global ecological research requires novel methods and strategies in

which to combine process-based ecological models and data in cohesive, systematic ways. Model–data fusion

(MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach

that offers a high level of empirical constraint over model predictions based on observations using inverse

modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in

the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper

reviews key features and principles of MDF and highlights different approaches with regards to DA. After

providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology

(i.e. palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and

uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper

discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of

today�s world, MDF could become an important diagnostic and prognostic tool in which to improve our

understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in

ecosystem structure, function and services.
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INTRODUCTION

Ecology and palaeoecology are two fields of study that have

become data-rich enterprises due to the rapid development of

numerous global research networks (e.g. FLUXNET and

BIOME6000), multi-sensor remote-sensing data (e.g. MODIS and

Landsat) and the long-term accumulation of data through research

network project initiatives (LTER). The enormous amount of

available data offers tremendous opportunity to improve ecological

model simulations by applying data assimilation (DA) and inverse

modelling techniques. Data assimilation is the process of incorpo-

rating observations into a forecast model over a period of time to

create an estimate of the system state (such as the state of the

atmosphere or the biosphere). Data assimilation techniques have

undergone continual development in the last 50 years. This is

particularly true with respect to meteorology (Appendix S1) where

numerical weather prediction (NWP) models have been constructed

from the assimilation of satellite, atmospheric and surface obser-

vational data, which has led to dramatic improvements in

forecasting techniques (Cressman 1959; Gandin 1963; Lorenc

1981; Evensen 2007; Lorenc & Payne 2007). Ecological models

have concurrently undergone a conscientious development towards

a more mechanistic, comprehensive and complex structure to

prepare them for DA application (Williams et al. 2009; Wu et al.

2009). Inverse modelling (based on estimation theory) is a statistical

technique that can be used to estimate parameters that are directly

or indirectly related to the measured quantity. An inverse model

differs from simulation (or forward) modelling in that it uses

observed properties (e.g. carbon fluxes) to constrain physical or

biological processes rather than using physics or biology to predict

property distribution. Model–data fusion (MDF) (also called

�model and data integration� or �model–data synthesis�) includes

both model inversion techniques and DA. The aim of the MDF

approach is to improve the observational constraint of a model
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over that afforded by any single data set on its own (Raupach et al.

2005).

Despite three decades of advancements in ecological data acquisi-

tion, remote-sensing technology and inverse modelling there exists no

single definitive data set or ecological model that can comprehensively

generate all ecological products (or modelled state variables) needed

for the reliable assessment of an environment and its monitoring and

forecasting capacity (Clark et al. 2001; Luo et al. 2011). However, an

emerging awareness is taking place in the ecology and palaeoecology

communities where the integration of multiple observed data sets is

starting to be perceived as a necessary step in overcoming the

limitations imposed by uncertainties contained within any single data

set (e.g. data gaps, biases, inaccurate processing algorithms, nonlinear

dynamics and model error). Improved model forecasts require the

development of innovative observational, statistical and computa-

tional techniques that optimally combine observation data sets and

ecological models. Increasing demands to integrate model and data

methods in the past decade has led to the development of MDF

within ecology. MDF allows for the integration of multiple and

different types of data (including associated uncertainties) as well as

for the inclusion of prior knowledge of model parameters and ⁄ or

initial state variables. It holds great promise as a tool for partitioning

the photosynthetic and respiratory components of ecosystems while

studying their separate response to environmental control (Wang et al.

2009). In addition, MDF can combine data sources into models that

explicitly acknowledge sources of uncertainty. This is critical to the

advancement of ecological forecasting (Clark et al. 2001; Luo et al.

2011).

Model–data fusion has played an increasingly important role not

only in NWP (Lorenc 1981; Daley 1991; Kalnay 2003), oceanic

sciences (Evensen 2003) and hydrologic modelling (Liu & Gupta

2007) but also in palaeoclimate, palaeovegetation and palaeocarbon

reconstructions (Guiot et al. 2000, 2009; Wu et al. 2009), carbon cycle

modelling (Wang et al. 2009), global carbon sink ⁄ source quantification

through the application of atmospheric inversion (Bousquet et al.

2000; Gurney et al. 2002), earth system modelling (Mathieu & O�Neill

2008; Williams et al. 2009) and ecological estimation and forecasting

(Cosby 1984; Luo et al. 2003, 2011). With increasing exigency to

integrate models and data together, MDF has become more and more

utilized in the fields of palaeoecology, ecology and earth system

sciences. Figure 1 provides the number of publications and citations

that applied MDF for global climate change ecological research from

1990 to 2009. It shows an exponentially increasing trend (almost by a

factor of seven over the past 10 years) in terms of both publication

and citation (Fig. 1).

This paper is not intended to be an exhaustive review of all methods

and issues related to MDF reported in literature; instead, the aim was

to provide neophyte readers with an illustrative and integrated overall

picture of the MDF approach and how it is breaking new ground with

regards to its current applications and benefits as well as its future

potential within the global ecological community. Key features and

principles of MDF and its various approaches are first assessed in

relation to DA. After a critical evaluation of the variety of benefits of

MDF and its current applications in palaeoecology (i.e. palaeoclimate,

palaeovegetation and palaeocarbon storage reconstruction) and

ecology (i.e. parameters and uncertainty estimations, identification of

model error, remote sensing and ecological forecasting), the paper

discusses its limitations, current challenges and directions for future

research.

KEY FEATURES, PRINCIPALS AND OPTIMIZATION METHODS

OF THE MDF APPROACH

Key features and principles

Basically, MDF encompasses both DA and model inversion tech-

niques (Raupach et al. 2005; Tarantola 2005; Evensen 2007). The key

objective of MDF is to improve the performance of a model by either

optimizing ⁄ refining the values of unknown parameters and initial state

variables or by enhancing the predictive capacity of a model (state

variable) according to a given data set. Notwithstanding a number of

MDF approaches that have recently been reported in literature,

common features among the different MDF approaches are: (1) a

forward model structure that describes the temporal evolution of state

variables (e.g. surface temperature, soil moisture and carbon stocks),

(2) observational data that can be correlated to model results, (3)

objective functions that combine model estimates and observations to

any associated prior information and error structure and (4)

optimization techniques that adjust forward model parameters or

state variables to minimize the discrepancy between model estimates

and field (or satellite) observations.

The general principle of MDF is to find an �optimal match� between

model observations by varying the properties of the model (e.g.

structure, state and parameter). The �optimal match� is a selection of

model properties that minimize the gap between model system
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Figure 1 Number of publications and citations that used model–data fusion (MDF)

for global change ecology research from 1990 to 2009. A Web of Science search

was carried out using the following Boolean input keywords: (�Inversion� OR �Data

assimilation� AND �Ecology� AND �Global change�).
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representation and real systems based on observational and prior data.

A cost function is then constructed to quantify the mismatch between

model predictions and observations. To accomplish this, a common

procedure (termed an M-estimator in statistics) is to have the cost

function expressed as a weighted sum of the model–data mismatch.

The cost function may also reflect the statistical characteristics of

errors within the observations themselves (Wang et al. 2009).

Discovering optimal parameters can help to improve predictions or

test alternative hypotheses embedded into models. The Bayesian

approach (a statistical inference method in which certain types of

evidence or observations is used to calculate a prior probability over

hypotheses) is the ultimate refinement as it provides a way to estimate

uncertainties. A key feature of DA schemes is how they incorporate

information that pertains to uncertainty for both the model and the

observations, providing a best estimate of the true state of a system.

In addition, estimates of model output uncertainty are calculated in

compliance with the observed data so that model predictions are

correlated to associated probabilistic density functions derived from

the MDF approach. This is crucial in assessing the utility of model

forecasting capacity.

Main optimization methods

The choice of optimization technique (Fig. 2) can be either batch or

sequential DA functions that are built into the applications, which

minimizes model and data differences throughout (or a subset of) all

observations simultaneously. The search for an optimal solution as

well as the estimation of uncertainties can be implemented by both

batch and sequential techniques (Table 1). It all depends on whether

the data are processed all at once (batch), in groups, or, potentially,

even one at a time (sequential). Batch methods that include gradient-

based methods as well as global search and variational DA methods

(Fig. 2; Table 1) simultaneously process all data and observations. For

batch techniques, the cost function is treated as a single function to be

minimized.

In contrast to batch methods, sequential DA methods process data

sequentially. One of the most popular examples of a sequential

method is the Kalman filter (KF) (see Appendix S2) that was first

introduced by Rudolf E. Kalman (1960). KF is a recursive algorithm

that estimates the state of a system at each repetition using a state-

space model in combination with (noisy) measurements. The objective

of KF is to reduce the influence of noise that occurs in measurements.

It provides a convenient representation of model error, data error and

parameter error (Williams et al. 2005; Wang et al. 2009).

Kalman filter has two distinct phases: the prediction phase and the

update phase. The prediction phase uses the state estimate from the

previous time step to produce an estimate of the state at the point of

the current time step. For the update phase, the current a priori

prediction is combined with current observational data to refine the

state estimate. This improved estimate is termed the �a posteriori state

estimate�. Typically, the two phases alternate with the prediction,

advancing the state until the next scheduled observation and the

update that incorporates the observational data. A comparison

between three major sequential DA methods is provided in Table 1.

The Ensemble Kalman filter (EnKF) is an extension of the

traditional KF that in itself is based on Monte Carlo sampling and

recursive data processing. Easy implementation of the EnKF method

and its applicability to nonlinear problems has led to its extensive

application in meteorology and hydrology as well as in other fields

(Burgers et al. 1998; Reichle et al. 2002; Vrugt et al. 2005). Recently,

ecologists (Williams et al. 2005; Fox et al. 2009) have begun to use

EnKF to investigate problems concerning: (1) model parameter

estimation (Quaife et al. 2008), (2) climate reconstruction (Wu et al.

2007a,b), (3) how to assimilate measured eddy fluxes and carbon pools

into carbon cycle models (Williams et al. 2005; Mo et al. 2008), (4)

wildland fire simulation and prediction (Mandel et al. 2008) and (5)

how to estimate terrestrial water cycles on a regional scale by means of

multiple satellite remote-sensing data (Pan et al. 2008).

RECENT DEVELOPMENTS AND APPLICATIONS OF MDF

IN GLOBAL CHANGE RESEARCH

It is increasingly being recognized that global ecological research

requires novel methods and strategies in which to combine process-
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Figure 2 Optimization techniques (methods) used in model–data fusion (MDF).
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based ecological models and data in a cohesive, systematic manner.

Increasing demands to integrate model and data methods in the past

decade has led to MDF utilization in palaeoecology, ecology and earth

system sciences (Fig. 3).

MDF applications in palaeoecology

Although palaeoecological data provides the means to understand past

ecosystem dynamics and long-term climate changes by applying

statistical methods (Guiot & de Vernal 2007), these methods are based

on modern distributions of one or more species that reside within a

climatic domain or on a statistical calibration of modern assemblages

in relation to climatic variables. MDF appears to be an approach

better suited to this contingency than traditional statistical methods

due to its mechanistic, processed-base relationships compared to the

latter�s focus on simple statistical correlations. In recent years, MDF

has emerged to combine environmental proxies (such as pollen, tree-

rings, isotopes, etc.) and process-based dynamic vegetation models

together to reconstruct palaeoenvironments.

Reconstructing palaeoclimates and palaeovegetation

It is important to note that statistical methods for reconstructing

palaeoclimates are based on the assumption that plant–climate

interactions remain constant through time and implicitly assume that

these interactions are independent from climate forcing such as

changes in atmospheric CO2. These statistical methods are only valid

for climatic niches presently realized, and their extrapolation to past

conditions could prove problematic when they do not reflect present

conditions (Guiot et al. 2009). Moreover, the methods primarily used

were based on modern distributions of one or several species that

reside in climatic domains or on a statistical calibration of modern

assemblages in relation to climatic variables. They do not take into

account the impact of atmospheric CO2 concentrations on vegetation.

Inverse vegetation modelling offers a novel approach to reconstruct

palaeoclimates (Guiot et al. 2000; Wu et al. 2007a,b). Moreover, a

physiologically based vegetation model can be utilized inversely for

palaeoclimatic and carbon reconstructions (Fig. 4).

Guiot et al. (2000) developed the first palaeoclimate inverse

modelling application. They estimated certain climatic variables from

observed ecological data or simulated outputs. This new method

involved the use of pollen data and a process-based BIOME3

vegetation model coupled to an artificial neural network both inverted

by Markov chain Monte Carlo (MCMC) sampling. It provided a

strategic framework and insight into how to take into account the

effects of low CO2 atmospheric concentrations to improve palaeo-

climatic reconstructions. Wu et al. (2007a) extended the methodology

to include European, African and Asian data for two historical periods

in which atmospheric CO2 concentrations were considerably different

from the present day. They showed that bias could be as high as 10 �C

for winter temperatures in Europe during the Last Glacial Maximum.

This method has been extended to multiple proxies by Hatté & Guiot

(2005) and Hatté et al. (2009) for reconstructing palaeoprecipitation

using pollen and d13C data, a proxy strongly related to precipitation

(Fig. 5). Data obtained on the Grande Pile Eemian have demonstrated

that multi-constraints ascertained by means of the joint usage of

pollen and carbon isotopes also reduce uncertainty in relation to

precipitation reconstruction.

The two studies discussed in the above paragraph used an

equilibrium vegetation model (BIOME3; Appendix S4) that accountsTa
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for processes related to carbon and water cycles but not to those

related to plant competition and mortality. LPJ-GUESS (Smith et al.

2001), a more recent and sophisticated dynamic model, takes these

processes into account. To carry out temporal inversion, Garreta et al.

(2009), for example, developed a hierarchical Bayesian model and

utilized a particle filter (PF) algorithm to the LPJ-GUESS dynamic

vegetation model. The hierarchical Bayesian approach provides

researchers with a classification model that takes into consideration

uncertainty associated with measuring replicate samples while facili-

tating the probabilistic formalization of the inversion process. It offers

attractive general features for palaeoclimatological research (see

Haslett et al. 2006). This is possible due to it being a powerful tool

that yields rich statistical models that more fully reflect a given

problem in comparison to simple models. Guiot et al. (2009) recently

proposed a number of prospective ideas regarding a shift from a

statistical single proxy approach to a multi-proxy and dynamical

approach with respect to palaeoclimate and palaeovegetation recon-

structions. However, this inverse vegetation modelling approach is not

a panacea. Since it is a model-based approach, it is highly dependent

on the quality of the proxy model. Moreover, it requires a great deal of

computational process time. Outputs of the model are not directly

comparable to pollen data without first modelling pollen dispersion.

Additional verification is also required by way of adapting this

approach to other vegetation models. It remains important to use this

approach in parallel with classical statistical methods (Guiot et al.

2009; Wu et al. 2009).

Reconstructing palaeocarbon

Methods used to reconstruct palaeocarbon storage with regards to

glacial and interglacial environmental conditions can be generally

classified into: (1) carbon density estimates, (2) vegetation model-

based estimates that apply climate inputs and (3) inverse modelling

that utilize palaeovegetation data (Peng et al. 1998; Wu et al. 2009).

The carbon density method uses palaeoenvironmental proxy data (i.e.

palynological, pedological and sedimentological data) to map the

distribution of vegetation types and to estimate stocks by assuming

that average carbon density in each biome is the same as observed

conditions today (Adams et al. 1990; Van Campo et al. 1993). This

Ecological-process
models

Ecological
observational data
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Optimization
techniques

Sequential
Methods

Model-data fusion
(MDF)

Ecology

Integration

Cost
functions

Cost
functions
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Applications

(1) Parameter estimation

(2) Uncertainties and  errors estimation

(3) Ecological forecasting

(4) Remote sensing
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(6) Earth system modeling

M

Figure 3 Overview of optimization techniques and model–data fusion (MDF) application in ecology.
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Figure 4 Development and evaluation of the model–data fusion (MDF) approach in palaeoecology fusion that includes inverse modelling and data assimilation. BIOME is an

equilibrium vegetation model developed by Prentice et al. (1992). LPJ-GUESS is a dynamic vegetation model developed by Smith et al. (2001).
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estimate is solely dependent on vegetation or biome type and does not

vary geographically for specific types under different climatic

conditions and atmospheric CO2 levels, which may lead to substantial

errors during glacial–interglacial periods (Van Campo et al. 1993; Joos

et al. 2004).

Wu et al. (2009) have recently developed a new MDF approach to

estimate past biospheric carbon stocks based on the application of a

new integrated ecosystem model [PaleoCarbon model (PCM)] that

was built on top of a physiological process vegetation model

(BIOME4) coupled with a process-based biospheric carbon model

(DEMETER) (Fig. 6). The PCM was constrained to fit pollen data to

obtain realistic estimates for both vegetation distribution and soil

carbon storage. It was estimated that the probability distribution of

climatic parameters (as simulated by BIOME4 utilizing an inverse

process) was compatible with pollen data while DEMETER

successfully simulated carbon storage values to corresponding outputs

of BIOME4. The carbon model was validated to present day

observations of vegetation biomes and soil carbon, and the inversion

scheme was tested against 1491 surface pollen spectra sample sites in

Africa and Eurasia. Results show that this method can successfully

simulate biomes, terrestrial carbon variables and related climates for

most of the selected pollen sites.

MDF application for use with parameter estimation

It has proven to be highly challenging to accurately estimate model

parameters and their dynamical range regarding different spatiotem-

poral scales due to complex processes as well as the spatiotemporal

variability found within terrestrial ecosystems. For example, terrestrial

carbon cycle projections derived from multiple coupled ecosystem–

climate models were at variance. Discrepancies ranged from a 10 Gt

C year)1 sink to a 6 Gt C year)1 source by the year 2100

(Friedlingstein et al. 2006). The model discrepancy does not only

arise from parameter uncertainties but also from the limited

understanding of key ecological processes. In addition, by comparing

nine process-based models applied to a Canadian boreal forest

ecosystem, Potter et al. (2001) found that core parameter values [e.g.

leaf area index (LAI), stomatal conductance and leaf nitrogen content]

and their specific sensitivity to certain key environmental factors were

inconsistent due to seasonal and locational variance in factors.

Parameter estimation is a major application of MDF wherein model

parameters are adjusted so that model state(s) come into closer

agreement with observations (Liu & Gupta 2007; Fox et al. 2009;

Wang et al. 2009). Various published literature has show how inverse

methods have been used to estimate and calibrate model parameters

by assuming time-invariant parameters. For example, Braswell et al.

(2005) estimated the Harvard Forest carbon cycle parameters using

the Metropolis algorithm (a MCMC method). They found that most

parameters were reasonably constrained and that estimated parameters

can simultaneously fit both diurnal and seasonal variability patterns.

With given a priori uncertainties, Knorr & Kattge (2005) reported that

half-hourly CO2 and water flux eddy covariance measurements could

considerably reduce uncertainty in approximately five parameters in an

ecosystem model. Luo et al. (2003) and Xu et al. (2006) added
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Figure 5 Estimated annual precipitation in Nussloch, Germany (Hatté & Guiot 2005), obtained by an inversion of the BIOME4 vegetation model for the 80 to 5 kyr BP

period: (1) part of required inputs of the model was fixed to site values (coordinates, soil). (2) CO2 is constant for a given time period but changes according to ice core

measurements (from 190 p.p.m.v. during glacial periods to c. 280 p.p.m.v. during the Holocene epoch). (3) For each time period, a large number of climate scenarios were

appraised and introduced into BIOME4. d13C was simulated and compared to measured values. Scenarios that provided simulated values close to the measured values were

retained. They were used to define ranges of acceptable d13C (shown in grey). (4) Satisfactory scenarios were used to define reconstructed precipitation (median + 95%

confidence intervals are represented by black lines and grey areas). The selection of climate scenarios is based on an Markov chain Monte Carlo (MCMC) algorithm. The

number is typically a few thousand. Although the d13C output ranged from )23 to )26.5& (mean uncertainty range: ± 0.5&) and was in agreement with observations

(r2 = 0.75, n = 164), certain discrepancies may be identified, particularly during the c. 62–58 kyr BP period in which simulations presented lower values than observations. The

causes of the d13C �mismatches� between the data and the model may arise either from the BIOME4 model itself (which assumes a constant value for incoming solar radiation)

or from the isotopic data (which assumes a sampling problem as well as no apparent analogy between vegetation and soil types). The mismatch may also stem from parameters

associated with fractionation.

528 C. Peng et al. Review and Synthesis

� 2011 Blackwell Publishing Ltd/CNRS



photosynthate partitioning coefficients into plant pools (the initial

values of pool size) and estimated parameters that describe carbon

flow into receiving pools for inverse analysis by applying six data sets

from a forest CO2 experiment. These methods, however, do not take

into account possible temporal variations that occur in model

parameters, which may result in misrepresentation of certain

processes. It is worth mentioning they also require a large historical

data set. Moreover, it is important to point out that most MDF

applications used for parameter estimation failed to further analyse

and quantify systematic model error and uncertainty and their

potential impacts on model parameters. The use of MDF to identify

systematic model error and quantify uncertainty is discussed in the

following section.

The assumption of time-invariant parameters is critical when using

these inversions. It should be noted that this may not be the case for

parameters that change over time. Sequential DA approaches such as

recursive Bayesian estimation (Thiemann et al. 2001) as well as the

KF and its various extensions (Trudinger et al. 2007; Mo et al. 2008;

Gao et al. 2011) can be used to overcome these shortcomings,

providing a general framework for the optimum consolidation of

uncertainty in model prediction to observational data (Appendix S5).

Sequential techniques have been used for the recursive estimation of

time-varying parameters and predictive uncertainty in hydrological,

climate and carbon cycle models. To account for seasonal parameter

variation, for example, Mo et al. (2008) successfully used the

sequential DA approach in combination with EnKF to optimize

key parameters of the Boreal Ecosystem Productivity Simulator

(BEPS) model, taking into account input error, parameters error and

observational error. They found that sequential DA in combination

with EnKF can be used to estimate the seasonal and interannual

variation of parameters, and these optimized parameters can

considerably improve ecosystem model accuracy. In addition, Chen

et al. (2008) introduced a so-called smoothed ensemble Kalman filter

(SEnKF) that combines EnKF with a kernel-smoothing technique to

simultaneously estimate state variables and parameters of a forest

carbon flux partition model (see Appendix S6). Furthermore,

simultaneous parameter estimation can use near real time observa-

tions to improve the predictive capacity of dynamic models. Two

recent studies compared a number of parameter estimation methods

applied to common data sets and models. They highlighted the

importance and difficulty in correctly representing uncertainties for

both the model and parameter estimation measurements (Trudinger

et al. 2007; Fox et al. 2009).

MDF application to estimate model parameter and prediction

uncertainty and error

How to adequately address uncertainty associated with ecological

prediction remains a critical and challenging issue despite considerable

progress and recent developments in enhanced computational power
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Figure 6 Schematic representation of the inverse vegetation modelling approach to past carbon storage reconstructions (adapted from Wu et al. 2009). PCM integrated the

process-based biospheric models BIOME4 (Kaplan 2001) and DEMETER (Foley 1995) into an inverse model (Guiot et al. 2000). An innovative approach of the PCM model

is the inversion of BIOME4 to estimate climatic variables that are introduced into DEMETER (which works in forward mode) to estimate terrestrial carbon storage. BIOME4

is a physiological process-based global model that is particularly useful when working with palaeovegetation as it operates with a limited number of inputs (monthly

temperature, precipitation, sunshine, absolute minimum temperature, soil texture and atmospheric CO2 concentrations) that are easily available. However, its equilibrium design

makes it impossible to directly simulate terrestrial carbon stocks. DEMETER provides a better simulation of global and continental scale biospheric carbon storage for

vegetation, litter and soil but offers only a simple potential vegetation submodel derived from the BIOME1 model (Prentice et al. 1992). To overcome the shortcomings of both

approaches, these models were coupled with biome types and net primary production (NPP) that were calculated by BIOME4 and then used as inputs for the DEMETER

model. PCM was constrained to fit pollen data to obtain realistic estimates. The principle behind the inversion method applied here was to estimate the input of BIOME4 (e.g.

monthly climate) given the known data related to the output of the model, that is, the biome scores (Prentice et al. 1996) derived, in this case, from pollen. The

reconstructed climate variables together with the vegetation parameters (NPP and biome type) were then used as an input for DEMETER to deduce the terrestrial vegetation

carbon cycle.
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and ecological modelling sophistication. The most difficult technical

challenges that remain are to understand, quantify and reduce

uncertainty involved in palaeoecology and ecology modelling in a

cohesive and systematic manner. Analysis of uncertainty and model

performance are an integral part of any MDF application in quantifying

and reducing model uncertainty (Wang et al. 2009; Williams et al. 2009).

Estimating parameter uncertainty and corresponding model output

uncertainty is an unrivaled benefit offered by most MDF approaches.

Indeed, the outcome of the MDF approach is a set of parameter

probability distribution functions that can be used to generate an

assemblage of model runs using a time series of the climate forcing data.

For example, Fox et al. (2009) compared various algorithms that

estimate carbon model parameters that are consistent with both

measured carbon flux and states and results acquired from a simpler

carbon model. Their analysis indicates that the incorporation of

additional constraints and the application of data to carbon pools

(wood, soil and fine roots) can help to reduce uncertainties in model

parameters poorly served by eddy covariance data. Moreover, a number

of uncertainty analysis frameworks have been developed and reported

on in atmospheric and oceanic sciences (e.g. Daley 1991) as well as in

hydrological modelling (Liu & Gupta 2007). These methods and

analysis frameworks, however, are relatively new in palaeoecology and

ecology and have not yet been extensively tested and applied to global

climate change ecological studies (Liu & Gupta 2007; Wang et al. 2009).

Two types of model errors exist: systematic and random (Appen-

dix S7). MDF techniques can be used to identify systematic model

errors. To separate systematic model error from errors specific to

model parameters, an analysis of model errors can be carried out after

model parameters have been optimized (Wang et al. 2009). This is

accomplished by analysing model residuals and comparing different

models together (Stöckli et al. 2008; Williams et al. 2009). Spectral

analysis of model residuals provides a practical way in which to

determine model error (Braswell et al. 2005; Williams et al. 2009).

Based on wavelet analysis, Braswell et al. (2005) analysed model

residuals and found that multi-year eddy covariance flux measure-

ments collected from Harvard Forest provided good constraints on

parameters related to the processes that control net carbon exchange

(the difference between ecosystem production and ecosystem

respiration) from daily to seasonal time scales. These measurements,

however, did not provide good constraints regarding interannual time

scales. The model�s variance with regards to net carbon exchange was

considerably lower than measurements with regards to variance.

A more sophisticated method was recently developed by Abramowitz

et al. (2007) to analyse systematic model errors in relation to complex

global land surface models. For this study, a neural network-based flux

correction technique was applied to three land surface models. It was

used to show that the nature of systematic model error in simulations

of latent heat, sensible heat and the net ecosystem exchange of CO2 is

shared between different vegetation types and, indeed, different

models. The technique also offered insight into which land surface

model process may be improved on to reduce systematic error.

A comprehensive review regarding the application of MDF to

quantify and reduce model uncertainty and error in hydrological

modelling was reported by Liu & Gupta (2007).

MDF application to enhance remote-sensing products

Recent advances in biogeochemistry-based process models prove that

in combination with regional scale remote-sensing products, prom-

ising approaches to test ecological hypotheses as well as to assess and

forecast states of future landscapes can be achieved (Turner et al.

2004). Several studies have shown how remote sensing derived leaf

area indices (Fang & Liang 2005; Hazarika et al. 2005), biomass

(Schaepman et al. 2007) and canopy nitrogen (Ollinger & Smith 2005)

can be adopted to constrain ecosystem models. Such approaches

require spatially continuous inputs of the state of an ecosystem at the

start point of a simulation and may profit from the assimilation of

relevant remote sensing derived biophysical and biochemical state

variables of ecosystems under consideration. MDF offers considerable

promise in remote sensing with regards to improved state and

parameter estimation, particularly when applied to multi-sensor image

products (Liang 2007).

The MDF approach also allows for utilization of all available

remote-sensing data within a time window to estimate various

unknown parameters in land surface models (Liang & Qin 2008;

Quaife et al. 2008). Hazarika et al. (2005) demonstrated the utility of

combining satellite observations with ecosystem process models to

achieve improved estimate accuracy as well as accuracy in monitoring

global net primary production. Fang & Liang (2005) assimilated the

MODIS LAI product into a crop growth model to estimate crop yield

by determining critical parameters of the crop model. In addition,

Renzullo et al. (2008) developed a �multiple constraints� MDF

(MCMDF) scheme that integrates multiple remote-sensing data

sources (including the AMSR-E soil moisture content and MODIS

land surface temperature data products) to a surface moisture and

energy budget coupled biophysical model operating on a daily time

scale for savannas in northern Australia. By utilizing EnKF (after

Evensen 1994, 2003) with modifications made to joint state and

parameter estimation, Stöckli et al. (2008) developed an MDF

framework coupling the fraction of photosynthetically active radiation

that is absorbed through vegetation (FPAR) and the LAI from

MODIS data to constrain empirical temperature, light, moisture and

structural vegetation parameters of a prognostic phenological model.

They found that DA better constrains structural vegetation parameters

than do climate control parameters. Furthermore, MDF effectively

overcomes cloud and aerosol related deficiencies of satellite data sets

in tropical regions.

MDF application for ecological forecasting

Ecological forecasting is a critical new tool to quantitatively

characterize the most likely future states of ecological systems either

under prevalent conditions or under different �what-if� scenarios.

Under prevalent conditions, short-term forecasts (i.e. days and

months) generally can be made according to the system�s own

dynamics (Clark et al. 2001; Luo et al. 2011). Moreover, ecological

forecasting uses the combined knowledge of physics, ecology and

physiology to predict how ecosystems will diverge in the future in

response to conditions of environmental fluctuation such as climate

change (Clark et al. 2001). The ultimate goal of ecological forecasting

is to provide resource managers and decision makers information that

they can use to respond in advance to future changes. Ecological

forecasting typically requires mechanistic knowledge of the processes

being modelled. Forecasts are usually probabilistic and provide an

estimate of the probability of a future state and not just a point

estimate of its value.

The MDF approach helps improve ecological forecasting by using

data to report on initial conditions and model parameters and, thereby,
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constrains a model during simulation to yield results that approximate

reality as close as possible. Specifically, MDF improves ecological

forecasting through: (1) the estimation of model parameter and state

variables, (2) the selection of the best model structure and (3) the

quantification of uncertainties resulting from observations, models

and their interactions (Luo et al. 2011).

In addition, MDF has been applied to improve model prediction of

species distribution dynamics (Thuiller et al. 2009), recent epidemics

of infectious disease (the outbreak of severe acute respiratory

syndrome in Asia and the foot-and-mouth disease epidemic in the

UK) and, because very few ecological examples exist up to this point,

it has been applied to forecasting historical and future dynamics of

terrestrial ecosystems under a changing environment as well as to

carbon sink dynamics (Gao et al. 2011).

As an example, Kolomyts (2008) developed a landscape-ecological

forecasting framework from computational models and palaeore-

constructions. Using the Volga basin as a case in point, this pilot

study considered the mechanisms of local and regional responses to

global warming that is expected to occur in the 21st century.

Bayesian inversion and the MCMC technique were applied to a

regional terrestrial ecosystem (TECO-R) model to quantify carbon

residence times and assess their uncertainty in the conterminous

USA (Zhou & Luo 2008). The proportion of carbon uptake in soil

was found to be primarily regulated by carbon residence times.

Therefore, the accurate estimation of spatial patterns with regards to

carbon residence times is crucial for forecasting future change in

soil carbon stocks. Results suggest that this MDF approach is an

effective tool in which to estimate spatially distributed carbon

residence times and assess uncertainty within the conterminous

USA.

Today, the emerging ecological forecasting discipline is a data-

driven scientific synthesis of physics, geology, chemistry and biology.

Ecological forecasting through the application of the MDF approach

requires accurate estimates of initial conditions and parameters before

future states of an ecological system can be quantitatively estimated.

This is true even with a perfect model structure. The feasibility and

accuracy of ecological forecasting is directly dependant on the manner

in which uncertainty is reduced in model prediction. The biggest

challenge in ecological forecasting is to reduce model error and

increase prediction accuracy.

Model–data fusion techniques can be used to systematically assess

uncertainties in model prediction (Clark et al. 2001; Luo et al. 2009).

Perhaps the most common in use are the KF and adjoint techniques

that are often applied to numerical weather forecasting but have not

yet been widely used in ecology (but Gao et al. 2011). Data

assimilation, which merges multiple observations with numerical

models, can advance ecological forecasting. For example, Scholze

et al. (2007) used surface CO2 concentration observational data from

1979 to 1999 to calibrate key model parameters of an ecosystem

model and to forecast net CO2 fluxes from 2000 to 2003. The

REFLEX model-data fusion project (Fox et al. 2009) is another

example of forecasting carbon dynamics by applying confidence

intervals after the point in which model parameters were estimated.

Iverson & Prasad (1998) used regression tree analysis to spatially

forecast how tree distribution may change under a twofold CO2

scenario estimated by several GCM models for 80 tree species in the

eastern region of the USA. Thuiller W. (2003) and Thuiller et al.

2009) developed a new computer framework (called BIOMOD:

BIOdiversity MODelling) to optimize predictions of species distri-

bution as well as to forecast potential future shifts under global

climate change.

MDF application to quantify global carbon sinks ⁄ sources

Inverse modelling has been used to deduce the spatial and temporal

distribution of CO2 sinks and sources to help identify the

biogeochemical processes involved, providing a critical technique

to refine our knowledge of global carbon budgets. Our growing

understanding of carbon cycling provides the context for which the

various developments of atmospheric inversions take place. Enting

(2002) reviewed some key steps, noting discrepancies in flux

estimates and controversies regarding a strong terrestrial sink located

in North America. Much subsequent work has also been undertaken

within the TRANSCOM intercomparison community (Baker et al.

2006). As greater time-resolution global data (with regards to

additional species) become available (i.e. the atmospheric CO2 d13C

and d18O ratio and the atmospheric O2 ⁄ N2 ratio), the use of

synthesis inversion techniques in combination with atmospheric

transport models will result in much more reliable estimates

regarding the changing atmospheric global carbon budget. Using

the TRANSCOM intercomparison project as an example, Denning

et al. (1999) assessed the north–south transport of models by

comparing simulations of SF6 – a relatively well-known inert

anthropogenic tracer – to measured the recently investigated

atmospheric concentrations of this tracer.

Overall, the application of MDF approaches has improved

estimates of regional and global carbon fluxes over the last two

decades. Robust estimates of decadal regional changes in carbon flux

by Bousquet et al. (2000) as well as global carbon budgets for the

1990s and mean annual budgets from 1992 to 1996 were presented

by Gurney et al. (2002). CARBONTRACKER is a recent advance-

ment in the development and implementation of an operational tool

that uses the KF to estimate surface flux and its inherent uncertainty

by applying surface concentration measurements in near real time

(Peters et al. 2007). The limitation of the inverse modelling approach,

however, is that predicted CO2 sinks ⁄ sources are sensitive to

atmospheric CO2 data. Thus, inborn small uncertainties that

naturally occur in CO2 concentration data and small errors that

occur in the atmospheric transport models are magnified into large

uncertainties for sink ⁄ source prediction. By enlarging the network of

CO2 sampling stations to cover continental regions and by careful

analysis of noise amplification, it is expected that the atmospheric

inverse modelling technique will resolve sink ⁄ source patterns in finer

detail and will be applicable to other greenhouse gases in the near

future.

CURRENT CHALLENGES, OPPORTUNITIES AND FUTURE

DIRECTIONS

The application of MDF in the study of ecology is relatively new, and

there is a lack of general guidance within global ecology literature on

how to choose and implement a suitable MDF approach to address

the four major types of MDF problems: system identification,

parameter estimation, state estimation and uncertainty quantification.

Although the MDF approach is still within the infancy stage in

ecology and palaeoecology, it is rapidly becoming a more practical and

powerful method to study global climate change issues due to

increased data availability from global observational networks. New
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DA methods taken from physical or meteorological science will need

to be developed for ecological systems (Table S1). Moreover, an

urgent need exists to develop dynamic simulation models that can

explain past changes as well as forecast future ecosystem response and

feedback under a changing global climate (Guiot et al. 2009).

Uncertainty analysis in combination with DA has been carried out

in a limited number of studies in the last few years (Xu et al. 2006;

Verstraeten et al. 2008). However, parameter identifiability and

equifinality in association with uncertainty analysis have not been

fully addressed to date and must be explored in depth (Luo et al. 2009;

Williams et al. 2009).

Key MDF challenges that both ecology and palaeoecology

communities must first take into consideration include as follows:

The replacement of static vegetation inversion methods with

dynamic vegetation model inversion in palaeoecological

reconstructions

Garreta et al. (2009) proposed the use of LPJ-GUESS, a more

complex and dynamic vegetation model (Smith et al. 2001), to replace

equilibrium vegetation models used in combination with pollen

assemblages. As the model is dynamic, the application takes into

account temporal characteristics of data as suggested by Haslett et al.

(2006). Vegetation is not merely assumed to be dependent on

contemporaneous climates but also on historical vegetation. Time

series autocorrelation is considered important information in LPJ-

GUESS. Garreta et al. (2009) successfully used a PF technique better

adapted to time series and stochastic processes. The use of a dynamic

vegetation model allows for a better exploitation of the information

available from the fossil record.

Parameter identifiability and effects of initial conditions

Parameter identifiability refers to parameters that can be constrained

by a set of data with a given model structure. These parameters are

identifiable when parameter maximum likelihood values are identified,

which is the core to uncertainty analysis. The condition of equifinality

exists in DA when different models or different parameter values of

the same model fit data equally well without retaining the ability to

distinguish which models or parameter values are better suited than

others. Identifiability is therefore a reflection of parameter constraints

and equifinality. Parameter identifiability is a critical but complex

property that has not yet been extensively investigated. A careful

assessment of the principle must be addressed in the near future (Luo

et al. 2009). Global sensitivity analysis that examines parameters

sensitive to available data sets may be an effective approach in which

to select those identifiable parameters to be constrained by MDF

(Tang & Zhuang 2009; Gao et al. 2011).

Problems related to initial values are not well addressed in MDF

(Luo et al. 2011). Initial conditions (e.g. abundance and age distribu-

tion in demographical models and biomass and pool size in

biogeochemical models) are critical and sometimes govern the

subsequent trajectory of system performance. In a chaotic system,

infinitesimal differences in initial conditions can lead to exponential

divergence between trajectories. In carbon cycle modelling, the initial

value of pool size determines the direction and magnitude of carbon

sequestration (Carvalhais et al. 2008). Estimations of initial pool size

by means of the MDF approach are essential when quantifying the

rate of carbon sequestration in an ecosystem.

Assimilation of multi-data types and full quantification and

reduction of multi-sources of uncertainties arising from data bias,

model structure and initial condition estimates

Observations are always sparse and irregularly distributed throughout

space and time. It is still not possible to measure all degrees of

freedom of a model at a given time. Therefore, an efficient MDF

method is required to combine irregular observations to generate a

data set distributed on a regular model grid (Wang et al. 2009). For

example, ground-based flux measurement networks are sparse (e.g.

seen as patchy tower fluxes on land), especially in remote and

inaccessible regions typical in the Southern Hemisphere. They can

only provide a regional and incomplete picture of the fluxes taking

place. In contrast, satellites provide global coverage. The issue,

however, is that they cannot measure carbon flux directly but only

related variables such as greenhouse gas concentrations. One powerful

way in which to address this issue is to assimilate earth observational

data into carbon cycle models to infer global estimates of carbon flux

(Mathieu & O�Neill 2008).

Model development must involve the selection of appropriate

model structure (e.g. concept models such as the PCM model

provided for in Fig. 6) for any mathematical model (typically

equations) to correctly represent the �real� system (i.e. relationships

between model inputs, parameters, states and outputs). Errors are the

most important and also the most difficult to verify when identifying

and quantifying model structure. In most cases, DA applications

ignore parameter and model structure uncertainty (Liu & Gupta 2007).

Data uncertainty, however, affects both the predicted uncertainty of

outputs as well as the predicted best estimate. Due to this fact, an

immediate need exists to improve our understanding of model

structure error and to reduce parameter uncertainty relative to

ecological systems.

Data assimilation has been widely used in meteorology, oceano-

graphy and hydrology, but more effort is needed to explore its

potential for characterizing land surface environments in the remote-

sensing community. Developing advanced inversion modelling and

DA methods to solve multidimensional nonlinear inversion problems

in remote sensing is critical as well as challenging as these inversion

problems are typically affected by noise and measurement uncertainty.

It is important to pay attention to model structure uncertainty, data

uncertainty and initial conditions if MDF is to be attempted.

Advances towards �ensemble forecasting� under a changing

environment

The idea behind ensemble forecasting was formally developed by

French mathematician P. Laplace in 1818 (Laplace 1818). It was not

until the pioneering work of Bates & Granger (1969) that ensemble

forecasting blossomed after they developed the idea of combining

forecast data together. They observed that combining forecasts

yielded lower mean errors more so than any constituent individual

forecasts could do separately as long as individual forecasts contained

some independent information. Since that time numerous studies have

been reviewed (Clemen 1989; Cheung 2001) and applied to a variety

of research fields, including economics (Gregory et al. 2001),

managerial practices (Makridakis & Winkler 1983), systematics

(Miyamoto 1985), meteorology (Sanders 1963) and climatology

(Benestad 2004). These ideas have yet to be adapted and developed

for ecological systems. Only recently has ensemble forecasting been
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explicitly attempted on bioclimatic modelling of species distribution

(Thuiller 2003; Araújo et al. 2005; Thuiller et al. 2009). More recently,

Araújo & New (2006) reviewed various modelling techniques that

incorporated elements of ensemble forecasting approaches. They

proposed the use of multi-model simulations to construct ensemble

forecasting. Ensemble forecasting has become one of the new MDF

applications in global climate change ecology. It applies DA and

model forecasting techniques to obtain future predictions through the

running of multiple dynamical system simulations incorporating

various initial conditions. The real advantage of ensemble forecasting

is to help quantify the intrinsic error in each individual model.

Advances towards a �hybrid data assimilation� approach in

combination with global optimization and sequential data

assimilation

Ensemble Kalman filter is able to provide a general framework in

which to consider input, output, model structure uncertainty and a

predefined filter for use with state estimations. However, no recursive

parameter estimation procedure presently exists. A failure to explicitly

take into account the effects of parameter uncertainty and interaction

typically occurs when applying EnKF to recursively estimated state

variables. It would be necessary to combine parameter estimation and

state estimation to account for all kinds of uncertainty. For example,

Vrugt et al. (2005) recently introduced a simultaneous optimization

and data assimilation (SODA) method that uses EnKF to recursively

update model states while estimating time-invariant values for model

parameters that utilize the SCEM-UA optimization algorithm. A novel

feature of SODA is its explicit treatment of error due to parameter

uncertainty as well as its treatment of uncertainty in the initialization

and propagation of state variables, model structure error and output

measurement error.

In fact, state of the art assimilation techniques of 4D-Var are

seldom used on global scale advanced biogeochemical modelling

analysis frameworks partly because of the enormous numerical

computation involved. A recent trend in DA is to combine the

advantages of 4D-Var and KF techniques together. 4D-Var has

proven itself to be an efficient analytical method when applied to a

real time assimilation system that is run over a short time interval.

Recent versions of the EnKF approach have applied ensemble

estimates of error covariance of the 4D atmospheric state (Hunt et al.

2004). This feature was implemented into the Canadian NWP

operational EnKF system on 10 July 2007 (Houtekamer et al. 2009).

Similar to 4D-Var, this approach allows EnKF to estimate the 4D-Var

atmospheric state that best fits assimilated observations distributed

over time. A good compromise between 4D-Var and EnKF

techniques and their constituent algorithms can be achieved. New

hybrid DA methods also provide numerous byproducts that remain to

be used (assessed) as diagnostic tools to improve assimilation and

forecast systems.

CONCLUSION

Model–data fusion is an application comprised of statistically based

inverse modelling and DA techniques that integrates and combines

dynamic models and observed data sets in optimal ways to enhance

the nowcasting, hindcasting and forecasting capacity of complex

systems. A great variety of DA techniques and application domains

exist within the various spheres of earth system sciences. Different

MDF methods hold different assumptions and possess different

strengths and weaknesses. The improvement in ecological forecasting

requires the development of innovative mathematical, observational

and computational techniques that optimally combine observational

data sets and models. The intercomparison of optimization techniques

and algorithms would aid in the selection of cost functions and

quantify model errors in any optimization as well as assist in reducing

uncertainties of model parameters poorly constrained by available

observations. Ecological models are highly nonlinear and are not fully

constrained by available observations. This may lead to problems in

certain DA techniques. Moreover, variational methods (3 ⁄ 4 D-Var)

may prove unfeasible for more sophisticated terrestrial ecosystem

biogeochemical models. The hybrid application of 4D-Var and EnKF

for global analysis and EnKF for regional analysis appears promising

for future MDF utilization as well as the future direction of ecology.

Overall, MDF approaches hold great potential in enhancing the

capacity of vegetation and ecosystem carbon models in relation to

their predictive response to terrestrial vegetation and carbon cycling in

a changing climate.
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Guiot, J., Wu, H., Garreta, V., Hatté, C. & Magny, M. (2009). A few prospective

ideas on climate reconstruction: from a statistical single proxy approach towards

a multi-proxy and dynamical approach. Clim. Past., 5, 99–125.

Gurney, K.R., Law, R.M., Scott Denning, A., Rayner, P.J., Baker, D., Bousquet, P.

et al. (2002). Towards robust regional estimates of CO2 sources and sinks using

atmospheric transport models. Nature, 415, 626–630.

Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M., Wilson, S., Allen, J.

et al. (2006). Bayesian palaeoclimate reconstruction. J. R. Stat. Soc. A Stat., 169,

395–438.

Hastings, W.K. (1970). Monte Carlo sampling using Markov chains and their

applications. Biometrika, 57, 97–109.
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Hatté, C., Rousseau, D.-D. & Guiot, J. (2009). Climate reconstruction from pollen

and 13C records using inverse vegetation modelling: implication for past and

future climates. Clim. Past., 5, 147–156.

Hazarika, M.K., Yasuoka, Y., Ito, A. & Dye, D. (2005). Estimation of net primary

productivity by integrating remote sensing data with an ecosystem model. Remote

Sens. Environ., 94, 298–310.

Houtekamer, P.L., Mitchell, H.L. & Deng, X. (2009). Model error representation in

an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126–2143.

Hunt, B.R., Kalnay, E., Kostelich, E.J., Ott, E., Patil, D.J., Sauer, T. et al. (2004).

Four-dimensional ensemble Kalman filtering. Tellus A, 56, 273–277.

Iverson, L.R. & Prasad, A.M. (1998). Predicting abundance of 80 tree species

following climate change in the eastern United States. Ecol. Monogr., 68, 465–485.

Joos, F., Gerber, S., Prentice, I.C., Otto-Bliesner, B.L. & Valdes, P.J. (2004).

Transient simulations of Holocene atmospheric carbon dioxide and terrestrial

carbon since the Last Glacial Maximum. Global Biogeochem. Cycles, 18, GB2002.

Kalman, R.E. (1960). A new approach to linear filtering and prediction problems.

J. Basic Eng. (ASME), 32D, 35–45.

Kalnay, E. (2003). Atmospheric Modelling, Data Assimilation and Predictability. Cam-

bridge University Press, UK.

Kaplan, J.O. (2001) Geophysical Applications of Vegetation Modeling. Lund University,

Sweden, 210 pp.

Knorr, W. & Kattge, J. (2005). Inversion of terrestrial ecosystem model parameter

values against eddy covariance measurements by Monte Carlo sampling. Glob.

Change Biol., 11, 1333–1351.

Kolomyts, E.G. (2008). Landscape-ecological forecasts from computational models

and palaeoreconstructions (using the Volga basin as an example). Geography and

Nature Resources, 29, 209–220.

Laplace, P.S. (1818). Deuxieme supplement a la theorie analytique des probabilites.

Courcier, 7, 531–580.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. Quart. Appl. Math., 2, 164–168.

Liang, S. (2007). Recent developments in estimating land surface biogeophysical

variables from optical remote sensing. Prog. Phys. Geog., 31, 501–516.

Liang, S. & Qin, J. (2008). Data assimilation methods for land surface variable

estimation. In: Advances in Land Remote Sensing (ed. Liang, S.). Springer, Nether-

lands, pp. 313–339.

Liu, Y. & Gupta, H.V. (2007). Uncertainty in hydrologic modeling: toward an

integrated data assimilation framework. Water Resour. Res., 43, W07401.

Lorenc, A.C. (1981). A global three-dimensional multivariate statistical interpolation

scheme. Mon. Wea. Rev., 109, 701–721.

Lorenc, A. & Payne, T.J. (2007). The Met Office global four-dimensional variational

data assimilation scheme. Quart. J. R. Meteor. Soc., 133, 347–362.

Luo, Y., White, L.W., Canadell, J.G., DeLucia, E.H., Ellsworth, D.S., Finzi, A. et al.

(2003). Sustainability of terrestrial carbon sequestration: a case study in Duke

Forest with inversion approach. Global Biogeochem. Cycles, 17, 1021.

Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X. & Zhang, L. (2009). Parameter

identifiability, constraint, and equifinality in data assimilation with ecosystem

models. Ecol. Appl., 19, 571–574.

534 C. Peng et al. Review and Synthesis

� 2011 Blackwell Publishing Ltd/CNRS



Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S. et al. (2011).

Ecological forecasting and data assimilation in a data-rich era. Ecol. Appl., in

press.

Makridakis, S. & Winkler, R.L. (1983). Averages of forecasts: some empirical

results. Manage. Sci., 29, 987–996.

Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M. et al.

(2008). A wildland fire model with data assimilation. Math. Comput. Simulat., 79,

584–606.

Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. J. Soc. Ind. Appl. Math., 11, 431–441.

Mathieu, P.-P. & O�Neill, A. (2008). Data assimilation: from photon counts to earth

system forecasts. Remote Sens. Environ., 112, 1258–1267.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. (1953).

Equation of state calculations by fast computing machines. J. Chem. Phys., 21,

1087–1092.

Miyamoto, M.M. (1985). Consensus cladograms and general classifications. Cladis-

tics, 1, 186–189.

Mo, X., Chen, J.M., Ju, W. & Black, T.A. (2008). Optimization of ecosystem model

parameters through assimilating eddy covariance flux data with an ensemble

Kalman filter. Ecol. Model., 217, 157–173.

Ollinger, S. & Smith, M.-L. (2005). Net primary production and canopy nitrogen in

a temperate forest landscape: an analysis using imaging spectroscopy, modeling

and field data. Ecosystems, 8, 760–778.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Appendix S1 Methodological development of data assimilation has

gone through four primary phases: (1) simple analysis (e.g. Cressman

algorithm), (2) statistical or optimum interpolation, (3) variational data

assimilation (VDA) and (4) sequential data assimilation.

Appendix S2 The Kalman filter, named after Rudolf E. Kalman, is a

mathematical method that uses measurements observed over time.

Appendix S3 Markov chain Monte Carlo (MCMC) techniques used to

generate simulations from a probability distribution are a class of

algorithms used in sampling from probability distributions based on

constructing a Markov chain that has the desired distribution that it

reflects its equilibrium distribution.

Appendix S4 BIOME3 (Haxeltine and Prentice 1996) is a process-

based terrestrial biosphere model that includes a photosynthetic

scheme that simulates the acclimation of plants to an altered state of

atmospheric CO2 by the optimization of nitrogen allocation to foliage

and by accounting for the effects of CO2 on net assimilation, stomatal

conductance, leaf area index and the ecosystem water balance.

Appendix S5 The most important advantage of sequential methods is

the ability of the optimal sate to differ from that embodied in the

model equation.

Appendix S6 The study by Chen et al. (2008) is, in effect, a joint state-

parameter approach that can integrate a kernel-smoothing algorithm

into an ensemble Kalman filter to overcome the dramatic, sudden

changes in parameter values through time and the loss of information

between two consecutive points in time.

Appendix S7 Systematic errors are cumulative in nature.

Table S1 Comparison of main data assimilation (DA) methods used in

numerical weather prediction (NWP)*.

As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such materials are

peer-reviewed and may be re-organized for online delivery, but are not

copy edited or typeset. Technical support issues arising from

supporting information (other than missing files) should be addressed

to the authors.

Editor, John Arnone

Manuscript received 2 September 2010

First decision made 8 October 2010

Second decision made 22 December 2010

Manuscript accepted 30 January 2011

Revised MS by Editor Jon Chase

536 C. Peng et al. Review and Synthesis

� 2011 Blackwell Publishing Ltd/CNRS


