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Abstract. The ensemble Kalman filter (EnKF) has been used in weather forecasting to
assimilate observations into weather models. In this study, we examine how effectively
forecasts of a forest carbon cycle can be improved by assimilating observations with the
EnKF. We used the EnKF to assimilate into the terrestrial ecosystem (TECO) model eight
data sets collected at the Duke Forest between 1996 and 2004 (foliage biomass, fine root
biomass, woody biomass, litterfall, microbial biomass, forest floor carbon, soil carbon, and
soil respiration). We then used the trained model to forecast changes in carbon pools from
2004 to 2012. Our daily analysis of parameters indicated that all the exit rates were well
constrained by the EnKF, with the exception of the exit rates controlling the loss of metabolic
litter and passive soil organic matter. The poor constraint of these two parameters resulted
from the low sensitivity of TECO predictions to their values and the poor correlation between
these parameters and the observed variables. Using the estimated parameters, the model
predictions and observations were in agreement. Model forecasts indicate 15 380–15 660 g C/
m2 stored in Duke Forest by 2012 (a 27% increase since 2004). Parameter uncertainties
decreased as data were sequentially assimilated into the model using the EnKF. Uncertainties
in forecast carbon sinks increased over time for the long-term carbon pools (woody biomass,
structure litter, slow and passive SOM) but remained constant over time for the short-term
carbon pools (foliage, fine root, metabolic litter, and microbial carbon). Overall, EnKF can
effectively assimilate multiple data sets into an ecosystem model to constrain parameters,
forecast dynamics of state variables, and evaluate uncertainty.

Key words: carbon cycle; data assimilation; ecological forecast; ensemble Kalman filter (EnKF);
parameter estimation; uncertainty analysis.

INTRODUCTION

In the past half century, many ecological models have

been developed to examine ecosystem functions and

community structure. Most models have captured key

processes in ecosystems and been designed to predict

ecosystem dynamics. However, the process of model

development is subjective. Arguments persist concerning

whether a model can represent an ecosystem adequately

and accurately. Parameterization, for example, is critical

to define dynamics of a system but has not been carefully

evaluated. Poor parameterization will produce invalid

results, but estimated parameters from experimental

measurements may improve model accuracy and reli-

ability (Williams et al. 2001, Luo et al. 2003). It is

therefore imperative to carefully evaluate model struc-

ture against and estimate parameters from experimental

and observational data in order to improve accuracy of

ecological forecasting.

A variety of data assimilation techniques have been

recently applied to improve models for ecological

forecasting (Wang et al. 2009). For instance, the

Markov chain Monte Carlo (MCMC) method has been

widely used to estimate model parameters from obser-

vations and forecast future states of climate and

ecosystems (Braswell et al. 2005, Knorr and Kattge

2005, Xu et al. 2006). Genetic algorithm, another

optimization technique based on biological evolution

and natural selection, has been applied to search for the

best model parameters (Zhou and Luo 2008). Such

nonsequential approaches treat data all at once (in a

batch sense) to estimate the model parameters.

Alternatively, the Kalman Filter is a sequential

method that assimilates data into a dynamic model with

two steps: forecast and update, (Kalman 1960). The

ensemble Kalman filter (EnKF) can be used to optimize

state variables and parameters and evaluate their

uncertainties (Evensen 2003). The EnKF has been
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applied for weather forecasting (Evensen and

VanLeeuwen 1996), studies of hydrological cycles

(Reichle et al. 2002), and tracing state variables of

forest carbon cycles (Williams et al. 2005).

The overall objective of this study is to evaluate the

EnKF method in forecasting terrestrial forest ecosystem

carbon dynamic during forest development. We applied

the EnKF to condition a terrestrial ecosystem (TECO)

model against eight data sets collected at the Duke

Forest free-air CO2 enrichment (FACE) experiment (i.e.,

foliage biomass, fine root biomass, woody biomass,

litterfall, microbial biomass, forest floor carbon, soil

carbon, and soil respiration). We first analyzed the

sensitivity of model outputs to parameters to evaluate

which parameters were potentially identifiable by the

data sets used in this study. This step helped guide

selections of parameters to be estimated by data

assimilation. Second, we conducted an observing system

simulation experiment (OSSE; Arnold and Dey 1986) to

evaluate the reliability of the EnKF to recover given

parameter values. Third, we produced ensemble daily

analyses of parameters, carbon pools (i.e., state varia-

bles), and observational variables during the data

assimilation process with the EnKF using an ensemble

size of 100 and the eight data sets from 1996 to 2004.

Finally, we used the conditioned TECO model to

forecast dynamics of forest carbon sinks in different

pools and their uncertainties from 2005 to 2012.

MATERIAL AND METHODS

Data sources

Eight data sets were used for parameter estimation in

this study, including foliage biomass, fine root biomass,

woody biomass, litterfall, microbial biomass, forest floor

carbon, soil carbon, and soil respiration. The eight data

sets were collected from the Duke Forest free-air CO2

enrichment (FACE) experiment. We used the data

collected from the ambient CO2 treatment rings only

in this study.

Fine root data were mainly from the works of

Matamala and Schlesinger (2000) and Pritchard et al.

(2008). We used the fine root carbon pool in 1998

(Matamala and Schlesinger 2000) as the baseline and

added the fine root increments, calculated from the fine

root production and mortality (Pritchard et al. 2008), to

obtain the time series of fine root C pool data from 1998

to 2004. Woody biomass was calculated from trunk

diameter measurements using site-specific allometric

equations (Martin et al. 1998, Naidu et al. 1998).

Foliage biomass was estimated from foliage samples

that were collected in September of each year from 1997

through 2002 (Finzi et al. 2006).

Litterfall was obtained monthly from January to

August and every other week from September to

December from three litter baskets (0.218 m2 each) per

quadrant (Finzi et al. 2001). Forest floor C was

estimated from carbon content and mass of forest floor

organic matter (Lichter et al. 2005). Mineral soil was

collected in 1996, 1999, and 2002 in two sections: 0–15

cm and 15–30 cm depth. Microbial biomass was from

Allen et al. (2000), who examined microbial biomass

carbon using chloroform fumigation-extraction. Soil

respiration rates were measured monthly from August

1996 to December 2003 using a portable infrared gas

analyzer (Bernhardt et al. 2006).

The TECO model

The terrestrial ecosystem model (TECO) has eight

carbon pools (Fig. 1). It evolves from the seven-pool

model first used by Luo et al. (2003) by separating the

non-woody biomass pool into fine root and foliage

biomass pools. The separated fine root and foliage

pools may have different turnover times and can

directly match observations of root and leaf biomass.

The carbon released from the pool is determined by

the pool size and exit rate and modified by environ-

mental conditions. Carbon input to plant pools is

determined by photosynthetic carbon fixation and

allocation coefficients. Carbon input into litter and

soil pools is determined by carbon releases from

upstream pools and partitioning coefficients. The

carbon dynamics can be mathematically expressed by

the following equation:

dXðtÞ
dt
¼ fðtÞACXðtÞ þ BUðtÞ ð1Þ

FIG. 1. Model structure with carbon pools (X1–X8) and
fluxes to represent carbon dynamics in a forest ecosystem. SOM
stands for soil organic matter; GPP stands for gross primary
productivity. Arrows that point to CO2 show release of CO2.
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where X(t) is a vector describing carbon content in

eight pools, C (exit rate) is an 8 3 8 diagonal matrix

with elements of [c1, c2, . . . , c8 ] to describe fractions

of carbon leaving the corresponding pools in X, and

the inverses of C are the residence times. n(t) is a

scaling function that is used to represent the effects on

carbon transfer by temperature and moisture (see Luo

et al. 2003 for more details), B ¼ (0.15, 0.20, 0.20, 0,

0, 0, 0, 0)> is a vector that determines allocation of

photosynthetically fixed carbon to the foliage, root,

and wood carbon pools (allocation coefficients), and

U(t) is carbon input fixed by photosynthesis, i.e.,

gross primary production (GPP). A is an 8 3 8 matrix

with non-zero elements, a1, a2 . . .a11, to describe

carbon partitioning to different pools (transfer co-

efficients):

A ¼

�1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

a1 a2 a3 �1 0 0 0 0

1� a1 1� a2 1� a3 0 �1 0 0 0

0 0 0 a4 a5 �1 a9 a11

0 0 0 0 a6 a7 �1 0

0 0 0 0 0 a8 a10 �1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:

Model parameter sensitivity analysis

When a parameter can be constrained by one set of

observations in data assimilation, the observational

variable is usually sensitive to variations in parameter

values (Roulier and Jarvis 2003). To determine which

parameters in C can influence the eight sets of

observations in this study, we conducted a sensitivity

analysis using the first-order approximation method

(Saltelli et al. 2004, Tang and Zhuang 2009). For an

observed variable, Z, we first quantified an uncondi-

tional variance V(Z ) from model output when all

parameters pi in matrices A and C, freely vary over

their entire initial ranges as set by Luo et al. (2003). We

then estimated the conditional expectation of the

variable Z for each parameter pi (for i ¼ 1, 2,...19, i.e.,

c1–c8, a1–a11). We randomly selected a value of pi from a

uniform distribution within its prior range p�i as defined

by Luo et al. (2003) and Xu et al. (2006). We then

randomly selected 1000 values for each of the other

parameters (pj: j 6¼ i) from uniform distributions within

their prior ranges. From this sample of 1000 parameter

sets we estimated a conditional expectation E(Z j pi ¼
pi*). We repeated this sampling for 100 randomly

selected values of pi and used the results to estimate

the variance V(E(Z j pi)). Finally, we repeated this

procedure for each of pi (for i ¼ 1, 2,...19).

A sensitivity index Si was calculated for each

parameter pi (i¼ 1,2. . .19), where

Si ¼
VðEðZ j piÞÞ

VðZÞ : ð2Þ

To compare Si for all the observed variables, we

normalized Si by

Ii ¼
SiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

i¼1

S2
i

s ð3Þ

where Ii is the normalized sensitivity index, with larger

values of Ii indicating greater observational sensitivity to

a given parameter. We calculated Ii for all observational

variables ( foliage biomass, fine root biomass, woody

biomass, litterfall, microbial biomass, forest floor

carbon, soil carbon, and soil respiration). The sensitivity

analysis indicates that parameters a1–a11 were not

identifiable. They were not searched in the following

data analysis.

Ensemble Kalman filter (EnKF)

The Kalman filter (KF) is a sequential data assim-

ilation algorithm that utilizes a two-step process

(forecast and update) to estimate the state of a dynamic

system from a series of possibly heterogeneous, inter-

mittent measurements (Kalman 1960). In the forecast

step, the state of the observational variables, Z, is

predicted to the next observation time step using the

model. The update step adjusts state variables using a

Kalman gain matrix when observational data is

available for assimilation. This two-step procedure is

repeated until the last data are assimilated.

The ensemble Kalman filter (EnKF) uses a Monte

Carlo technique to generate an ensemble of models for

sequential data assimilation (Evensen 2003). The covar-

iance among exit rates was computed directly from the

ensemble instead of from the explicit solution in the

Kalman filter (KF) and its nonlinear extensions.

To estimate both parameter and state variables in our

C dynamical system, we concatenated them into a joint

vector (Yi,k) at the ith ensemble member and kth step of

the Kalman Filter as

Yi;k ¼
ci;k

Xi;k

Zsim
i;k

0
@

1
A ð4Þ

where vector ci,k is composed of eight exit rates, vector

Xi,k represents eight carbon pools, and Zsim
i;k is composed

of eight kinds of observational variables:

ci;k ¼

c1;i;k

c2;i;k

c3;i;k

..

.

c8;i;k

0
BBBBB@

1
CCCCCA

Xi;k ¼

X1;i;k

X2;i;k

X3;i;k

..

.

X8;i;k

0
BBBBB@

1
CCCCCA

Zsim
i;k ¼

Zsim
1;i;k

Zsim
2;i;k

Zsim
3;i;k

..

.

Zsim
8;i;k

0
BBBBBB@

1
CCCCCCA
:
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Note that parameters themselves are time invariant in

forward analysis but their values are adjusted as data are

assimilated into the model during the inverse analysis. In

comparison, state variables, such as carbon pool sizes,

are time dependent. State variables are also adjusted by

Kalman gain during data assimilation.

We generated initial ensemble members from

Gaussian distributions. The initial ensemble of param-

eters, ci (i ¼ 1, 2, ..., Ne, where Ne is the number of

ensemble members), was generated within the prior

ranges of these parameters as originally defined by Luo

et al. (2003). To improve computational efficiency, we

generated the initial parameter ensemble following a

normal distribution with means from previous studies

(e.g., Luo et al. 2003, Xu et al. 2006) and variances that

were defined so as to have 95% of generated initial

ensemble members within the prior ranges. The initial

ensemble members of state variables, Xi,0 (i ¼ 1, 2, ...,

Ne), used the same initial pool size as in Luo et al. (2003)

and Xu et al. (2006) for all ensemble members. The

initial vector Y is

Yi;0 ¼
ci;0

Xi;0

Zsim
i;0

0
@

1
A: ð5Þ

The forecast step of the EnKF propagated the state

vector (Y) forward, using parameter values from the

previous step k� 1 and computingXi,k according to Eq. 1.

The forecasted state vector Yf
i;k can be represented by

Yf
i;k ¼

ci;k�1

Xi;k

Zsim
i;k

0
@

1
A ði ¼ 1; 2; :::;NeÞ: ð6Þ

When one or more observations were available at

each sequential time (k), the EnKF updated the vector

Yi,k and its covariance matrix. An observation at time k

is expressed as

Zobs
k ¼ Zsim

i;k þ ek ¼ HkYk þ ek ¼Mkðck;XkÞ þ ek ð7Þ

where Mk(�) is an observational operator to map the

state vector to observational variables, ek is measure-

ment error, and Hk is a measurement operator matrix

with its elements equaling 1 when observational data are

available at the time step and 0 otherwise (Gu and Oliver

2006).

The vector Yi,kþ1 was updated with changes in both

parameter ci and state variables Xi by a Kalman gain,

which was calculated by minimizing the squared

residuals between observations and model forecasts.

The update equation is

Yu
i;k ¼ Yf

i;k þKkðZobs
k �HkYf

i;kÞ ði ¼ 1; 2; � � �NeÞ
ð8Þ

where superscript u means update step, Kk is the

Kalman gain weighting matrix, which was calculated

by (Gu and Oliver 2006) as

Kk ¼
1

Ne � 1
DYDY>H>ð 1

Ne � 1
HDYDY>H> þ RkÞ�1

ð9Þ

where Rk is the data measurement error covariance

matrix at time k and equals E(ekek
>), and DY is a matrix

of deviations of simulated values from their mean and

represented by

DY ¼ ½Dy1 � � �Dyi � � �DyNe�: ð10Þ

The ith column of DY is

Dyi ¼ yi;k � yk:

To evaluate convergence of parameters, we calculated

the parameter error covariance matrix, Pk, from the

ensemble members using the following equation:

Pk ¼
1

Ne � 1

XNe

i¼1

ðci;k � ckÞðci;k � ckÞ> ð11Þ

where �ck is the mean vector of parameters and can be

computed from the ensemble

ck ¼
1

Ne

XNe

i¼1

ci;k:

The long-term carbon pools (wood, slow and passive

soil carbon pools) were important in understanding

ecosystem carbon sequestration, but there were only

few data on soil carbon and forest floor carbon. To deal

with this problem, we increased their weights by

reducing Rk by 25% in Eq. 9. The similar method was

used by Trudinger et al. (2007) and examined by Xu et

al. (2006).

Ensemble sizes influence results of EnKF analysis.

When the ensemble size is too small, the ensemble

covariance underestimates the error covariance and

cannot propagate the information contained in measure-

ments and the forecasts may not be reliable (Gerrit et al.

1998). There may be a critical ensemble size, larger than

which, the errors would increase due to the combination

of nonlinearity and systematic model error (Karspeck

and Anderson 2007). To select an ensemble size for

EnKF analysis in this study, we calculated the root

mean square errors (RMSE) for each of the eight

observation variables by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðZsim
i � Zobs

i Þ
2

vuut ð12Þ

where Zobs
i is the ith observation of one variable, Zsim

i is a

corresponding model value, and N is the total number of

observations for that variable. Ensemble sizes of 50, 70,

100, 130, 180, and 250 were tested. Relative RMSE was

calculated as a ratio of RMSE at one ensemble size

divided by the mean of the RMSE of all the six ensemble

sizes as a criterion of selecting an ensemble size for this

study.
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Observing system simulation experiment (OSSE)

To evaluate how effective the EnKF was for estimat-

ing parameters of the TECO model, we conducted an

observing system simulation experiment (OSSE) using a

set of synthetic data (Arnold and Dey 1986). We first

chose one set of model parameters and used it to

generate a set of synthetic data with the same types with

the observations. The random errors, which were

generated from a normal distribution with zero mean

and square of standard measurement error as variance,

were added to the simulated data. The synthetic data

were used then to estimate parameter values in the data

assimilation system (EnKF-TECO). We repeated this

procedure 30 times, each time with different observation

errors and calculate the RMSE between the true and 30

estimations to evaluate reliability of the EnKF for

parameter estimation.

RESULTS

Parameter sensitivity, reliability of EnKF,

and ensemble size

The sensitivity analysis showed that foliage biomass,

fine root biomass, woody biomass, and microbial C are

sensitive to their C exit rates c1, c2, c3, and c6,

respectively. (Table 1). Their normalized sensitivity

indices were all nearly 1.00. Litterfall was sensitive to

the exit rates of foliage and woody biomass pools (c1 and

c3); litter C content was sensitive to exit rates from all

three plant biomass pools (c1, c2, and c3) and the

structure litter pool (c5); soil C content was sensitive to

the exit rates c1, c2, c3, c5 and from the slow soil organic

carbon pool (c7); and exit rates c1, c2, c3, and c5 were the

most important parameters in determining soil respira-

tion. There was at least one kind of observation sensitive

to parameter c1, c2, c3, c5, and c6 (normalized sensitivity

indices . 0.2). However, none of the observed variables

were sensitive to exit rates from the metabolic litter pool

(c4) or the passive soil organic C pool (c8), or any of the

parameters in matrix A (a1, a2,. . .a11). Our analysis

suggested that parameters a1, a2, . . . , a11, were not

identifiable by the eight data sets and thus were fixed in

the rest of this study. The eight exit rates are most

critical in determining ecosystem carbon sequestration

and were therefore estimated in this study.

The OSSE showed that the EnKF recovered the

assigned values for most of the parameters with a

relatively small RMSE (Table 2). However, c8 had a

relatively large RMSE (70% of its true value). In

addition, ensemble simulations of foliage biomass, fine

root biomass, woody biomass, litterfall, microbial C,

forest floor C, soil C, and soil respiration almost

perfectly fitted input ‘‘observations’’ (data not shown).

Overall, the OSSE suggested that the EnKF data

assimilation approach was reliable and suitable to for

parameter estimation with the TECO model.

TABLE 1. Normalized sensitivity indices of to-be-estimated parameters for each of the eight observable variables.

Parameter (pi) Foliage Woody Fine root Litterfall Litter C Microbial C Soil C Rs

c1 1 0.0009 0.0009 0.3134 0.0286 0.0008 0.0287 0.0452
c2 0.0008 0.001 1 0.001 0.0526 0.0009 0.0531 0.094
c3 0.0007 1 0.001 0.9496 0.0551 0.001 0.0554 0.1048
c4 0.0005 0.001 0.0009 0.001 0.0013 0.0009 0.0014 0.0015
c5 0.0006 0.0009 0.0009 0.001 0.9967 0.001 0.995 0.989
c6 0.0006 0.0009 0.0009 0.001 0.0016 1 0.0061 0.0024
c7 0.0006 0.001 0.001 0.001 0.001 0.0009 0.0566 0.0057
c8 0.0006 0.0009 0.0008 0.0011 0.0013 0.0009 0.0015 0.0014
a1 0.0005 0.0008 0.0011 0.0009 0.0012 0.0009 0.0012 0.0014
a2 0.0005 0.001 0.001 0.001 0.0013 0.0008 0.0014 0.0012
a3 0.0006 0.0008 0.001 0.0008 0.0014 0.0011 0.0014 0.0015
a4 0.0006 0.0011 0.001 0.0013 0.0013 0.0009 0.0014 0.0015
a5 0.0006 0.001 0.001 0.0011 0.0013 0.0007 0.0014 0.0014
a6 0.0007 0.0007 0.0007 0.0009 0.0014 0.0009 0.0015 0.0018
a7 0.0006 0.0009 0.0009 0.0009 0.0015 0.0009 0.0016 0.0019
a8 0.0005 0.0009 0.001 0.001 0.0017 0.0011 0.0018 0.0019
a9 0.0005 0.0009 0.0011 0.0009 0.0011 0.0008 0.0011 0.0011
a10 0.0006 0.0011 0.001 0.0013 0.0009 0.0008 0.001 0.0011
a11 0.0007 0.0009 0.0011 0.0011 0.0015 0.0009 0.0015 0.0017

Notes: Values shown in boldface type indicate that the normalized sensitivity indices are above 0.1, while values shown in italic
type indicate that the normalized sensitivity indices are between 0.02 and 0.1.

TABLE 2. Comparison of true value and estimated values of
parameters c1–c8 from 30 observing system simulation
experiments (OSSE) with root mean square error (RMSE,
%).

Parameter True value Estimated range RMSE

c1 (310�3) 3.32 3.11–3.37 0.16
c2 (310�3) 1.21 1.10–1.24 0.06
c3 (310�5) 2.90 2.68–3.50 0.43
c4 (310�2) 1.19 0.52–1.70 0.34
c5 (310�4) 7.16 3.95–7.90 1.89
c6 (310�3) 3.95 3.74–4.02 0.12
c7 (310�5) 3.82 4.35–5.91 1.34
c8 (310�6) 4.70 1.29–9.10 3.28

Notes: All values should be multiplied by the factor in
parentheses in the first column to yield the actual values. For
example, the first ‘‘true value’’ (3.32) should be multiplied by
10�3 to obtain the actual true value of 0.00332.
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The relative root mean square errors (RMSE) were

lowest at an ensemble size of 100 for almost all the eight

observational variables (Fig. 2). When the ensemble size

was 70, relative RMSE of microbial C was the largest,

reaching 1.3. When the ensemble size was larger than

100, relative RMSE increased for some of the observa-

tion variables. Thus, we chose 100 as the optimal

ensemble size in this study.

EnKF performance during data assimilation

Uncertainties in estimated parameter values can be

represented by the spread of ensemble members. Spreads

of model outputs decreased as observational data were

sequentially assimilated (Fig. 3). For example, the

output spreads were considerably large for observational

variables of foliage biomass, litterfall, microbial C,

forest floor C, and soil C before assimilation. When

EnKF assimilated the first few observations into TECO,

output spreads were dramatically reduced and then

increased gradually if there were no further observations

assimilated (e.g., forest floor C and soil C in Fig. 3g and

h). Forecast trajectories were also altered by assimilation

of data. When the model forecasts deviated from the

observations, the EnKF adjusted both parameter values

and state variables to minimize the deviation. The

forecast trace of forest floor carbon, for example, was

corrected by the data point at the 1285th simulation day

(in July 1999). Similarly, forecast trajectories were

substantially corrected by data for fine root biomass at

the 240th day and soil carbon at the 1285th simulation

day. At the time when model forecasts were corrected,

uncertainties from ensemble models were usually re-

duced substantially.

After parameter values were adjusted by data

assimilation, the updated parameters obtained following

the final data assimilation step were used to rerun the

foreword model. Model simulations matched data well

(Fig. 4), especially for soil respiration (Rs), microbial C,

woody biomass, foliage biomass, and forest floor

carbon. Simulated litterfall overlapped with observa-

tions within the range of one standard error because of

relatively large measurement errors (Fig. 4b).

Convergence of parameter estimation

Convergence of parameter estimation was manifested

by shrinking the spread of the ensemble members over

time as more data were assimilated (Fig. 5). Spreads of

ensemble members shrank over time for exit rates from

all three plant pools (c1, c2, and c3), structural litter pool

(c5), microbial and slow soil organic C pools (c6 and c7).

Parameters c1, c3, and c5 converged to very narrow

ranges, while the exit rate from the metabolic litter pool

(c4) exhibited with a relatively large spread. The

ensemble spread did not change much for exit rate from

the slow soil organic C pool (c8), which was poorly

constrained. Fig. 5 also clearly showed that parameter

ranges sometimes could abruptly shift as data were

assimilated. Some of the estimated parameters were

shifted toward one end, but mostly within their prior

ranges. The shifts were due to the parameter update
based on information gained from data assimilation.

The 95% parameter confidence intervals at the last
step of the EnKF analysis were much smaller than their

corresponding initial ranges for all the parameters
except c8 (Table 3). The maximum-likelihood estimates

(MLEs) were very similar to their associated parameter
means. The correlation analysis of the 100 ensemble
estimates at the last step of assimilation indicated that

parameters c3 and c5 were strongly correlated, as were c6
and c7 (Table 4). Correlations among other pairs of the

eight parameters were either weak (e.g., c1 vs. c3, c4 vs.
c6, and c5 vs. c6) or negligible.

Forecasting carbon pool size

The daily analysis of carbon pools using data from
1996 to 2004 was performed to optimize the model

parameters (Fig. 6). The daily forecast of carbon pools
from 2004 to 2012 was conducted, using the correspond-

ing optimized parameter values as initial conditions, and
the same GPP and weather conditions from 1996 to 2004

as input. Using an ensemble of 100 forecast runs,
forecasted C contents increased in the pools of woody

biomass (X3) structural litter (X5), soil and passive soil
organic carbon (X7 and X8), but fluctuated without clear
trends in pools of foliage and fine root (X1 and X2),

metabolic litter (X4), and microbial biomass (X6) during
1996 to 2012. In 2012, C content increased by an average

of 39% in pool X3, 10% in X5, and 11% in X7 compared
with those in 2004 (Fig. 6). The predicted total

ecosystem carbon sequestration increased by 3365
g C/m2 (27.6%), from 12 175 6 98 g C/m2 at 2004 to

about 15 540 6 120 g C/m2 at the end of year 2012. This
was comparable to the carbon sequestration predicted

by Xu et al. (2006) by the MCMC approach.
Uncertainties in forecasted carbon sinks (Fig. 6, from

2004 to 2012) increased with times in long-term carbon
pools (i.e., woody biomass, structure litter, slow and

passive SOM) and exhibited little changes in short-term
pools (i.e., foliage and fine root biomass, metabolic

litter, and labile/microbial carbon) after the initial
phases of data assimilation. Uncertainty in forecasted

passive soil organic carbon (X8) considerably increased
with time partly because the exit rate of the passive SOM

pool (i.e., c8) was not well constrained and partly
because carbon was accumulating in this pool. The
uncertainty of the total carbon also increased with time.

Overall, uncertainties of the forecasted carbon sink
dynamics were relatively stable for those stabilized

pools.

DISCUSSION

Parameter convergence

Our analysis indicated that six of the eight exit rates

were well constrained by the eight data sets (Fig. 5). The
exit rate of the metabolic litter pool (c4) was somewhat

constrained but the exit rate of passive soil organic C
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FIG. 3. Daily analyses (lines) of eight variables during the optimization process and intermittent observations (open circles). Rs

is soil respiration.

FIG. 2. Variation of relative values of root mean square errors (RMSE) with ensemble sizes for each of eight data sets. Relative
RMSE was calculated as RMSE at one ensemble size divided by the mean of the RMSE of all six ensemble sizes (ensemble size is
the number of models used).
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pool (c8) was not constrained. The data assimilation

results were corroborated with our observing system

simulation experiment (OSSE) and sensitivity analysis.

If the parameters can converge by the data assimilation,

the observational variables are usually sensitive to the

parameters in the sensitivity analysis (Liu and Gupta

2007). In this study, observations were very sensitive to

variations in exit rates of all three plant pools (c1, c2, and

c3), structural litter (c5), and microbial C pool (c6) (Table

1). As a result, these parameters were well identified

(Fig. 5). If a parameter has relatively low sensitivity

indices, the spread of its ensemble estimates shrink

slowly and more data may be needed for convergence of

parameter estimation. For example, the exit rate from

metabolic litter pool (c4) had a relatively low sensitivity

index and thus large uncertainty in the estimated value

(Fig. 5). When 800 data points of microbial C and soil C

were assimilated into the TECO model by the OSSE, the

uncertainty of c4 was reduced and the parameter value

converged. The OSSE result suggests that large data sets

can improve convergence of parameter estimates even if

observations had relatively low sensitivity.

The parameters to which observational variables are

not sensitive cannot be estimated (Jiao and Lerner

1996). In this study, none of the observational variables

were sensitive to the exit rate from passive soil C pool

(c8) (Table 1); thus, both the OSSE with eight sets of

synthetic data in each of 2000 days (Table 2) and the

assimilation of real data (Fig. 5) showed non-conver-

gence of c8. Parameter c8 cannot be constrained by the

current data sets largely because of a mismatch in time

scales between data and the parameter. Parameter c8
represents carbon transfer from a long-term pool with

residence times of hundreds and thousands of years,

whereas data used in this study were collected within

years and contained information mostly on short-term

processes (Luo et al. 2003).

Forecasted carbon dynamics and its uncertainty

Our results revealed some interesting patterns of the

dynamics and uncertainties of state variables (Fig. 6).

For the long term carbon pools such as woody biomass

(X3), structure litter (X5), slow SOM (X7), and passive

SOM (X8), their pool sizes and uncertainties increased

with time during the forecast period from 2005 to 2012

FIG. 4. Comparison between estimations of 100 ensembles and observational data. Estimations (lines) were obtained by the
simulations using the optimized 100 parameters at the last step of analysis. Data (solid circles and error bars) are means 6 SE.
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(Fig. 6). For the short-term carbon pools, such as foliage

(X1), fine root (X2), metabolic litter (X4), and microbial

carbon (X6), both the forecasted carbon pool sizes and
the ensemble uncertainties did not display systematic

increases or decreases from 2005 to 2012 (Fig. 6). The
forests at the Duke FACE were relatively young (15

years old in 1996) (Hamilton et al. 2002) and still
developing during the study period from 1996 to 2012.

The fast turnover pools probably have achieved
equilibrium, with carbon input to the pools roughly

equaling carbon output from the pools. Their temporal

variability largely resulted from fluctuations of carbon

inputs via GPP and other forcing variables. Those long-
term pools, however, were still accumulating carbon

since the last disturbance with the clear-cut and burn in

1983.
Similarly, Clark et al. (2007) illustrated that uncer-

tainties of estimated tree growth rates were small when
substantial data points were assimilated into their

model. However, uncertainties of forecasted growth
rates were considerably expanding after data assimila-

tion ended for fast growing trees. For trees with very

FIG. 5. Dynamics of parameter values (carbon exit rates) over time as data were assimilated into the terrestrial ecosystem
(TECO) model with ensemble Kalman Filter from 1996 to 2004. Parameters are: c1, foliage biomass; c2, fine roots; c3, woody
biomass; c4, metabolic litter; c5, structure litter; c6, microbial biomass; c7, slow SOM; and c8, passive SOM. See Table 2 notes for
explanation of values in parentheses.

TABLE 3. The prior ranges, confidence interval (CI), maximum-likelihood estimator (MLE), mean of the ensemble members,
convergence status of seven parameters of exit rates.

Parameter
Prior range

(g C�g C�1�d�1)

Estimated parameter

Residence
time (yr)

95% CI
(g C�g C�1�d�1)

MLE
(g C�g C�1�d�1)

Mean
(g C�g mass�1�d�1) Convergence

c1 (310�3) 0.19–27.8 1.79–1.84 1.81 1.81 yes 1.51
c2 (310�3) 0.12–9.00 3.46–3.51 3.48 3.48 yes 0.79
c3 (310�5) 0.01–27.4 1.33–1.53 1.38 1.38 yes 198.5
c4 (310�2) 0.55–2.73 1.90–2.30 2.20 2.08 yes 0.12
c5 (310�4) 2.20–22.0 2.45–2.65 2.52 2.50 yes 10.87
c6 (310�3) 0.28–15.7 6.21–6.41 6.25 6.29 yes 0.44
c7 (310�5) 0.50–58.3 3.25–4.50 3.26 3.52 yes 84.04
c8 (310�5) 0.00–1.34 0.95–1.23 1.17 1.13 no 234.2

Note: The residence time (year) is the inverse of the MLE of the exit rates divided by 365 days/year. Values for ranges and
estimated parameters are g C�(g C in pool)�1�d�1. See Table 2 notes for explanation of values in parentheses.
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slow or no growth, the forecast uncertainty did not

display directional changes but was affected by inputs.

Uncertainties of forecasted states of a system can

result from several sources, including system boundary,

input variables, parameters, initial values of state

variables, and model structures (Liu and Gupta 2007).

This study assessed error propagation from parameters

to forecasted state variables. By assimilating eight data

sets into the TECO model, exit rates from almost all

pools except passive soil carbon pool were constrained

with reduced uncertainty (Fig. 5). Correspondingly,

uncertainties of forecasted carbon sinks in those pools

were substantially reduced, particularly when the first

few data points were assimilated during the analysis

FIG. 6. Daily analysis (lines) from 1996 to 2004 and daily forecast from 2004 to 2012 of eight carbon pools using 100 ensembles.
Analysis of carbon pools (state variables) was from the parameter optimization processes. Forecast of carbon pools was made using
the last-step carbon pools and corresponding optimized parameters as initials. Pools are: X1, foliage biomass; X2, fine roots; X3,
woody biomass; X4, metabolic litter; X5, structural litter; X6, microbes; X7, slow SOM; and X8, passive SOM.

TABLE 4. Correlation coefficients among eight exit rates.

c1 c2 c3 c4 c5 c6 c7 c8

c1 1.000 �0.046 �0.261 �0.067 �0.103 �0.012 �0.020 0.024
c2 1.000 0.002 0.022 �0.005 0.030 �0.001 0.036
c3 1.000 0.079 0.672 0.159 0.096 �0.007
c4 1.000 �0.184 �0.307 �0.037 �0.012
c5 1.000 0.284 0.127 0.038
c6 1.000 0.459 �0.048
c7 1.000 �0.129
c8 1.000

Note: Boldface type indicates correlation coefficients .0.2; italic type indicates correlation coefficients .0.1 but ,0.2.
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period (Fig. 6). Interestingly, the uncertainty of the

estimated passive soil carbon pool (X8) was reduced

during the daily analysis period (Fig. 6) when data were

assimilated into the model, even though parameter c8
did not converge (Fig. 5). In this case, forecast

uncertainty is not completely determined by parameter

uncertainty. The model structure that defines pathways

of carbon flow from upstream to downstream pools

contains information to constrain forecasted state

variables (Weng and Luo 2011). However, it is yet to

be carefully examined how those parameters, which are

not identifiable by available data sets (Table 1), affect

uncertainties in ecological forecasting (Luo et al. 2009).

This study did not evaluate error propagation from

input variables and system boundary. We used weather

data and estimated GPP from 1996 to 2004 as driving

variables for the forecast analysis from 2005 to 2012.

When the EnKF is used for real-time forecasting, it is

necessary to account for potential weather variability at

the site (Luo et al. 2011). The past weather as used in

this analysis contained realized variability without

uncertainty for a given time point. The real-time forecast

needs to incorporate uncertainties in forecasted weather

and subsequent uncertainties in ecological input varia-

bles such as canopy photosynthetic carbon influx. Thus,

it is expected that uncertainties in forecasted weather

and corresponding carbon influx would result in much

larger uncertainties in those state variables than

estimated in this study. Additionally, since the EnKF

is a sequential data assimilation approach, parameter

estimates can change over time. Considering the

simulation consistency, the final estimates from EnKF

might not be the one that best fits the behavior over the

time series.

Evaluation of the EnKF approach for data assimilation

and ecological forecasting

This study has demonstrated that the ensemble

Kalman filter (EnKF) is an effective approach to

sequentially assimilate observational data into models

for parameter estimation and ecological forecasting

(Williams et al. 2005). Compared with the Markov

chain Monte Carlo (MCMC) method (Xu et al. 2006),

the EnKF is computationally efficient. The EnKF

assimilates the new data into a previously trained model

and does not need to start over again using the entire

data sets. In contrast, the MCMC method usually

samples 200 000–1 000 000 times to generate posterior

distributions of parameters. Each time, MCMC runs the

whole model over the entire study duration and

compares all data points. Additionally, MCMC requires

approximately 24 hours to generate posterior distribu-

tions of estimated parameters, whereas EnKF required

only a few minutes to complete this operation. EnKF

thus reduces the calculation complexity and saves

computational time compared to MCMC techniques.

Additionally, the EnKF can dynamically assimilate

data with recursive update and forecast steps to

instantaneously adjust parameters, forecast changes in

state variables, and assess uncertainties. Although one

of the fundamental assumptions of simulation models is

that model parameters are time-invariant constants

(Luo 2007), more and more analyses have shown that

parameters may vary with time to account for inter-

annual variability in ecosystem productivity (Hui et al.

2003, Richardson et al. 2007). In the case that

parameters are indeed time-invariant constants, both

the EnKF and MCMC methods should generate similar

estimates of parameters. If parameters vary with time,

the EnKF could track and describe the variations easily

(Mo et al. 2008), whereas MCMC method has difficulty

tracking the variation of parameters. Thus, the EnKF is

superior to MCMC in terms of online, real-time

assimilation of heterogeneous data directly from envi-

ronmental sensors or other sources (Dee 1995).

One challenge with the EnKF is dealing with much

more complicated matrix operations. For example, the

EnKF should computes the inverse of matrix (n 3 n)

with computational complexity increasing by a factor

of n3 (Cohn et al. 2005). Moreover, parameters

estimated by EnKF may not best fit the mean behavior

over the time series if estimated parameters do not

satisfy stationarity. Furthermore, the standard EnKF

may not work well with highly nonlinear systems. The

latter may be better analyzed with improved ap-

proaches, such as the morphing EnKF (Beezley and

Mandel 2008).

CONCLUSIONS

In this study, we first conducted a sensitivity analysis

to help select key parameters to be estimated by data

assimilation. We found that six carbon transfer

parameters are sensitive to the observations. We then

used the OSSE to show that data assimilation via

EnKF can reliably extract parameter values from data.

Finally, we used EnKF together with the TECO model

to analyze parameters, carbon pools, and observational

variables from 1996 to 2004 and to forecast dynamics

of carbon pool sizes from 2005 to 2012. Our study

showed that six of the eight carbon exit rates were well

constrained by the eight data sets. The exit rate of the

passive soil carbon pool was not constrained because of

its low sensitivity to observational variables. The daily

forecasts of state variables from 2005 to 2012 showed

that the long-term carbon pool sizes (e.g., woody

biomass, structure litter, slow and passive SOM) and

their uncertainties increased over time. However, the

short-term carbon pool sizes (e.g., foliage, fine root,

microbial litter, and microbial carbon) and their

uncertainties fluctuated without directional increases

or decreases. This study demonstrated that EnKF is an

effective and efficient data assimilation approach.

EnKF is potentially suitable for online, real-time

assimilation of multiple, heterogeneous data sets

directly from sensor networks.
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