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Abstract. Biogeochemical models have been used to evaluate long-term ecosystem
responses to global change on decadal and century time scales. Recently, data assimilation has
been applied to improve these models for ecological forecasting. It is not clear what the
relative information contributions of model (structure and parameters) vs. data are to
constraints of short- and long-term forecasting. In this study, we assimilated eight sets of 10-
year data (foliage, woody, and fine root biomass, litter fall, forest floor carbon [C], microbial
C, soil C, and soil respiration) collected from Duke Forest into a Terrestrial Ecosystem model
(TECO). The relative information contribution was measured by Shannon information index
calculated from probability density functions (PDFs) of carbon pool sizes. The null knowledge
without a model or data was defined by the uniform PDF within a prior range. The relative
model contribution was information content in the PDF of modeled carbon pools minus that
in the uniform PDF, while the relative data contribution was the information content in the
PDF of modeled carbon pools after data was assimilated minus that before data assimilation.
Our results showed that the information contribution of the model to constrain carbon
dynamics increased with time whereas the data contribution declined. The eight data sets
contributed more than the model to constrain C dynamics in foliage and fine root pools over
the 100-year forecasts. The model, however, contributed more than the data sets to constrain
the litter, fast soil organic matter (SOM), and passive SOM pools. For the two major C pools,
woody biomass and slow SOM, the model contributed less information in the first few decades
and then more in the following decades than the data. Knowledge of relative information
contributions of model vs. data is useful for model development, uncertainty analysis, future
data collection, and evaluation of ecological forecasting.

Key words: carbon cycle; data assimilation; Duke Forest FACE; ecological forecasting; information
theory; model uncertainty.

INTRODUCTION

Biogeochemical models have been widely used to

project long-term ecosystem responses to climate change

and evaluate feedback between climate and the carbon

cycle on century and millennium time scales (e.g.,

Cramer et al. 1999, McGuire et al. 2001, Friedlingstein

et al. 2006, Carpenter et al. 2009). These models have

been also used to explore interactions of multiple global

change factors (Luo et al. 2008), forest management

(Schmid et al. 2006, Pretzsch et al. 2008), and ecosystem

services (Schröter et al. 2005) on decadal or shorter time

scales. Most biogeochemical models share a similar

model structure in which photosynthetically fixed

carbon is allocated to multiple plant and soil pools

(VEMAP members 1995, Kucharik et al. 2000, Sitch et

al. 2003). Photosynthesis is usually simulated using the

Farquhar model (Farquhar et al. 1980) as regulated by

light, CO2 concentration, temperature, and nutrients.

Allocation of carbohydrates from photosynthesis is

often determined by fixed fractions or regulated by

functional balance among multiple resources (Luo et al.

1994, Friedlingstein et al. 1999). Carbon transfers

among pools are generally governed by pool size and

specific transfer coefficients as affected by environmental

variables (Luo et al. 2001b). Although most biogeo-

chemical models share a similar structure, model

intercomparison and data-model comparison studies

show tremendous variations among models for either

short-term forecasts or long-term projections even if

models are calibrated against historical and/or contem-

porary conditions (e.g., Friedlingstein et al. 2006, Sitch

et al. 2008).

High uncertainties of model projections generally

result from differences in initial values, parameter-

izations, and response functions that link those key

carbon processes to environmental and biological

variables. For example, using the observed soil carbon

content as model initial values could lead to a higher

carbon accumulation rate than the assumption of

equilibrium state over 100-year simulations at a beech
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forest (Wutzler and Reichstein 2007). Knorr and

Heimann (2001) illustrated that the uncertainties of

key parameters were too large for reliable predictions of

global net primary production (NPP). Burke et al.

(2003) found the response functions that represent the

sensitivities of litter decomposition to temperature

differed dramatically after comparing eight popular

biogeochemical models.

To improve models for accurate projections, data

assimilation approaches have recently been developed in

ecology to inform initial conditions, constrain parame-

ters, evaluate alternative response functions, and assess

model uncertainties (Raupach et al. 2005, Williams et al.

2009, Luo et al. 2011). Most data assimilation studies

focused on estimation of fast-response parameters, i.e.,

photosynthesis, respiration, and evapotranspiration

with short-term data sets. For example, Knorr and

Kattge (2005) estimated 29 parameters governing photo-

synthesis, respiration, stomata activity, and energy

balance by assimilating eddy covariance data of seven

days into the BETHY model. Wang et al. (2007)

examined three key parameters related to photosynthesis

and respiration (maximum photosynthetic carboxyla-

tion rate, potential photosynthetic electron transport

rate, and basal soil respiration rate) in the CBM model

using a nonlinear estimation technique to assimilate

eddy covariance data. Wu et al. (2009) estimated 16

parameters of a flux-based ecosystem model by assim-

ilating one-year eddy covariance data using a condi-

tional inversion method. Braswell et al. (2005)

assimilated eddy covariance observations with a

Markov Chain Monte Carlo approach to estimated 25

parameters in the SIPNET model, of which only one is

related to long-term process (woody carbon turnover

rate) but not constrained.

A few data assimilation studies have been conducted

to constrain long-term processes and parameters with

simplified carbon cycle models. Luo et al. (2003)

assessed ecosystem carbon sequestration rates by

assimilating biometric data into the TECO with seven

target parameters (i.e., residence times of the seven

carbon pools). Xu et al. (2006) developed a probabilistic

data assimilation to quantify uncertainties of the

estimated parameters and forecasted carbon pools using

the same data sets and model as in Luo et al. (2003).

Williams et al. (2005) assimilated both eddy flux data

and carbon stock data into a simplified carbon pool

model and evaluated the rates of carbon sink. Fox et al.

(2009) compared ten data assimilation approaches based

on the DALEC model and found that the parameters

related to fast processes (e.g., photosynthesis, ecosystem

respiration) were constrained well but those related to

the allocation to and turnover of fine roots and woody

biomass pools were constrained poorly. Over all, these

studies demonstrated that assimilation of biomass and

soil carbon data can improve the constraints of some

parameters related to long-term processes.

Since biogeochemical models are often used to

evaluate ecosystem responses to climate changes at
decadal and century time scales (e.g., Fung et al. 2005,

Friedlingstein et al. 2006, Jones et al. 2006), one key
question that has not been addressed is how much

improvement data assimilation can make for short- vs.
long-term forecasts of ecosystem carbon sequestration.
To address this issue, we have to first quantify how much

information a given model contributes to short- and
long-term forecasts because data contribute additional

information to forecasts conditioned on the prior
knowledge contained in the model structure and

parameter ranges.
To measure relative model and data contributions to

forecasts of carbon dynamics, this study used the TECO
model (Luo et al. 2003, Xu et al. 2006) to assimilate

eight sets of 10-year data (foliage, wood, and fine root
biomass, litter fall, forest floor carbon [C], microbial C,

soil C, and soil respiration) collected from the Duke
Forest free-air CO2 enrichment (FACE) experimental

site. The relative contributions of the TECO model and
the eight data sets were measured by the Shannon

information index (Shannon 1948, Jaynes 1957,
Kolmogorov 1968), which quantifies the uncertainty

associated with a random variable as represented by
probability density functions (PDFs). We first defined
the null knowledge without either a model or data by a

uniform PDF within a prior range. The model’s
contribution was quantified by the information content

in the PDF of modeled C pools by the TECO model
without data assimilation minus that in the uniform

PDF. The contribution of the eight data sets was the
information content in the PDF of forecasted C pools

after the eight sets of data were assimilated minus that
before the data assimilation. We applied this approach

to quantify the relative information contributions of
assimilated data to constraints of forecasted forest

carbon storage in the carbon pools of TECO model.
We also evaluated various types of parameters in

controlling short- and long-term forecasting of forest
carbon dynamics. Based on our evaluation of data vs.

model contributions to short- and long-term forecasting,
we provided recommendations on model improvement
and future data collection to enhance long-term fore-

casting of carbon sequestration.

METHODS

The ecosystem carbon pool model

The Terrestrial Ecosystem (TECO) model is a variant

of the CENTURY model (Parton et al. 1987) and is
designed to simulate carbon input from photosynthesis,

carbon transfer among plant and soil pools, and
respiratory carbon releases to the atmosphere. The

model has been applied to several studies of carbon
sequestration process in Duke Forest in response to
elevated CO2 (Luo et al. 2003, Xu et al. 2006, White and

Luo 2008). It has a similar carbon pool structure and
parameters to most current biogeochemical models.
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In this study, we slightly modified the TECO model by

separating a fine root pool from the foliage pool. Thus,

it has eight C pools (Fig. 1). In this model, the processes

of carbon transfer and decomposition were represented

by the following first-order ordinary differential equa-

tion:

dXðtÞ
dt
¼ nðtÞACXðtÞ þ BUðtÞ

Xð0Þ ¼ X0 ð1Þ

where, n(t) is an environmental scalar, depending on

temperature (T ) and soil moisture (x) (n(t) ¼ f(T, x)).
There are a few parameters describing the environmental

scalar as functions of temperature and moisture (Luo et

al. 2003, i.e., environmental response parameters). X(t)¼
(X1(t) X2(t) X3(t) . . . X8(t))

> is an 8 3 1 vector

representing the carbon content of the eight carbon

pools as depicted by Fig. 1. X0 is an 8 3 1 vector of the

initial values of X(t). A is a matrix given by

A ¼

�1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

f4;1 f4;2 f4;3 �1 0 0 0 0

f5;1 f5;2 f5;3 0 �1 0 0 0

0 0 0 f6;4 f6;5 �1 f6;7 f6;8
0 0 0 0 f7;5 f7;6 �1 0

0 0 0 0 0 f8;6 f8;7 �1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:

Matrix A defines C transfers among the C pools as

illustrated by arrows in Fig. 1. The non-zero elements

( fi, j) in matrix A represent the fractions of the carbon

entering ith (row) pool from jth (column) pool , termed

carbon transfer coefficients. The zero elements in matrix

A mean no direct carbon flows between these two pools.

Because f4,1 þ f5,1 ¼ 1, f4,2 þ f5,2 ¼ 1, and f4,3 þ f5,3 ¼ 1,

there are only 11 free parameters in matrix A. C is an 83

8 diagonal matrix, C¼ diag(c) with elements c¼ (c1 c2 c3
. . . c3)

>, representing the amounts of carbon per unit

mass leaving each of the pools per day, termed carbon

exit rates. B ¼ (b1 b2 b3 0 0 0 0 0)> is a vector of

allocation coefficients of assimilated carbon by photo-

synthesis (gross primary production, GPP) partitioned

to the three plant C pools. U(t) is the C input (GPP) at

time t.

This study estimated a total of 30 parameters: 8 initial

values of carbon pools [X0(i)], 8 exit rates (ci), 3

allocation coefficients (bi), and 11 transfer coefficients

( fj,i). We set the prior ranges of these 30 parameters

(Table 1) according to the measurements at Duke Forest

FACE project and/or published papers from literature

(Appendix A). The initial values of the eight C pools

were estimated mainly from the observations at Duke

Forest (Lichter et al. 2005, Finzi et al. 2006). The ranges

of exit rates were estimated from the residence times of

different C pools at Duke Forest (Lichter et al. 2005), or

the similar temperate forests (Harmon et al. 1986,

Gaudinski et al. 2000). Allocation coefficients were

from the estimates of NPP of leaves, woody biomass,

and fine roots during the experiment period (McCarthy

et al. 2006, Palmroth et al. 2006). Transfer coefficients

were estimated according to the carbon components of

each pool and expert knowledge (Luo et al. 2003). It was

assumed that the parameters distributed uniformly in

their prior ranges. Since this research was to explore the

model intrinsic properties not its responses to changes in

climatic variables, fixed values were used for the

environmental response parameters as described in

Luo et al. (2001b, 2003).

Data from Duke Forest FACE site

The data used in this analysis were obtained from the

FACE experiment at the Blackwood Division, Duke

Forest, Orange County, North Carolina, USA (358580

N, 79850 W). The FACE site was a loblolly pine forest

planted in 1983 after harvesting the similar vegetation

and was not managed since planting (Hendrey et al.

1999). We used the data at the ambient atmospheric CO2

concentration only. The 10 years’ air temperature,

precipitation, soil moisture, and GPP data (1996–2005)

were used as input to drive the TECO model. Air

temperature and precipitation were from the observa-

tions at Duke Forest FACE. Daily values of GPP were

derived from the simulations of the MAESTRA model

(1996 and 1997; Luo et al. 2001b) or gap-filled eddy flux

data (1998–2005). A non-rectangular hyperbolic method

(NRH) was used to derive GPP from eddy flux data

FIG. 1. A schematic diagram of carbon allocation and
transfers among the eight pools of the Terrestrial Ecosystem
(TECO) model. The carbon allocation and transfers were
described by Eq. 1, with 8 3 8 matrices A and C, and 8 3 1
vectors B and X. SOM stands for soil organic matter. Arrows
pointing toward CO2 indicate carbon leaving the system as CO2.

INVITED FEATURE1492
Ecological Applications

Vol. 21, No. 5



(Stoy et al. 2006). Gap-filling might add uncertainty to

the data. A comprehensive comparison on the methods

differentiating GPP and ecosystem respiration (RE)

showed that the gaps added an additional 6–7%

variability, but did not result in additional bias and

the estimates of both GPP and RE differed by less than

10% among the methods (Desai et al. 2008).

The eight sets of biometric data that were assimilated

into the TECO model for parameter estimation were

foliage biomass, woody biomass (Finzi et al. 2006), fine

root biomass (Pritchard et al. 2008), microbial C (Allen

et al. 2000), litter fall, forest floor C, soil C (Lichter et al.

2005, 2008), and soil respiration (Bernhard et al. 2006,

Jackson et al. 2009) (Table 2). The data were collected in

the years of 1996–2005. These data sets have been

extensively described in the aforementioned papers in

terms of instruments used for data collection, measure-

ment methods, times, and frequencies and are not

repeated here.

Data assimilation

We used the probabilistic inversion approach devel-

oped by Xu et al. (2006) to assimilate the eight data sets

into the TECO model. The probabilistic inversion is

based on Bayes’ theorem:

Pðh jZÞ ¼ PðZ jhÞPðhÞ
PðZÞ ð2Þ

where the posterior probability distribution of the

parameters (h), P(h jZ ), is obtained from prior knowl-

edge represented by a prior probability distribution P(h)
and information in the eight data sets represented by a

likelihood function P(Z j h) and P(Z ) is the probability

distribution function of observations. The prior proba-

bility distribution function of the estimated parameters

P(h) were specified as the uniform distributions over a

set of specific intervals. The likelihood function P(Z j h)
was calculated with the assumption that each compo-

nent is Gaussian and independently distributed accord-

ing to the following equation:

PðZ j hÞ} exp �
X8

i¼1

X
t2Zi

½ZiðtÞ � /iXðtÞ�2

2r2
i ðtÞ

( )
ð3Þ

where Z(t) is data obtained from measurement and

/X(t) is simulation, / is the mapping vector that maps

the simulated state variables (the carbon content of the

eight pools) and fluxes to observational variables (i.e.,

plant biomass, litter fall, soil carbon, and soil respira-

tion; see Appendix B for details), and r is the observed

standard deviation of measurements. According to

Bayes’ theorem, the posterior distribution of parameters

was given by

Pðh jZÞ} PðZ j hÞPðhÞ: ð4Þ

The probabilistic inversion was carried on using a

Metropolis-Hastings algorithm (M-H algorithm, here-

after) to construct posterior probability density func-

TABLE 1. The free parameters of the Terrestrial Ecosystem (TECO) model and their prior ranges.

Parameter Description Units LL UL

X0(1) initial value of foliage pool g C/m2 100 400
X0(2) initial value of woody pool g C/m2 3000 6000
X0(3) initial value of fine roots pool g C/m2 100 400
X0(4) initial value of metabolic pool g C/m2 40 120
X0(5) initial value of structural pool g C/m2 400 700
X0(6) initial value of fast SOM pool g C/m2 80 240
X0(7) initial value of slow SOM pool g C/m2 1200 2400
X0(8) initial value of passive SOM pool g C/m2 200 400
c1 exit rate of C from foliage pool g C�g C�1�d�1 6.85 3 10�4 5.48 3 10�3

c2 exit rate of C from wood pool g C�g C�1�d�1 3.42 3 10�6 2.74 3 10�4

c3 exit rate of C from fine root pool g C�g C�1�d�1 1.37 3 10�3 9.13 3 10�3

c4 exit rate of C from metabolic litter pool g C�g C�1�d�1 5.48 3 10�3 2.74 3 10�2

c5 exit rate of C from structural litter pool g C�g C�1�d�1 1.37 3 10�4 2.74 3 10�3

c6 exit rate of C from fast SOM g C�g C�1�d�1 5.48 3 10�3 5.48 3 10�2

c7 exit rate of C from slow SOM g C�g C�1�d�1 5.48 3 10�6 5.48 3 10�4

c8 exit rate of C from passive SOM g C�g C�1�d�1 1.37 3 10�6 5.48 3 10�6

b1 allocation of GPP to leaves 0.05 0.25
b2 allocation of GPP to woody biomass 0.10 0.40
b3 allocation of GPP to fine roots 0.05 0.25
f4,1 fraction of C in foliage pool transferring to metabolic litter 0.3 1.0
f4,2 fraction of C in woody pool transferring to metabolic litter 0.0 0.2
f4,3 fraction of C in fine roots transferring to metabolic litter 0.3 1.0
f6,4 fraction of C in metabolic litter transferring to fast SOM 0.3 0.7
f6,5 fraction of C in structural litter transferring to fast SOM 0.1 0.4
f7,5 fraction of C in structural litter transferring to slow SOM 0.1 0.4
f7,6 fraction of C in fast SOM transferring to slow SOM 0.3 0.7
f8,6 fraction of C in fast SOM transferring to slow SOM 0.0 0.008
f6,7 fraction of C in slow SOM transferring to fast SOM 0.1 0.6
f8,7 fraction of C in slow SOM transferring to passive SOM 0.0 0.02
f6,8 fraction of C in passive SOM transferring to fast SOM 0.3 0.7

Note: Key to abbreviations: LL, lower limit; UL, upper limit; SOM, soil organic matter; GPP, gross primary productivity.
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tions of parameters. The detailed description of M-H

algorithm was provided by Xu et al. (2006) with a brief

summary here. M-H algorithm samples random varia-

bles in high-dimensional probability density functions in

the parameter space via a sampling procedure based on

Markov chain Monte Carlo (MCMC) theorems

(Metropolis et al. 1953, Hastings 1970, Gelfand and

Smith 1990). In brief, the M-H algorithm was run by

repeating two steps: a proposing step and a moving step.

In each proposing step, the algorithm generated a new

point hnew for a parameter vector h based on the

previously accepted point hold with a proposal distribu-

tion P(hnew j hold):

hnew ¼ hold þ rðhmax � hminÞ ð5Þ

where hmax and hmin are the maximum and minimum

values in the prior range of the given parameter and r is

a random variable between�0.5 and 0.5 with a uniform

distribution. In each moving step, point hnew was tested

against the Metropolis criterion (Xu et al. 2006) to

examine if it should be accepted or rejected. The

accepted parameters were then used to simulate carbon

contents of the eight pools in the 100 years after 1996

using the same driving data of 1996–2005. The M-H

algorithm then repeated the proposing and moving steps

until approximately 300 000 sets of parameter values

were accepted.

All the accepted parameter values were used to

construct posterior PDFs. Meanwhile, the same sets of

simulated carbon contents of the eight pools were

generated by the 100-year forward model runs with these

accepted parameters (namely, the model forecasts after

data assimilation). The PDFs of the eight C pool obtained

from data assimilation ([PDFs]md) contained the infor-

mation from both the model and the assimilated data. To

generate another set of PDFs for the state variables (i.e.,

pool sizes) without the data assimilated, we ran the model

for another 300 000 times by randomly sampling

parameter values from their uniform distributions within

their prior ranges. The generated PDFs of the eight C

pools ([PDFs]m) contained the information from the

model only (including prior parameter ranges). Statistics

describing relative information contributions of the

model vs. the data was derived from these two sets of

PDFs.

Relative information contribution of model and data

We used the Shannon information index (Shannon

1948, White et al. 2006) to measure the relative

information contribution of model vs. data to constrain

forecasts of short- and long-term carbon dynamics.

According to information theory (Jaynes 1957,

Kolmogorov 1968), the entropy H of a discrete random

variable X in fx1, . . . , xng is

HðXÞ ¼ �
Xn

i¼1

pðxiÞlogbpðxiÞ ð6Þ

where p(xi) is probability of event xi. For the base b

equal to 2, the unit is bit. For a uniform distribution, the

entropy is logb n.

The null knowledge on carbon dynamics of a pool

(i.e., I0¼ 0) without either a model or data was defined

by a uniform distribution p(x) of the pool size within a

range (Table 3). The minimum and maximum values of

the range were assumed to be the same as those

minimum and maximum carbon pool sizes of the

[PDFs]m (Table 1). Thus, the entropy of null knowledge

(H0) is

H0 ¼ log2n: ð7Þ

Model structure and prior parameter uncertainty

constitute the ‘‘prior knowledge’’ of a system (model

information). To estimate the relative information of the

model (Im), we calculated the entropy of [PDFs]m,

H(Xm), as

HðXmÞ ¼ �
Xn

i¼1

pðxm;iÞlog2pðxm;iÞ ð8Þ

where Xm is state variables obtained by the model-only

forecasts, xm,i is a value of Xm, and n is the number of

bins with equal width in the range between the minimum

TABLE 2. The biometric data that were assimilated in the model.

Data type Frequency
Number of
observations SD CV (%) Reference

Foliage biomass yearly 9 62.04 15.3 J. S. Pippen et al. (unpublished data)
Woody biomass yearly 9 1066.88 16.1 Finzi et al. (2006)
Fine roots yearly 9 21.56 7.0 Pritchard et al. (2008)
Litter fall yearly 10 65.61� 19.5 Finzi et al. (2006)
Forest floor carbon once every three years 4 216.19 24.6 Lichter et al. (2008)
Microbial carbon five times in total (1997–1998) 5 20.67 21.5 Allen et al. (2000)
Soil total carbon once every three years 4 163.72 7.3 Lichter et al. (2008)
Soil respiration monthly 89 0.59� 65.7 Bernhard et al. (2006),

Jackson et al. (2009)

Notes: The standard deviation (SD) for each data point was calculated based on the data collected in the three ambient rings.
Units are g C/m2 unless otherwise noted.

� The units are g C�m�2�yr�1.
� The units are g C�m�2�d�1.
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and maximum values of the [PDFs]m. The relative

information contribution of the model (including model

structure and prior parameter ranges), Im, is

Im ¼ H0 � HðXmÞ: ð9Þ

Similarly, to estimate the relative information con-

tribution of data assimilation (Id), we first recalculated

the entropy of the [PDFs]md, H(Xmd), as

HðXmdÞ ¼ �
Xn

i¼1

pðxmd;iÞlog2pðxmd;iÞ ð10Þ

where Xmd is state variables obtained by data assim-

ilation with the model, xmd,i is a value of Xmd. Thus, the

additional information contributed by the assimilated

data, Id, is

Id ¼ HðXmÞ � HðXmdÞ: ð11Þ

The calculations of Im and Id are summarized in Table 3.

H0,H(Xm), andH(Xmd) are dependent on the values of n

but Im and Id change little with n if n is large enough

(e.g., Stoy et al. 2006). A value of 2400 was used in this

study after a sensitivity test from 60 to 4800 bins. We

calculated Id and Im for each of the eight C pools and

total ecosystem C over 100 years of simulations.

The index Id only measures the decrease in the

entropy of simulated carbon pools induced by data

assimilation (i.e., the changes in shapes of PDFs).

Assimilation of data may change both positions and

shapes of the distributions of C pools. To measure the

changes in pool size distributions caused by data

assimilation, we used information gain (Kullback-

Leibler divergence, DKL(p(Xmd) || p(Xm)) (Kullback

and Leibler 1951, Rényi 1961) to measure the differences

in the distributions of C pools between the model-only

forecasts and the model þ data forecasts (Eq. 12):

DKLðpðXmdÞ jjpðXmÞÞ ¼
Xn

i¼1

pðxmd;iÞlog2

pðxmd;iÞ
pðxm;iÞ

: ð12Þ

We also evaluated effects of measurement errors (i.e.,

standard deviations of the eight data sets) and prior

ranges of exit rates and transfer coefficients on relative

information contributions of the model and data and the

Kullback-Leibler divergence induced by assimilation of

data. In the analysis, we doubled the standard deviations

for all the eight data sets and broadened ranges of the

exit rates by doubling their upper limits and halving

their lower limits. We used the full possible ranges (i.e.,

0–1) for the transfer coefficients in comparison with

those in Table 1.

Sensitivity of short- and long-term forecasts to parameters

The coefficients of determinant (R2) between the

forecasted sizes of the pools and the parameters were

used as a measure of the sensitivity of the pools to the

parameters. It represented the portion of variance of

forecasted pool sizes induced by an individual parameter

when all of the 30 parameters were varied randomly. We

analyzed the sensitivity of each modeled C pool at the

end of 2005 to each of the 30 parameters. The

sensitivities of total ecosystem C content to the 30

parameters with forecasting years from 4 to 128 years

were also calculated in this way.

RESULTS

Posterior distributions of parameters

Assimilation of the eight data sets constrained, among

the 30 target parameters, five initial values for the foliage

biomass [X0(1)], woody biomass [X0(2)], fine root biomass

[X0(3)], slow [X0(7)], and passive [X0(8)] soil organic

matter (SOM) pools; six exit rates of the three biomass

pools (c1, c2, and c3), structural litter (c5), fast (c6), and

slow SOM pools (c7); and two allocation coefficients for

wood and fine root pools (b2 and b3). None of the transfer

coefficients ( fi,j) were well constrained (Fig. 2). Thus, the

eight data sets contained information for less than a half

of the 30 target parameters.

Modeled carbon contents with and

without data assimilation

Distributions of the simulated eight C pools at the end

of 2005 without (Model only) and with data assimilation

(ModelþData) are shown in Fig. 3. The model without

assimilation of the eight data sets generated PDFs of

carbon pool sizes (i.e., state variables) that were some-

what bell-shaped for long-term pools of woody biomass

(X2), structural litter (X5), slow SOM (X7), and passive

SOM (X8) but skewed to their low carbon content ends

for short-term pools of foliage biomass (X1), fine roots

(X3), metabolic litter (X4) and fast SOM (X6). The PDFs

of carbon pools suggest that the model structure,

together with the prior ranges of parameters, contains

TABLE 3. Definitions of relative information contribution.

Variable Description Contributor Calculation

I0 the information without either a model or data null knowledge I0 ¼ H0 � H0 ¼ 0
Im the relative information contributed by model structure and

parameter prior ranges
model Im ¼ H0 � Hm

Id the relative information contributed by the assimilated data
sets conditioned on the model structure and parameter prior ranges

data Id ¼ Hm � Hmd

Notes: H0 is the entropy of the uniform distribution defined as null knowledge. Hm is the entropy of [PDFs]m (where PDFs are
probability density functions) obtained by running the model using parameter values randomly sampled from their prior
distributions. Hmd is the entropy of [PDFs]md derived from model forecasts after the data sets were assimilated.
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information on ecosystem carbon dynamics, particularly

in the long-term pools. With assimilation of the eight

data sets, the simulated carbon contents of foliage (X1),

woody (X2), fine roots (X3), structural litter (X5), fast

SOM (X6), slow SOM (X7), and passive SOM (X8) pools

were all well constrained. The metabolic litter pool (X4)

was still not constrained. Improved modeling of carbon

contents indicated that the eight data sets provided a

substantial amount of additional information on carbon

processes.

Long-term forecasts of C contents and information

contributions of model and data

Either with or without assimilation of data, carbon

contents were quickly stabilized in the fast turnover

pools, such as foliage biomass (X1), fine roots (X3), and

metabolic litter (X4), but substantially increased in slow

turnover pools, such as woody biomass (X2), slow and

passive SOM pools (X7 and X8), over the 100 years of

forecasting (left and middle columns of Fig. 4).

Corresponding variances of probability density distri-

butions were also stabilized for the fast turnover pools

(X1, X3, and X4) in the second decade but kept growing

for the slow turnover pools (e.g., X2, X7, and X8).

Assimilation of the eight data sets substantially reduced

variations of forecasted C contents, especially in those

fast turnover pools (ModelþData), in comparison with

those without data assimilation (Model only; Fig. 4).

This indicated that data provided substantial informa-

tion to constrain forecasts of carbon dynamics. Data

assimilation also considerably altered the maximum

likelihood estimates of carbon content in most of the

eight pools.

The relative information contribution by the model

(including model structure and parameter prior ranges)

steadily increased whereas the data contribution de-

creased for the slow turnover pools and ecosystem total

C during the 100-year forecasting (right column of Fig.

4). For the two major C pools, woody biomass (X2) and

slow SOM (X7), the model contributed less information

in the first few decades and more in the last decades than

the assimilated data in the course of the 100-year

forecasting. For foliage biomass (X1) and fine roots (X3)

pools, the eight data sets contributed more information

than the model during the entire period of forecasting.

The model contributed more information than the data

in the litter pools (X4 and X5), fast (X6), and passive (X8)

SOM pools.

The information gain of data assimilation was the

highest for the foliage biomass (X1), fast SOM (X6), and

fine roots (X3), and the lowest for the passive SOM (X8)

(Fig. 5). The information gain increased first and then

FIG. 2. The posterior distributions of the 30 free parameters. X0(1)–X0(8) are initial values of carbon content in pools
corresponding to X1–X8 on Fig. 1; c1–c8 are exit rates of the eight carbon pools; b1–b3 are the allocation coefficients of GPP to
leaves, woody biomass, and fine roots, respectively; and fj,i values are the carbon transfer coefficients from pool i to pool j.
Parenthetical multipliers indicate that axis numbers should be multiplied by the number shown to obtain true values.
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decreased gradually for the woody biomass (X2) and

total C. The information gain declined with time for the

fast and slow SOM pools (X6 and X7), and metabolic

litter (X4). The information gain for the structural litter

(X5) and fast SOM (X6) pools was also substantial

although data assimilation only slightly reduced their

uncertainties toward the end of the 100-year forecasting

(Fig. 5 vs. Fig. 4).

Parameters that determine short- vs.

long-term forecasting

The simulated carbon content of the eight pools at the

end of 2005 had different sensitivities to the 30

parameters (Fig. 6A; Appendix C: Table C1). The

foliage biomass (X1) and fine root pools (X3) were highly

sensitive to their respective exit rates (c1 and c3) and

modest to allocation coefficients to themselves (b1 and

b3). The woody biomass (X2) was sensitive to its exit rate

(c2), allocation coefficient to itself (b2), and its initial

value [X0(2)]. The metabolic litter (X4) was highly

sensitive to its exit rate (c4), and modest to allocation

coefficients b1 and b3. The structural litter (X5) was

highly sensitive to c5 and modest to c2. The fast SOM

(X6) was sensitive to c6 only. The slow SOM (X7) was

sensitive to c7, f7,6, and f6,4. The passive SOM (X8) was

sensitive to X0(8) only. In general, the modeled C pools

were most sensitive to the parameters that governed the

carbon input into or output out of themselves or their

neighbor pools that directly affected them. Plant C pools

(X1, X2, and X3) were not sensitive to any of the transfer

coefficients ( fi,js), which only regulate carbon dynamics

in the downstream pools. The fast-turnover pools (X1,

X3, X4, and X6) were not sensitive to their initial values

(X0(i), i ¼ 1, 3, 4, or 6). The downstream pools were

sensitive to more parameters than the upstream pools

(e.g., X7 vs. X2) because the C dynamics in the

downstream pools were influenced by behaviors of the

upstream pools. The opposite did not occur.

The sensitivity of forecasted total ecosystem C content

to parameters varied with time (Fig. 6B; Appendix C:

FIG. 3. Simulated carbon content at the end of 2005 with parameters sampled in prior distributions (Model only) and posterior
distributions (Model þ Data), respectively. Abbreviations are: struct., structural; metab., metabolic; max., maximum. Note that
x-axis numbers should be multiplied by 1000 to obtain true values.
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Table C2). For example, the highest sensitive parameter

for the total ecosystem C content was the initial value of

woody biomass [X0(2)] for the 4-year forecast. For the

128-year forecast, the highest sensitive parameter was

the exit rate of C from the woody biomass pool (c2),

which gradually became more important over time in

determining ecosystem C dynamics. The order of the six

most sensitive parameters for the forecasted total

ecosystem C content was X0(2), b2, b3, b1, X0(7), and

c3 at the 4th year but it was c2, b2, c7, c5, f7,6, and f6,4 at

the 128th year.

Effects of prior ranges and measurement errors

on information contribution

The data contributed more information to constrain

forecasts of forest carbon dynamics when the prior

FIG. 4. The projected carbon content (left and middle columns) and the relative information contributed by model and data
(right column) over 100-year forecasts after 1996. Box plots show visual summaries of carbon content distributions in the 5%
(bottom bar), 25% (bottom hinge of the box), 50% (line across the box), 75% (upper hinge of the box), and 95% (upper bar)
intervals. Solid circles with solid lines are the relative information contribution of the model; open circles with dotted lines are the
relative information contribution of data.
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ranges of parameters were enlarged (Fig. 7B vs. 7A). The

enlarged parameter ranges also resulted in slight

increases in the relative information contribution of

the model since the null information was lowered due to

changes in the minima and maxima of simulated carbon

contents, which were used to define the null information.

The relative information contribution of data increased

at low model priors (Fig. 7B vs. 7A). The information

contribution by the data substantially decreased but did

not change for the model component at doubled

measurement errors (Fig. 7C vs. 7A). However, the

temporal patterns of information contribution did not

change. The information gain was high at enlarged

parameter ranges (low model prior; Fig. 7E), and it was

low at doubled measurement errors (Fig. 7F).

DISCUSSION

In this study, we evaluated relative information

contributions of the TECO model and the eight data

sets to the constraints of 100-year forecasts of carbon

dynamics in Duke Forest. The sensitivities of short and

long-term forecasts to model parameters were analyzed

to explain how the information contributions of the

model and the data varied over time. The temporal

changes in information contributions and parameter

sensitivities have strong implications for the develop-

ment and evaluation of current terrestrial biogeochem-

ical models for regional and global assessment, and data

collections in the future.

Short- vs. long-term forecasts of forest carbon dynamics

Parameters that influence uncertainty of carbon

dynamics forecasts varied with the time scales. Our

analysis shows that the initial value of woody biomass

[X0(2)] and allocation coefficient to woody biomass (b2)

were the two most important parameters in influencing

short-term forecasts of total ecosystem C dynamics (Fig.

7). The initial values of C pools define their positions on

a trajectory of transient recovery, and therefore deter-

mine the rate of carbon accumulation and C storage

potential (Carvalhais et al. 2008, Gough et al. 2008). The

changes in C content of the eight C pools are different

because their initial values are apart from their

equilibrium states differently. The fast turnover pools,

e.g., foliage and fine root C pools, are almost

equilibrated at the initial states, while the slow turnover

pools, e.g., woody biomass, slow SOM, and passive

SOM, are far lower than their equilibrium states. So,

woody biomass, slow SOM, and passive SOM have high

carbon accumulate rates. The Duke forest was on its

early stage of secondary succession after plantation in

1983 (Hendrey et al. 1999). Carbon in many pools,

especially in the slow turnover pools, was accumulating.

Thus, X0(2) and b2, which determine the trajectory of

transient C dynamics in one of the long-term pools, are

the two key parameters affecting short-term forecasts of

ecosystem C dynamics.

The results indicate that long-term forecasts of forest

carbon dynamics were strongly influenced by the growth

rate of woody biomass (determined by the exit rate, c2,

and the allocation coefficient, b2, in the model), and the

decomposition rate of slow SOM (c7) (Fig. 7).

Theoretically, the long-term C storage in an ecosystem

is determined by C influx and residence time (Luo et al.

2001b). In this study, the C influx was input from

simulation results of another photosynthesis model

based on the eddy covariance data (Luo et al. 2003,

Stoy et al. 2006), while the parameters that determine C

influx were not evaluated. The ecosystem carbon

residence time is determined by carbon residence times

in individual pools, carbon allocation of GPP to plant

pools, and transfer coefficients among soil C pools

(Zhou and Luo 2008). Thus, we mainly evaluated the

ecosystem residence time in influencing the long-term C

storage in this study. The inverses of c2 and c7 are the

residence times of the woody biomass and slow soil C

pools, respectively. Parameter b2 controls the amount of

photosynthetically fixed C to be allocated to the wood

pool and subsequently influences C transfer to other

long-term pools, such as structural litter, slow and

passive SOM pools. Therefore, these three parameters

are most important in determining the long-term carbon

dynamics of forest ecosystems. Parameter b2 is impor-

tant for both short- and long- term forecasts of forest C

dynamics partially because it controls C allocation to

the largest, long-term C pool in this particular forest,

FIG. 5. The changes in the distributions of the carbon
content of the eight carbon pools and total ecosystem carbon at
the assimilation of data into the model, measured by the
information gains derived from the distributions of carbon
content simulated by the model with prior and posterior
parameters.
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therefore, influences the C dynamics of the downstream

pools.

Terrestrial biogeochemical models are usually tested

against short-term data (e.g., Stöckli et al. 2008,

Randerson et al. 2009) and the evaluations of param-

eterization are mainly on the parameters controlling

short-term processes (e.g., Knorr and Heimann 2001,

Zaehle et al. 2005). Whereas, these models are widely

used in long-term predictions (e.g., Fung et al. 2005,

Friedlingstein et al. 2006, Sitch et al. 2008). Rastetter

(1996) had proposed that long-term processes must be

tested against long-term data after examining the

performance of a photosynthesis model at multiple

temporal scales. Parameter sensitivity analysis in this

study shows that the long-term process related param-

eters are still important for short-term forecasts (e.g.,

initial value [X0(2)] and allocation coefficient (b2) of

woody biomass, and exit rate of soil slow C [c7]) (Fig. 7).

Therefore, the emphasis of parameterization for a

biogeochemical model used to predict C storage should

be on the long-term related parameters, especially on

initial values for short-term forecasts and residence

times for long-term forecasts.

Relative information contribution of model and data

Our analysis shows that the relative information

contributed by the data declined over time but that

contributed by the model increased slightly for the slow

C pools (i.e., woody biomass, slow, and passive SOM

pools) and total ecosystem C (right column of Fig. 4).

This means the model with the prior knowledge it

represented plays an important role in forecasting long-

FIG. 6. (A) The sensitivity of the eight carbon pools at 10 years’ simulation and (B) the sensitivity of ecosystem total carbon in
long-term simulations to the 30 parameters. X1–X8 are the eight carbon pools as shown in Fig. 1; X0(1)–X0(8) are initial values of
the carbon pools; c1–c8 are exit rates of the carbon pools; b1–b3 are the allocation coefficients of GPP to leaves, woody biomass, and
fine roots, respectively; fi, j values are the carbon transfer coefficients from pool j to pool i. The area of the circle represents the
relative value of the coefficient of determinant.
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term carbon dynamics. The processes (e.g., the com-

partmentalized pools and donor pool controlled carbon

transfers for the TECO model) defined the behavior of a

model, therefore the spaces of its projections. This may

probably be true for all process-based biogeochemical

models. Statistical models can sometimes generate better

results than the process-based models by deriving the

relationships between climate variables and carbon

dynamics. Artificial neural networks, for example, can

fit the observations better than sophisticated process-

based models after training by data (Abramowitz 2005).

An experience model with the relationships between

NPP and climate variables can reproduce the pattern of

global NPP (Del Grosso et al. 2008). A well calibrated

climate-vegetation relationship model can capture the

vegetation distribution pattern globally or regionally

(e.g., BIOME model; Prentice et al. 1992, Weng and

Zhou 2006). But the statistical relationships may be

different with changes in climate, since ecosystems may

not always be on equilibrium states because of lag effects

(Sherry et al. 2008), vegetation shifts (Bachelet et al.

2001, Harrison and Prentice 2003), acclimation (Luo et

al. 2001a), or ecosystem development (Chadwick et al.

1999). The process-based biogeochemical models can

represent these mechanisms by incorporating simple or

complex processes. Thus, the analysis of the relation-

ships between climate variables and carbon dynamics

should be confined in the framework defined by the

prior knowledge of ecological mechanisms..

The eight data sets provided high information for

upper stream pools (i.e., foliage, woody, and fine root

pools) but low for down stream pools (litters and soil

carbon pools) generally (right column of Fig. 4). This

may be a result of the consistency between data types

and model carbon pools. Three data sets (foliage,

woody, and fine root biomass) are directly accordant

with the three plant C pools. But none of the litter and

soil C data is accordant with the two litter pools and the

slow and passive SOM pools. Fox et al. (2009) explored

the constraints of parameters in a TECO-like model,

DALEC model, with assimilation of net ecosystem

exchange (NEE) and leaf area index (LAI) data. The

difference between these two models is that the DALEC

model has one litter pool and one soil C pool, while the

TECO has two and three, respectively. They found that

the parameters related to photosynthesis and ecosystem

respiration processes were constrained well. But the

parameters related to roots and woody C pools (turn-

over rates and allocation coefficients) were constrained

poorly. Therefore, their predictions on C stock diverged

broadly in the third year. These results indicate

collecting biometric data (e.g., woody biomass and soil

carbon) is important for both short- and long-term

forecasts of ecosystem C content and it is necessary for

researchers to constrain long-term pools and fluxes

using short term observations.

Factors influencing information contributions

The null knowledge of pool sizes, model prior, and

data uncertainties can affect relative information con-

tributions of the model and data. Uniform distribution

is usually used to represent null knowledge and the

FIG. 7. Information contribution of model vs. data and information gain with different parameter priors and measurement
errors. Panels A, B, and C show relative information contributions with (A) original parameter ranges and original measurement
errors, (B) full ranges of transfer coefficients and broadened ranges of exit rates (doubled upper limits, halved lower limits) with
original measurement errors, and (C) doubled measurement errors with original parameter ranges, respectively. Solid circles with
solid lines are the relative information contributions of the TECO model; open circles with dotted lines are the relative information
contributions of the data. Panels D, E, and F are the information gains with the same order of the combinations of parameter
ranges and measurement errors as panels A, B, and C.
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ranges are consequently the same with the correspond-

ing PDFs. The way that uses the ranges of simulated

carbon contents of the eight pools by the model with

prior parameters can provide a wide enough space that

all simulated results lie. And, the changes in the shapes

of the PDFs induced by the model with prior or with

posterior parameters can be effectively measured by

relative information indices (Im or Imþ Id). By doing so,

the information contribution of the model (Im) is

independent of the number of bins (n).

Model prior, including model structure and quantita-

tive estimates of parameter uncertainties, is a quantita-

tive measure of what we have known about the system.

In this study, the model structure is well established, and

the parameter ranges are also well recognized from

qualitative aspect (e.g., woody biomass’s residence time

is much longer than the leaf’s; the carbon flowing to

passive SOM is much lower than that to slow SOM).

However, they are still varied among researchers when

putting each of the parameters into a numerical range.

We thoroughly reviewed the literature and proposed a

set of parameter ranges that are believed to cover the

right values. Uniform distributions are used to represent

parameter uncertainties, since we did not want to put

our judgment on what values were likely or unlikely to

be the right ones. The sensitivity test on parameter

ranges showed that the enlarged ranges led to little

changes in the relative information contributions of the

model. However, the data contributed more information

at wider prior parameter ranges (Fig. 7B). These indicate

model-only results are not sensitive to parameter ranges

if these ranges are reasonable.

Measurement errors determine the weighting between

observations and simulated results and the weighting of

each observation. A thorough evaluation of measure-

ment errors is necessary for assimilation of multiple

sourced data sets. In this study, the standard deviations

(SD) of assimilated data were calculated for each

observation based on the data collected in the three

ambient rings. The coefficient of variation (CV) is the

highest for the soil respiration data (66%) and lowest for

the fine root data (7%). The number of data points of

each data set is also a factor affecting its weight in cost

function. Among the eight data sets, soil respiration has

the highest points, 89, while the forest floor C and soil

total C are the lowest, 4 only (Table 2). Thus, it is

desirable to explore the weight of each data set for

multiple sourced data assimilation. We tested the effects

of magnitudes of measurement errors on information

contribution. Less information contributed by data at

doubled measurement errors, but the pattern that

model’s contribution increases while data’s decreases

remains (Fig. 7C and F).

In this study, GPP is derived from another model or

eddy flux data and used as an input to the model. The

given GPP may influence the constraints of modeled

carbon pool sizes and total ecosystem C content. In

most biogeochemical models, GPP is modeled by an

independent photosynthesis model with influences of the

dynamic of the foliage pool, and is usually stabilized

within one or a couple of decades. Thus, the uncertain-

ties in simulated GPP do not affect the relative

information contributions of model and data in the

framework of a carbon pool model.

The processes that are not considered in this model

may also affect long-term forecasts of ecosystem states.

For example, the TECO model does not have the

processes representing disturbances and carbon–nitro-

gen interactions, which are considered to affect forest

ecosystem C storage at long temporal scales (Luo et al.

2003, Gough et al. 2007). Since the woody biomass

related parameters (c2 and b2) have high sensitivity to

disturbances and nitrogen availability, the uncertainties

in long-term forecasts may be higher than presented in

this study. Therefore, the effects of disturbances and

nitrogen on the long-term forecast sensitive parameters,

i.e., c2, b2, and c7) should be evaluated carefully in long-

term forecasting. Overall, the accuracy of 100-year

forecasts is essentially untestable. But, the assimilation

of data did reduce the uncertainties in the model and its

forecasts based on the processes considered in the model

(see Appendix D).

CONCLUSIONS

Our results showed the information contribution of

the model generally increased with time whereas the

data’s contribution declined. The eight data sets

contributed more than the model to constrain C

dynamics in foliage and fine root pools over the 100-

year forecasts. The model, however, contributed more

than the data to constrain litter, fast SOM, and passive

SOM pools. For the two major C pools, woody biomass

and slow SOM, the model contributed less information

in the first several decades and then more in the last

decades than the data. Parameter sensitivity analysis

showed that the initial value of woody C pool [X0(2)]

and the allocation coefficient of woody biomass (b2)

were the two most important parameters for short-term

forecasts of ecosystem total C, while the key parameters

for the long-term forecasts were the exit rate (c2) and

allocation coefficient (b2) of woody biomass, and the exit

rate of slow SOM (c7).

These results indicate data assimilation is very useful

in constraining short and long-term forecasts of forest

carbon dynamics, while a good forward model is still

fundamental to long-term forecasts. The test against

short-term data cannot guarantee improving the param-

eters governing long-term processes since the important

parameters for short-term forecasts may be different

from those for long-term forecasts. Incorporating the

processes affecting long-term ecosystem carbon dynam-

ics into biogeochemical models, such as disturbances

and carbon-nitrogen interaction processes, and collect-

ing more long-term data related to soil carbon dynamics

are required for reducing the uncertainties in the

forecasts of long-term ecosystem carbon dynamics.
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Rényi, A. 1961. On measures of entropy and information.
Proceedings of the 4th Berkeley Symposium on Mathematics,
Statistics, and Probability 1960:547–561.

Schmid, S., E. Thurg, E. Kaufmann, H. Lischke, and H.
Bugmann. 2006. Effects of forest management on future
carbon pools and fluxes: a model comparison. Forest
Ecology and Management 237:65–82.
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