
respiration is also driven by the strong seasonality in tree
belowground C allocation.
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Deconvolution analysis to
quantify autotrophic and
heterotrophic respiration
and their temperature
sensitivities

Högberg (2010) has highlighted one of the most important
confounding processes – seasonal dynamics of carbon sub-
strate supply – in quantification of the temperature sensitivity
of soil respiration. He is also a leading scientist who has
made great contributions to this issue using innovative
methods of tree girdling and isotope tracing. Tree girdling
is an effective method that is used to manipulate substrate
supply and enables scientists to separate autotrophic (RA)
from heterotrophic (RH) components of soil respiration.
Similar methods that manipulate substrate supply include
clipping and shading in grasslands (e.g. Wan & Luo, 2003),
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Fig. 1 Relations between the autotrophic and heterotrophic
components of soil respiration and soil temperature (at a soil depth
of 5 cm) in a boreal pine forest (data from Bhupinderpal-Singh
et al., 2003). Measurements from the beginning (17 May 2001) to
the end (12 October 2001) of the season are numbered
consecutively (1–8). The red arrows show the responses to a decline
in soil temperature in the middle of the summer.
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clear-cutting in forests (e.g. Ohashi et al., 2000), trenching
(e.g. Jiang et al., 2005), gap formation (e.g. Brumme,
1995) and root removal (e.g. Wiant, 1967). These methods
usually alter physical and ⁄ or microclimate environments,
which may compromise the accuracy of separating RA and
RH. Carbon isotopes can be used to trace pathways of
photosynthate in an ecosystem while having little effect on
the environment (Högberg et al., 2010). However, isotope
tracing is not always possible in all ecosystems, for reasons
of cost and ⁄ or access to different isotopic sources.

We developed and applied the deconvolution method
not only to separate RA from RH of soil respiration data but
also to estimate various parameters that would enable us to
estimate the temperature sensitivity of RA and RH.
Deconvolution is a method used to separate measured soil
respiration into source components, such as root respira-
tion, litter decomposition and oxidation of soil organic
matter (SOM). As each of the source components shows
different kinetic rates of transfer of carbon from plant, litter
and SOM to the atmosphere, the method differentiates
those source components according to the kinetic rates
(Luo et al., 2001). Our analysis estimated carbon transfer
among 10 pools, together with parameters that represent
moisture and temperature regulation of those transfer rates
from measured soil respiration using a probabilistic inver-
sion technique (Zhou et al., 2010). We then estimated RA

from carbon transfer from the root pool and RH from
carbon transfer from litter, microbial and SOM pools. We
estimated the temperature sensitivity of RH via deconvolution
and found insignificant effects by warming and post-
treatment. We did not directly estimate the temperature
sensitivity of RA but showed indirectly that RA was more
sensitive to warming than RH, as we hypothesized. Overall,
deconvolution is a mathematical approach used not only to
eliminate confounding factors but also directly to quantify
the temperature sensitivities of various source components.

Dr Högberg is very clever to take advantage of the summer
cold period of 20 d to illustrate the temperature sensitivity of
RA. If the red arrow in Fig. 1 of Högberg (2010) truly repre-
sents the sensitivity of RA to changes in temperature, RA

would show a slight decrease as the temperature increases,
which does not seem to be realistic. The insensitivity of RA

during that short period must result from other processes,
such as lagged effects, the very subject of our study, instead of
the direct evidence of lower temperature sensitivity of RA, as

claimed by Högberg (2010). Overall, the data in Fig. 1 of
Högberg’s letter do show a steeper increase with soil tempera-
ture for RA than RH over the whole period of measurement.
His data can be analyzed using deconvolution with internal
logical consistency towards understanding source compo-
nents and their temperature sensitivity.
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