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Abstract. Several forces are converging to transform ecological research and increase its
emphasis on quantitative forecasting. These forces include (1) dramatically increased volumes
of data from observational and experimental networks, (2) increases in computational power,
(3) advances in ecological models and related statistical and optimization methodologies, and
most importantly, (4) societal needs to develop better strategies for natural resource
management in a world of ongoing global change. Traditionally, ecological forecasting has
been based on process-oriented models, informed by data in largely ad hoc ways. Although
most ecological models incorporate some representation of mechanistic processes, today’s
models are generally not adequate to quantify real-world dynamics and provide reliable
forecasts with accompanying estimates of uncertainty. A key tool to improve ecological
forecasting and estimates of uncertainty is data assimilation (DA), which uses data to inform
initial conditions and model parameters, thereby constraining a model during simulation to
yield results that approximate reality as closely as possible.

This paper discusses the meaning and history of DA in ecological research and highlights
its role in refining inference and generating forecasts. DA can advance ecological forecasting
by (1) improving estimates of model parameters and state variables, (2) facilitating selection of
alternative model structures, and (3) quantifying uncertainties arising from observations,
models, and their interactions. However, DA may not improve forecasts when ecological
processes are not well understood or never observed. Overall, we suggest that DA is a key
technique for converting raw data into ecologically meaningful products, which is especially
important in this era of dramatically increased availability of data from observational and
experimental networks.

Key words: data assimilation; data–model fusion; ecological forecasting; inverse analysis; optimization;
predictions; prognosis; projections.

THE NEED FOR ECOLOGICAL FORECASTING

The capability to forecast the impacts of environ-

mental change on our living environment and natural

resources is critical to decision making in a world where

the past is no longer a clear guide to the future (Clark et

al. 2001). We are living in a period marked by rapid

climate change (Solomon et al. 2007), profound alter-

ation of biogeochemical cycles (Vitousek et al. 1997),

unsustainable depletion of natural resources (Heinz

Report 2008), proliferation of exotic species

(D’Antonio and Vitousek 1992, Liao et al. 2008) and

infectious disease (Smith et al. 2005), and deterioration

of air and water quality (Gleick 2002, Akimoto 2003).

Human populations are increasing at an alarming rate,

and society is dependent on the extraction and

utilization of natural resources to support regional and

global economies. Predictable and increasing supplies of

energy, food, fiber, freshwater, and clean air are

necessary to maintain healthy human societies. To

effectively mitigate and adapt to climate change, we

need to develop robust methods to apply data and

current knowledge to the problem of anticipating future

states of ecosystems and then to assess resilience and,

potentially, collapse of ecosystem services.

Nascent ecological forecast models are in use in some

areas. For example, ecosystem and biogeochemical

cycling models have been incorporated into earth-system

models to project terrestrial carbon sinks and sources

and their feedback to climate change in the 21st century

(Cox et al. 2000, Friedlingstein et al. 2006). Those model

predictions have been incorporated into the assessment
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reports of the Intergovernmental Panel on Climate

Change (IPCC) to guide mitigation efforts by govern-

ments and public (Solomon et al. 2007). At local and

regional scales, ecosystem models have been used to

forecast changes in natural resources for improved

management (Hood et al. 2007, Kirilenko et al. 2007).

Ecological models have also played a role in forecasting

the timing and intensity of infectious diseases and in the

development of control strategies (Smith et al. 2005).

Inference from these types of models has led to successes

in early warning of disease risk and vaccination

strategies (Glass et al. 2000, Ferguson et al. 2001,

Keeling et al. 2001, 2003, Smith et al. 2005, Chaves and

Pascual 2007). Although forecasting has happened in

some areas of ecology, it is generally done without

formally integrating data to constantly improve models

and assess uncertainties of their forecasts.

With the advent of new measurement techniques and

observatory networks over the past decades, experimen-

tal and observational data are increasingly abundant,

offering a tremendous potential to improve ecological

forecasting. For example, FLUXNET is a worldwide

network with over 400 tower sites operating on a long-

term and continuous basis to measure ecosystem gas

exchange, supplemented with data on vegetation, soil,

hydrologic, and meteorological characteristics at the

tower sites (Baldocchi et al. 2001). Satellite observations

provide remote measurements of climate, ocean circu-

lation, terrestrial vegetation and phytoplankton, and

hydrology at multiple scales, which can be used to

inform ecological models about large-scale processes. In

response to the need for long-term data on ecological

responses to changes in land use, biological invasions

and climate, the U.S. National Science Foundation

(NSF) is establishing a National Ecological Observatory

Network (NEON), which is a continental-scale research

platform to gather such data. However, the ultimate

value of the diverse and abundant data will depend on

how well the data can be integrated with the best

available understanding of biological processes.

Integrative analysis that can combine data sources

into models that explicitly acknowledge sources of

uncertainty will be critical to advances in ecological

forecasting (Clark et al. 2004, 2007, 2010, Weng and

Luo 2011). This paper examines the potential to advance

ecological forecasting by combining data with models

using data assimilation (DA) techniques. While it has

been widely used in other scientific disciplines (Evensen

2007), DA has not been often employed in ecology.

Traditionally, DA uses data to constrain a model during

simulation to yield results that approximate reality as

closely as possible before it is applied to forecast the

most likely future state of an ecosystem. This is a more

stringent set of requirements than applied to models for

producing plausible futures generally consistent with

theory. By analogy with weather forecasting, running an

atmospheric model many times, initialized with average

summer conditions, will produce a number of realiza-

tions, but only by chance would one (or the average)

resemble the actual conditions on a particular day.

Initializing the same model with a best estimate of

today’s weather should produce a better forecast of the

next day’s weather than the former experiment.

Ecological models have generally been used in the

former mode, and it is our contention that today’s

environmental management issues also require the latter

capability, to forecast actual ecological futures and their

likelihood.

In this paper, we first review the definition of

ecological forecasting to illustrate key approaches and

major elements of forecasting. We then offer a historical

perspective on uses of data, model, and their integration

toward a predictive understanding of ecological systems.

Research methods have evolved from simple theoretical

models to a point nowadays when improvement of

complex simulation models using advanced optimiza-

tion tools makes ecological forecasting a realizable goal.

We also evaluate the current uses of simulation models

for ecological forecasting and prediction. These models

are useful but, by themselves, not adequate to provide

realistic forecasts. The models have to be iteratively

improved against data using DA techniques before they

can be effectively used for forecasting. We briefly

describe DA techniques and explore their applications

to model improvement and ecological forecasting.

Although DA is promising to improve ecological

forecasting, ecologists are just beginning to use it in

research. In the last section, we offer a vision on future

research opportunities and challenges as we enter a data-

rich era.

DEFINITION OF ECOLOGICAL FORECASTING

Ecological forecasting has several synonyms, includ-

ing prediction, projection, and prognosis (Table 1), all of

which are used to describe a process of estimating future

unknown situations. Prediction may be viewed as a

more general term to anticipate that something is likely

to happen in the future, sometimes under given

conditions, and implies a quantitative result. It is

important to recognize that prediction is not limited to

TABLE 1. Distinguished characteristics of terms: forecasting, prediction, projection, and prognosis

Term Characteristics

Forecasting probabilistic statement on future states of an ecological system after data are assimilated into a model
Prediction future states of an ecological system based on logical consequences of model structure
Projection future states of an ecological system conditioned upon scenarios
Prognosis subjective judgment of future states of an ecological system
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the future but could be generated for data already

observed (e.g., cross-validation), observations that could

not be obtained (e.g., gap-filling), and current states that

have not been observed, but can be predicted (e.g.,

kriging; Clark et al. 2011). Prediction, even if not

accurate, provides a formal mechanism for evaluating

the state of current knowledge as reflected by both

models and data (Clark et al. 2001). Projection is an

evaluation of future states of an ecological system in

response to changes in key driving forces under different

scenarios, which are based on assumptions concerning

future socioeconomic and technological developments

that may or may not be realized and are therefore

subject to substantial uncertainty. Prognosis or prog-

nostic analysis has been used for environmental assess-

ments with an emphasis on a scientist’s view about the

state of an ecosystem and is generally more subjective.

These terms are often used interchangeably to express

the idea of estimating a future state of the ecological

system. Here we focus primarily on the concept of

forecasting.

We refer to forecasting as the process of predicting

some future event or condition usually as a result of

study and analysis of available pertinent data. Weather

is the most familiar format for forecasting. Weather

forecasting attempts to predict the state of a weather

system for a future time (typically short term of 10 days

or less) at a given location. The weather is a chaotic

system and reliable forecasts require accurate measure-

ments of initial conditions and a model representing

atmospheric processes. The improvement of skill (i.e.,

the performance of a given model relative to some

baseline) in the weather forecast (Fig. 1) has resulted

from advances in both models and observations of the

current state of the atmosphere and, critically, requires

their integration. In contrast, climate models are used

to explore the potential response of the atmosphere to

changing forcing, usually via the accumulation of

greenhouse gases and aerosols over time. In climate

simulations, the boundary conditions (energy trapped

in the atmosphere) are varied and potential responses

modeled. The initial conditions are usually only loosely

based on observations, and simulations often begin

from climatologic or equilibrium states. Such forward

simulations are not expected to accurately predict the

future, but rather are viewed as sensitivity or scenario

analyses to assumed future boundary conditions.

Ecological forecasting, in particular, has been

described as the projection of future states ‘‘of

ecosystems, ecosystem services, and natural capital,

with fully specified uncertainties, and is contingent on

explicit scenarios for climate, land use, human pop-

ulation, technologies, and economic activity’’ (Clark et

al. 2001). We define two types of ecological forecasting:

(1) classic prediction, asking the question, ‘‘What is the

most likely future state of an ecological system?’’ (2)

What-if analysis, asking, ‘‘What is the most likely

future state of a system, given a decision today?’’ In

both cases, results are often represented as a proba-
bility distribution, conditional on the many sources of

uncertainty (model, observations, and so on). Classic
prediction may be applied to fast-evolving systems
whose dynamics are strongly governed by its own

current state (for example, forecasting the spread of an
infectious disease), whereas the what-if analysis comes

into play when alternate management actions or
scenarios are being considered (for example, forecast-

ing the likely impacts of alternate forest fire risk
mitigation practices on biodiversity or studying alter-
nate climate change scenarios). In the latter case, the

system boundaries as defined by explicit scenarios of
climate, land use, human population, technology, and

economic activity, which are critical to understanding
ecological changes over longer time scales. Both types
of forecasting have to quantify the past and current

states of ecological systems as a starting point and use
models to project the future dynamics.

Thus, the model is a key component for producing
ecological forecasts. Of course, no model is a perfect
representation of a system, but the derived equations

and parameters that integrate reasoning (theory) and
information (data) are only approximately correct in

certain situations. The power of ecological models for
deductive inference is usually limited partly because

ecological responses may depend on the current state of

FIG. 1. Improvement in the skill of the NOAA weather
forecast from 1955 to 2005 as measured by predicting the
atmospheric pressure field 36 hours in advance in the U.S.
operational forecast model. The overall trend is surprisingly
steady given the changes to satellite observations, computing
power, and advances in knowledge over the decades between
the 1950s and 2000s. This highlights the need to understand
that quantitative models cannot be evaluated in a binary
fashion (right vs. wrong). Errors must be measured, assigned to
weaknesses in theory, simulations, or observations (or some of
each) and targeted efforts made to correct the identified
problems. Analogously, the skill of ecological forecasts will
evolve over time as fundamental theory advances, as techniques
for estimation of states and parameters improve, and as system
behavior is observed under a wider and wider range of
conditions to characterize more parameter space. The figure is
modified from the following NOAA source: hhttp://www.vos.
noaa.gov/MWL/dec_07/Images/Figure3-WeatherPrediction.
jpgi.

July 2011 1431DATA ASSIMILATION FOR ECOLOGICAL FORECASTING



the system, as evidenced by empirical studies. For

example, Knapp and Smith (2001) showed that produc-

tivity responds conditionally to rainfall variability

depending on the mean value of rainfall at a site.

Temperature sensitivity of soil respiration depends on

temperature, soil moisture, and substrate supply because

different microbial populations are activated under

different ecosystem conditions (Luo and Zhou 2006,

Monson et al. 2006). Thus, simple extrapolation of such

ecosystem processes using models often fails if such

state-dependent mechanisms are not incorporated into

the model.

While no amount of data can constrain model

responses to conditions that have never been observed,

comparing models and observations over a wide range

of conditions increases the chance of capturing impor-

tant nonlinearities and complex or contingent responses

that may control future behavior. This notion of

comparing models to data is fundamental to DA, which

uses the model structure and parameters as prior

information to represent the state of knowledge. DA

improves models and their forecasts using information

contained in data on the past and current states of an

ecosystem through rules of probability (e.g., a

Metropolis criterion) to obtain the posterior probability

distributions of targeted parameters and forecasted state

variables. The posterior probability density functions

quantify the potential ranges and uncertainties of

parameters and future states of an ecosystem.

HISTORICAL PERSPECTIVE

Two foundational approaches to scientific inquiry are
observation and process thinking (Fig. 2; Ogle 2009).

Observations record as data the states of ecosystems at
the time when the measurements were made. The data

also contain information about underlying processes,
which can be revealed by quantitative analyses. Process

thinking is a mental activity to figure out which
processes are operating in a system. Formal expression

of outcomes from process thinking occurs via develop-
ment of a theory and/or model. Thus, theory and/or

model represent our theoretical and/or conceptual
understanding of the processes that operate in a system.

A model should be continuously evaluated and im-
proved as we advance our understanding based on

accumulated empirical observations of the real system.
The difference between theory and empiricism was

summarized as: ‘‘Theory delineates possibilities.
Empirical studies discriminate the actualities.’’ (May
1981). Integration of models with observations using

formal estimation methods rather than ad hoc tuning is
a powerful new way of combining theory and empiri-

cism (Ogle 2009). This is where DA methods become
important.

Historically, the two aforementioned approaches have
mainly been combined into relatively simple systems

that could be described by classic models like the logistic
growth equation (Verhulst 1838) or competition and

prey–predator models (Lotka 1924, Volterra 1926).
These models can generalize measurements of systems

in some special cases and, within limits, can be used for
extrapolation (Pascual and Kareiva 1996). The models

possess only a few parameters and can be tested and
reconstructed to provide valuable insight into system

dynamics and reveal general features of model behavior.
Such models, however, usually do not incorporate

enough processes to realistically describe behavior of
complex ecological systems and thus have a limited
capability for quantitative extrapolation or forecasting.

Since the 1950s, process thinking has been facilitated

by systems analysis for ecological research. Systems
analysis focuses on understanding the behavior of a
system as a whole. Process thinking and systems analysis

are the foundation for development of the simulation
modeling approach (Forrester 1961). Since the 1960s,

the simulation modeling approach has been applied to
ecological research mainly for (1) integration of process

knowledge and data, (2) analyzing the potential
behavior of ecological systems under changing condi-

tions (climate) or stress, (3) hypothesis generation, and
(4) resource management and policy development.

Simulation models have been widely applied in
ecology and resource management in modes of ecolog-

ical predictions, projections, forecasting, and/or prog-
nostic analysis (Parton et al. 1987, Pacala et al. 1993,

Ribbens et al. 1994). Papers on modeling from ISI’s
Web of Science exponentially increased from the early

1970s to approximately 600 per year for ecological

FIG. 2. Evolution of various research approaches to
scientific inquiry, all converging toward data assimilation
(DA) to improve predictive understanding of ecological
systems. Observation from natural ecosystems and experiments
generates data, which were not rigorously analyzed until the
1960s using frequentist methods (Fisher 1959). Process thinking
is a mental activity to figure out processes that operate in a
system and is formally expressed in a model and theory. Process
thinking, assisted by systems analysis, has led to the develop-
ment of simulation models. DA combines process thinking in
the form of numerical models with data that record the states of
a system, usually under a Bayesian framework, to improve
model forecasts.
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prediction(s), 100 per year for ecological forecast(s) or

forecasting, and 60 for ecological projection(s) in 2008

(Fig. 3). Although many papers refer to prediction,

projection, and forecasting, ecological modeling has

mainly been concerned with gaining a quantitative

understanding of ecological processes and only secon-

darily with projection or prediction. As a result,

ecologists have combined models and data mainly

during model development, using data to help distin-

guish between alternate model structures and to

quantify parameter values. To the extent that models

are used for forecasting today, applications are normally

in a research or proof of concept mode, involve limited

verification and analysis, rarely address all of the major

sources of uncertainty, and make limited use of

observations to reduce these uncertainties.

As predictive, quantitative understanding becomes a

more important goal, modeling practices in ecology are

evolving. Especially with many advanced mathematical

and statistical tools available for data–model fusion,

improvement of models using DA techniques makes

ecological forecasting a realizable goal. Clark et al.

(2001) articulated the need and feasibility of ecological

forecasting and its roles in decision-making processes.

More papers have been published to address uncertainty

issues in ecological inference and forecasting (e.g., Clark

et al. 2003). We are entering an initial period of research

on a variety of issues related to ecological forecasting,

and here we discuss the important role of DA in

improving ecological forecasting by integrating diverse

data sources and process-based models.

USES OF MODELS FOR ECOLOGICAL FORECASTING

To refine our understanding on the current status of

ecological forecasting in the context of future climate or

global change scenarios, we searched ISI’s Web of Science

to locate articles in the top ecology journals (Ecological

Applications, Ecological Monographs, Ecology, Ecology

Letters, Ecosystems, Functional Ecology, Global Change

Biology, Journal of Applied Ecology, Journal of Ecology,

New Phytologist, Oecologia, Oikos, American Naturalist,

Global Ecology and Biogeography, Frontiers in Ecology

and the Environment, Conservation Biology, Wildlife

Monographs, Journal of Animal Ecology, Journal of

Biogeography, and Biological Conservation) using the

search string: (model* AND (forecast* OR predict* OR

project*) AND (‘‘climate change’’ OR ‘‘global change’’)).

Out of 840 hits produced, we narrowed the list to articles

with titles containing (forecast* OR predict* OR

project*), which produced 129 hits (search conducted

4–7 May 2009). Of these 129 articles, 63 made predictions

under different climate or global change scenarios using a

particular model. We reviewed each of the 63 articles to

determine (1) the types of models that they employed

(e.g., empirical such as regression-type models vs.

mechanistic or process-based models), (2) the manner in

which time is incorporated (e.g., explicit such as in

difference or differential equation models vs. implicit via,

for example, driving variables that change over time vs.

not included), and (3) methods for parameterizing the

models (e.g., fixed parameter values vs. parameters are

tuned so that some aspect of the model output ‘‘matched’’

data vs. parameters estimated via rigorous statistical

methods for fitting the model to data). The third criteria

allowed us to evaluate the current role that DA methods

play in ecological forecasting.

The articles we reviewed could generally be divided

into two categories, those focused on species distribu-

tions and richness (35/63) and those focused on

ecosystem processes (21/63). A small number of articles

dealt with physiological and other processes. The

majority of the articles (56%) focused on forecasting

(or predicting or projecting) changes in native species

distributions and ranges or overall species richness/

diversity under future climate scenarios. Other studies

produced forecasts of soil or ecosystem carbon stocks

and fluxes (;14%), habitat availability (;6%), biotic

invasions (;5%), animal physiological responses to

changing climate (;5%), dispersal processes (;5%),

ecosystem-level phenology, carrion availability to scav-

engers, nitrogen cycling, and hydrology.

The models most commonly used for producing

forecasts of species distributions can be classified, in

general, as bioclimatic envelope models (BEM), or more

broadly as ecological niche models. Of these, most were

categorized as ‘‘empirical’’ (i.e., regression-based mod-

els), time was not explicitly included (i.e., the forecasts

FIG. 3. Numbers of publications that can be identified by
(A) ecological predictions, (B) ecological forecasts or forecast-
ing, or (C) ecological projections in the Web of Science.

July 2011 1433DATA ASSIMILATION FOR ECOLOGICAL FORECASTING



are steady-state distributions based on future environ-

mental conditions generated by other models), explicit

DA methods were rarely used, and the majority

produced point forecasts (i.e., a single species map for

a given future scenario without quantified uncertainty).

The BEMs were typically parameterized using a variety

of statistical methods to correlate known species’

distributions with observed climate variables (e.g., see

Beaumont et al. 2005, Kearney and Porter 2009). Most

often, uncertainty in predictions is generated by using

different future climate scenarios or by comparing

different algorithms for estimating the correlation

between species distributions and climate variables

(e.g., see Currie 2001, Hijmans and Graham 2006,

Prasad et al. 2006, Beaumont et al. 2007). Some recent

studies, however, have incorporated more mechanisms

into these types of models, such as dispersal, regener-

ation, disturbance, and physiological limitations (e.g.,

Morin et al. 2008, Kearney and Porter 2009, Vallecillo et

al. 2009), that produce time-varying models, which are

particularly amendable to DA approaches.

Models used for producing forecasts of ecosystem

responses were generally process-based dynamic global

vegetation (DGVM; e.g., Beerling et al. 1997, Foley et

al. 1998) or biogeochemical models (e.g., Clein et al.

2000). These models explicitly include time as a dynamic

model element, typically based on difference equations.

These models are often parameterized using a combina-

tion of literature data and/or experimental data, and ad

hoc tuning or calibration methods may be applied to

adjust the model parameters so that the model output

agrees with empirical data for the system studied.

Applications of process-based ecosystem models for

forecasting have generally produced point estimates for

each output variable at each future time point rather

than distributions acknowledging explicit sources of

uncertainty (e.g., Beerling et al. 1997, McGuire et al.

2000, Jones et al. 2005, Morin et al. 2008). Occasionally

the articles may report the results of ensemble model

runs, where each simulation run used different potential

future climates. Model outputs may be averaged across

ensemble runs to produce the ‘‘most likely’’ forecasts,

and the variances of the model outputs may be reported

as prediction uncertainty. In such cases, the prediction

uncertainty usually could not be formally attributed to

model structure (e.g., model or process error), param-

eters, or initial conditions.

We acknowledge that our literature search criteria

may have missed many relevant papers. For example,

individual-based models of ecosystem components are

often grounded in a mechanistic and dynamic and/or

spatially explicit framework (e.g., Ogle and Pacala 2009)

that can be coupled to data and used to produce future

forecasts, but such models did not appear in our search.

Our search also did not return studies on forecasting

disease dynamics, yet we know that such models have

been used to predict the timing and intensity of

infectious diseases and to inform control strategies

(Smith et al. 2005). Ecological disease models involve

mathematical representations of disease-status transi-

tions in host populations (Kermack and McKendrick

1933, Anderson and May 1979), and they are generally

fitted to population time series to characterize disease

progression and transmission (Grenfell et al. 2001,

Bjornstad et al. 2002, Ferrari et al. 2008). Simulations

based on these data-informed models can then be used

to develop control strategies and predict the timing of

epidemics, and inference from such models has led to

successes in early warning of disease risk and vacci-

nation strategies (Glass et al. 2000, Ferguson et al. 2001,

Keeling et al. 2001, 2003, Smith et al. 2005, Chaves and

Pascual 2007).

THE ROLE OF DATA ASSIMILATION

IN ECOLOGICAL FORECASTING

Most data–model comparison studies indicate that the

current generation of predictive models is generally

adequate to simulate qualitative patterns of large-scale

dynamics of ecological systems (Parton et al. 1993,

Hanson et al. 2004). It appears, however, that their

ability to provide a realistic forecast at a given location

is limited (Schimel et al. 1997). By coupling process

thinking in the form of the numerical model and

information contained in data, DA is expected to

improve ecological forecasting by (1) providing esti-

mates of parameters, initial values, and state variables;

(2) quantifying uncertainties with respect to parameters,

initial conditions, and modeled states of an ecosystem;

(3) helping to select between alternative model struc-

tures; and (4) providing a quantitative basis to evaluate

sampling strategies for future experiments and observa-

tions that will enable improvements to models and

forecasts (Baker et al. 2008).

Brief description of data assimilation techniques

Modern DA methods combine data with model by

updating model parameters and/or selecting alternative

model structures (i.e., target variables) using optimiza-

tion techniques or posterior simulations. Optimization

procedures involve a cost function that quantifies the

deviation (the vector e) between modeled and observed

values as

eðtÞ ¼ ZðtÞ � uXðtÞ ð1Þ

where Z(t) is an observation and uX(t) is the modeled

value at time t. The modeled value is usually related to

state variables of the model, X(t), at time t using a

mapping function u. The mapping function relates the

modeled variable to its observed counterpart. When DA

is applied to multiple data sets, Eq. 1 represents a vector

as

eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; :::eiðtÞ; :::; emðtÞ�>: ð2Þ

Corresponding to ith data set, Zi, i¼1, 2, . . . , m, there is
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one random error component ei(t)¼ Zi(t)� uiX(t) with

ui being a mapping function for the ith data set.

The deviation is usually termed an error, resulting

from inaccurate observations, an imperfect model, or

both. Most DA studies assume, for simplicity, that e(t)

follows a Gaussian distribution with a zero mean

(Braswell et al. 2005, Raupach et al. 2005), but this

assumption is not required.

Optimization methods are used to obtain model

structures and/or parameter values that minimize the

deviations between modeled and observed values. The

parameters or model structures (usually a set of differ-

ence functions) to be optimized by DA are termed target

variables, c. Thus, the deviation becomes a function of c

as

eðtÞ ¼ ZðtÞ � UXðc; tÞ: ð3Þ

By adjusting the target variables, c, the modeled value

UX(c, t) and consequent deviation (i.e., error), e(t), vary.

Thus, we can define a cost function, J(c), with multiple

data sets as

JðcÞ ¼ ½ZðtÞ � UXðc; tÞ�>covðetÞ�1½ZðtÞ � UXðc; tÞ� ð4Þ

where cov(et) is a covariance matrix for vector e(t). The

non-diagonal elements in the matrix cov(et) represent

correlations between different error components, while

the diagonal elements specify variances of the compo-

nents of e(t), which can be estimated from observations

(Luo et al. 2003).

In most DA studies, the cost function is formulated

using a least squares approach. The least squares

method is equivalent to the maximum likelihood

estimation for optimization when a Gaussian distribu-

tion is assumed for e(t) (Todling 2000). When the errors

do not follow a Gaussian distribution or are not

independent, other forms of the cost function may be

used, such as the sum of absolute deviations, which gives

maximum likelihood estimates for the Laplace error

distribution (Liu et al. 2009).

The search for optimal target variables leading to

minimal deviations between model predictions and

observations (Eqs. 2 and 3) is generally accomplished

using optimization techniques. There are two general

types of optimization techniques: batch and sequential

methods. Batch methods assimilate all the data within a

time interval at once and treat the cost function as a

single function to be minimized over that window.

Sequential methods assimilate data one time step at a

time. There are many batch techniques, such as the

variational or adjoint method (Vukicevic et al. 2001),

Levenburg-Marquardt (Luo et al. 2003), and genetic

algorithms (Zhou and Luo 2008). A frequently used

method is the Markov chain Monte Carlo (MCMC)

technique, after the foundational work of Metropolis et

al. (1953) and Hastings (1970). The basic idea is to use a

Markov chain with Gibbs sampling and/or Metropolis-

Hastings (M-H) algorithm to sample the target varia-

bles. Once the chain has been simulated for a sufficiently

long period so that the distributions of target variables

follow stationary states, samples from the simulations

are collected to approximate the distributions of the

target variables. When the DA approach is done within

a Bayesian framework, the cost function is used in the

Metropolis criterion to evaluate the full joint distribu-

tion of target variables (Xu et al. 2006). The posterior

distributions of the target variables generated by

MCMC algorithms can be used to determine most

probable values, mean values, quantiles, and other

summaries of uncertainty.

One of the most popular sequential methods is the

Kalman filter (KF), which is a recursive DA algorithm

for estimating initial conditions, parameters, and state

variables of a system at each time using a state-space

model from a series of heterogeneous, intermittent

measurements (Kalman, 1960, Gelb 1974). The KF

iteratively repeats two steps: forecast and update. The

forecast step evolves the state vector forward in time,

using a process-based or statistical model. The update

step adjusts target parameters by a Kalman gain matrix

when data are assimilated. The Kalman gain is

calculated by minimizing the deviations between obser-

vations and model forecasts. The two-step procedure is

repeated until the last datum is assimilated (Fig. 4). The

ensemble Kalman filter (EnKF) is one variant of KF

and uses a Monte Carlo technique to generate an

ensemble of models for sequential DA (Evensen 2007).

The covariance among parameters can be computed

directly from the ensemble instead of from the explicit

solution in the KF and its nonlinear extensions. KF and

EnKF can estimate both parameter and state variables

FIG. 4. Schematic illustration of an ensemble Kalman filter (EnKF). EnKF uses a Monte Carlo technique to generate an
ensemble of estimated parameter values and forecasted state variables for sequential DA. Observations (Z, at time k) help to correct
the forecast trajectories and reduce the spreads of parameter values and modeled state variables.
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in a dynamic ecological system simultaneously (Gao et

al. 2011). State-space models are often implemented in a

Bayesian framework, where current understanding of

the state is a prior to be updated with each new

observation (e.g., Clark and Bjornstad 2004).

Applications of data assimilation in ecological research

DA methods are being employed to develop, cali-

brate, and evaluate model accuracy and parameter

uncertainty (Williams et al. 2009). Raupach et al.

(2005) reviewed the use of DA methodologies in the

analysis of terrestrial carbon observations, though they

do not specifically address forecasting. They discussed

the importance of methods for assimilating diverse data

sources and separating observational and model errors,

with the goal of producing more accurate analyses (or

forecasts) of the global carbon cycle. Within this field,

applications of DA range from global inversions (e.g.,

Lokupitiya et al. 2008, Ricciuto et al. 2008b) to

individual forest stands (e.g., Reichstein et al. 2003,

Clark et al. 2004, 2007, 2010, Klemedtsson et al. 2008,

Moore et al. 2008). Several studies employed Bayesian

methods to estimate state variables and parameters in

process-based models to analyze ecosystem carbon

exchange and its process controls (e.g., Braswell et al.

2005, Moore et al. 2008, Ricciuto et al. 2008a, b, Tang

and Zhuang 2008), with some focusing on carbon and/

or water exchange (e.g., Chen et al. 2008b, Klemedtsson

et al. 2008, Moore et al. 2008, Svensson et al. 2008,

Clark et al. 2011). Several studies employed the Kalman

filter or ensemble Kalman filter directly (e.g., Williams et

al. 2005, Chen et al. 2008a, Mo et al. 2008, Quaife et al.

2008) or other maximum likelihood or least squares

optimization approaches (e.g., Reichstein et al. 2003,

Lokupitiya et al. 2008, Prihodko et al. 2008).

DA methods have also been used extensively to

calibrate marine or aquatic ecosystem models (Spitz et

al. 1998, Dowd 2007). Techniques have included the use

of Bayesian calibration approaches (Borsuk et al. 2004,

Arhonditsis et al. 2008, Law et al. 2009), various

versions of the Kalman filter (Ourmieres et al. 2009),

as well as variational or adjoint methods (Zhao and Lu

2008). Arhonditsis et al. (2008) and Borsuk et al. (2004)

also note that such methods, especially Bayesian

approaches, are important for forecasting aquatic

ecosystem responses in the context of environmental

management where estimates of uncertainty are critical

to making well informed decisions.

DA techniques have been used to explicitly estimate

uncertainties of parameters and state variables. The

uncertainty analysis has been applied to ecosystem

phenology (Cook et al. 2005), carbon dynamics (Xu et

al. 2006), salmon life cycles (Crozier et al. 2008),

migration (Schwartz et al. 2001), and long-distance

dispersal (Clark et al. 2003). Uncertainty may derive

from many sources, such as (1) data uncertainties, due to

random and systematic errors in observations; (2) model

structural uncertainties arising from overall architecture

(i.e., the way to connect components and processes),

relationships among processes and drivers, and func-

tional forms of equations to describe individual pro-

cesses; (3) parameter uncertainties, typically due to

inadequate or conflicting information about the param-

eters; (4) uncertainties in boundary conditions, such as

scenarios of human behavior, climate, land use, and

social and economic activities; and (5) uncertainties

from the statistical method used to combine the model

and data in the DA system. It is still challenging to

separate such sources of uncertainty and assess their

relative contributions to the forecast uncertainty, but

new and incoming data and advances in DA methods

are expected to facilitate this partitioning.

Ecological forecasting and data assimilation

DA methods are just beginning to be used in

ecological forecasting. For example, Xu et al. (2006)

applied a Bayesian probability inversion approach to

estimate parameters and then forecast state variables

(i.e., pool sizes) in the Duke forest, suggesting that, the

ecosystem would store 3190 g C/m2 more at elevated

CO2 by the year of 2010 than at ambient CO2 with 95%

confidence. Ricciuto et al. (2008b) used the posterior

distributions for parameters (obtained by a Bayesian

fitting procedure) in a global carbon cycle model to

produce probabilistic forecasts. They obtained predic-

tions of carbon sources and sinks under a future IPCC

emission scenario, and then characterize the uncertainty

in these predictions via posterior predictive distribu-

tions. Gao et al. (2011) used an ensemble Kalman filter

(EnKF) system to assimilate eight sets of data from 1996

to 2004 into a terrestrial ecosystem model as a basis for

forecasting carbon pools (state variables) daily from

2004 to 2012.

While most DA studies have been focused on

parameter estimation, quantitative forecasts in complex

dynamical systems require estimates of initial condi-

tions. Initial conditions (e.g., abundance and age

distribution in demographical models, biomass and pool

sizes in biogeochemical models) are critical and some-

times govern the subsequent trajectory of systems. In a

chaotic system, infinitesimal differences in initial con-

ditions can lead to exponential divergence between

trajectories (May 2001). For such a system, very

complex DA procedures may be required to stabilize

forecasts as developed for weather forecasting (Kalnay

2003). In carbon cycle modeling, initial values of pool

sizes determine the directions and magnitudes of carbon

sequestration (Carvalhais et al., 2008). Estimation of the

initial pool sizes using DA methods is essential for

quantifying the rate of carbon sequestration in an

ecosystem.

Ecological system dynamics are so influenced by

weather and climate that rarely are ecological models

used to make a forecast alone. More often what-if

analyses are conducted, using assumed future climate

conditions as boundary or forcing conditions. For near-
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term forecasts, past weather data are often repeated to

drive model forecasts of future dynamics (e.g., Xu et al.

2006, Gao et al. 2011). When weather data are re-

sampled to account for potential weather variability in

influencing model forecasts, uncertainty in forcing

variables strongly influences variability of forecasted

state variables of short-term processes but less so for the

long-term state variables (Fig. 5).

Potential limitations of data assimilation

in ecological forecasting

It should be noted that DA methods may not improve

forecasting when the associated ecosystem models do

not include all key processes that potentially influence

the system’s behavior. For example, many ecosystem

models incorporate carbon fixation, allocation, and

decomposition processes but usually not disturbances,

such as fire, land uses, and human activities. On the

other hand, models that focus on disturbances often

have minimal representation of physiology. Evolution of

ecological systems over longer time scales and larger

spatial scales depends on the interaction of physiological

processes with population and community processes. All

those processes are further influenced by stochastic or

episodic disturbance events that are driven by processes

occurring on different and broader time and space scales

(for example, scales linked to severe weather, drought,

or the time and space scales of dispersal and establish-

ment of invasive species and pests). Linking scales is a

frontier for process-based models in all disciplines and

the opportunity exists for ecologists to lead in develop-

ing innovative techniques for forecasting the evolution

of complex systems on global scales. Until these

processes and disturbance events at different scales are

integrated into models, DA will have limited utility

given the limitations of existing models.

Moreover, DA may not improve forecasting when

ecological processes have never been observed or

understood, again resulting in process models that do

not sufficiently describe the system of interest. For

example, a coupled global carbon–climate model pre-

dicts that climate warming may drive ecosystems in

tropical regions past critical thresholds, leading to forest

dieback (Cox et al. 2004). However, in situ experiments

of tropical forest response to elevated CO2 and warming

are not available. Indeed, we lack empirical knowledge

on nonlinear responses, thresholds, and tipping points of

ecosystems in a future climate-changed world (Williams

et al. 2008). Thus, it is important to design experimental

and observational studies to obtain critical data that will

enable the development of models that are capable of

capturing potentially novel conditions. The value of

emerging DA techniques comes from the capacity to

coherently integrate information from many sources,

which is not the same problem as lack of information

(Clark 2005). In other words, DA cannot fully substitute

FIG. 5. Daily analysis from 1996 to 2004 and daily forecast from 2004 to 2012 of carbon sink dynamics in (A, B) leaf and (D, E)
wood pools at Duke Forest using the Markov chain Monte Carlo (MCMC) method with the M-H criterion. The gray area is
composed of many lines that are very dense and diverge over time. Each line in the plot shows the time series of the biomass value,
simulated and forecasted using each accepted parameter set from data assimilation. Panels A and D present results of the daily
analysis and forecast with repeated weather data as in Xu et al. (2006). The daily forecast in panels B and E was done with a
resampling method. One data point of temperature and its corresponding moisture and GPP values in that day were randomly
resampled from a pool of nine data points, lumped from 1996 to 2004, in each day of a year as input forcing variables to drive
forecasting. Panels C and F present the ratio of variances from the resampling series divided by that from the original methods (i.e.,
variances in panel A divided by variances in panel B; variances in panel D devided by those in panel E).

July 2011 1437DATA ASSIMILATION FOR ECOLOGICAL FORECASTING



for lack of information, but rather allows one to fully

exploit the information that is available.

OPPORTUNITIES AND CHALLENGES IN A DATA-RICH ERA

The field of ecology is changing from a data-limited to

a data-rich scientific endeavor due to the accumulation

of research data from networks such as FLUXNET

together with the integration of information from space-

borne remote sensing systems like MODIS, LANDSAT,

and IKONOS, and the contribution of data from an

enormous number of individual or small groups of

investigators. Additionally, the incipient National

Ecological Observatory Network (NEON) is designed

to acquire measurements at many locations, multiple

scales, and from both observations and experiments

across the nation. NEON, beginning in about 2012 and

expanding to completion in 2016, will generate large

amounts of ecological data every day (terabytes to

petabytes a year). There will be an unprecedented

demand to convert the raw data from networks such

as NEON into meaningful ecological information

products, with the aim of accelerating advances in our

fundamental knowledge of ecological processes, testing

ecological theory, forecasting changes in ecological

services, educating teachers and students, and support-

ing decision making.

In this data-rich era, DA will be an essential tool of

ecological research and will assist the transformation of

ecological research (Fig. 6). Major research activities

may shift focus from measurement and data collection

to data processing, analysis and interpretation, provid-

ing a way forward for improving ecological theory,

models, and forecasts (Table 2). In the data-limited era,

data could be stored and processed with simple tools,

whereas data storage and analysis in a data-rich era

must be accomplished with more sophisticated tools. In

the data-rich era, data collection and analysis will often

be designed by communities to infer broad-scale

patterns and support decision-making processes. The

designed observational and experimental programs will

support a range of research goals synergistically.

Continental or global long-term data sets obtained from

those programs make it possible to develop novel

diagnostics of ecosystem processes and to discover

hidden features of data arrays, mutual relationships

between variables, and couplings between ecological and

geophysical systems. Ecosystem models then can con-

front these observations via DA to improve models for

forecasting.

Data processing and assimilation in a data-rich era

require new ecoinformatic and analysis tools (Fig. 6).

Continental or global, long-term data could directly feed

into DA systems to produce analyses and forecasts.

Ecoinformatics involves more than data acquisition,

curation, and dissemination with metadata. It also

includes complex analyses and forecasts (including

DA) to generate standard derived products. For

instance, high-level data products, such as gross primary

productivity, leaf area index, and land cover have been

generated from NASA’s MODIS sensors instead of just

simple reflectance indices (e.g., Nemani et al. 2003).

Second, we need to develop technologies to streamline

data acquisition from sensors, observers, and laborato-

ries, and to improve quality assessment and quality

control, DA, and data products to support credible and

timely forecasting and analysis. Thus, tools of work-

flows from observation or experimental networks to

ecological forecasting need to be developed as a part of

next-generation ecoinformatics and applied on a regular

basis. As regularly computed data products from a

research mode prove their values to science, education,

or management, data production and forecasting may

transition to an appropriate institutional home for

sustained operation. Third, our experience indicates

that ecological forecasting will be important for

supporting decision-making processes to prepare society

for complex ecological situations, including disturbances

like invasions, pest outbreaks, and responses to wildfire,

severe weather, and drought.

Additions to the data acquisition and curation

components of ecoinformatics may include components

of (1) core computational algorithms (e.g., ecological

models) that are specifically designed to analyze and

FIG. 6. Relationships among measurement networks,
ecoinformatics, ecological theory and models, DA, decision
making, and resource management in a data-rich era.

TABLE 2. Characteristics of research in data-rich and data-
limited eras.

Characteristics Data-limited era Data-rich era

Motive curiosity driven decision making
Primary activity data collection data analysis
Experimental design individual

researcher
research

community
Focus measurements theory test and

development
Data analysis spreadsheet eco-informatics
Objective discovery forecasting
Service to society long-term near- or real-time
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forecast ecological change, (2) appropriate optimization

techniques for DA, and (3) data that will support these

models and algorithms from ecological measurements.

This system needs to both support the volume and

complexity of the primary and derived data and,

perhaps more challenging, provide environmental in-

formation to diverse stakeholders, researchers, students

and teachers, citizens, and decision-makers. We believe

that individual investigators and groups will be able to

make use of the observational and forecast data

resources to more creatively address larger-scale ques-

tions than they could if they collected all the data

themselves.

To meet the challenges in the data-rich era, we need

continuous development of DA techniques. Most DA

studies have used a single model, such as TECO (Luo et

al. 2003, Xu et al. 2006), SIPNET (Braswell et al. 2005),

and REFLEX (Fox et al. 2009). But ecosystems in the

real world have to be described by much more

comprehensive models that are capable of prediction

under novel scenarios. Application of multiple, compet-

ing models, however, can be more important in the

context of forecasting (Dormann et al. 2008). For

example, the use of multiple, highly detailed, process-

based models within a rigorous DA framework (referred

to as ‘‘multimodel superensembles’’) has greatly im-

proved near real-time hurricane forecasting

(Krishnamurti et al. 1999, Williford et al. 2003).

CONCLUSIONS

Observation and process thinking are two fundamen-

tal approaches to scientific inquiry. Observation records

in data the states of ecosystems and information of

underlying processes at the time when the measurements

are made. Process thinking identifies which processes

operate in a system, formally expressed in a theory and/

or model. Both approaches provide insights into

ecological systems in different but complementary ways.

Combining the two approaches by assimilating empiri-

cal data into models generally provides significantly

greater understanding, yet such data–model integration

is underutilized. Recently, data assimilation (DA) has

been actively applied to improvement of models in

several areas, such as carbon cycle models, process-

based dynamic vegetation models, and marine or

aquatic ecosystem models. Most ecological DA studies

have focused on parameter estimation, with a few

studies addressing effects of initial conditions and

selection of alternative model structures. While im-

proved models via DA eventually contribute to advan-

ces in ecological forecasting, not many studies have

explicitly addressed issues directly pertinent to forecast-

ing, such as forecasting accuracy, sources of uncertainty,

and usefulness of forecasting under different domains.

As we enter a data-rich era, measurement networks yield

vast amounts of temporally and/or spatially rich data

that may be used within a DA framework to improve

existing models. Computationally intensive methods are

required to assimilate extensive data into ecological

models and to make realistic forecasts of ecological

change. We need a research agenda linking ecological

process thinking, modeling, and advanced observational

programs to innovative cyberinfrastucture, computa-

tional science, and applied mathematics to facilitate the

necessary transformation to a data-rich paradigm for

ecological research.
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