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[1] Carbon residence time is one critical parameter for predicting future land carbon sink
dynamics but has not been well quantified for many plant and soil pools. This study
applied a probabilistic inverse analysis of multiple observations to estimate mean
residence times of carbon among three forest ecosystems in eastern China. Three
assimilation experiments were conducted with either net ecosystem exchange data from
eddy-flux measurements or six biometric and soil data (i.e., foliage biomass, fine
root biomass, woody biomass, litterfall, soil organic carbon, and soil respiration) or all
data to evaluate their relative effectiveness on estimation of carbon residence times
of different pools in a terrestrial ecosystem model. Estimated mean residence times of
carbon ranged from 2 to 10 months for metabolic litter and microbial biomass pools, from
1 to 3 years for foliage, fine root biomass, and structural litter pools, and from 17 to 1361
years for woody biomass, slow and passive soil organic matter pools at three forest
sites. The residence times of carbon were longer for leaf, litter and microbes pools but
shorter for fine root and wood pools in the young evergreen coniferous plantation at
Qianyanzhou site than the two mature mixed forests at Changbaishan and Dinghushan
sites. Carbon residence times were well constrained for three plant pools and slow
soil organic matter by biometric and soil data, whereas residence times for metabolic
and structural litter, and microbial biomass pools were constrained by daily net
ecosystem exchange data. Overall, our study demonstrated that biometric, soil and
net ecosystem exchange data are complementary in constraining mean residence
times of an ecosystem model.
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1. Introduction

[2] Understanding mechanisms underlying terrestrial car-
bon sequestration is critical for improving model predictions
of future climate change [Friedlingstein et al., 2003].
Carbon influx and residence time are two key factors for
determining carbon sequestration capacity of a terrestrial
ecosystem [Luo et al., 2003]. Ecosystems usually store more
carbon with an enhanced carbon influx via canopy photo-
synthesis or longer carbon residence times or both. At the
ecosystem scale, while canopy photosynthesis can be rela-
tively well estimated with modeling approaches [Farquhar
et al., 1980], our understanding of carbon residence times is
greatly limited [Trumbore, 2000; Luo et al., 2003].

[3] Residence times of carbon in plant and soil organic
matter (SOM) are often inferred by isotope techniques in
individual pools [Trumbore et al., 1996; Gaudinski et al.,
2000; Ehleringer et al., 2000]. Isotopic techniques have
improved our understanding of environmental controls of
carbon transfer processes. However, soil radiocarbon meas-
urements often overestimate the residence time of short-term
SOM because of failure to account for the heterogeneity of
soil organic matter [Trumbore, 2000], and stable isotope
techniques are not suited to quantify carbon residences for
ecosystems without different isotope signatures of source
components [Bernoux et al., 1998; Ehleringer et al., 2000;
Richards et al., 2007]. On the other hand, carbon residence
times are the key parameters of carbon cycling and land
surface models, such as Rothamsted SOC model [Jenkinson
and Rayner, 1977], CENTURY model [Parton et al., 1987],
and CLASS [Wang et al., 2002]. These models consist of
several conceptual carbon pools with different residence
times, which range from weeks to hundreds or thousands of
years. Carbon residence times in models are usually tem-
perature- and moisture-corrected, and then modified by
quantity and quality of substrate, and sometimes further
by characteristics of the microbial community, to determine
decomposition of litter and soil organic matter [Swift et al.,
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1979]. Residence times of carbon in conceptual pools
cannot easily be estimated from isotope data or obtained
directly from field observations [Christensen, 1996; Wang
and Hsieh, 2002]. Therefore, it is imperative to estimate
carbon residence times so as to improve modeling studies
and measurements.
[4] Data assimilation is an approach to estimate model

parameters and state variables, and associated uncertainties,
by minimizing deviations between models and observa-
tions. The approach has frequently been used in terrestrial
carbon and water cycles research [Raupach et al., 2005;
O’Neill and Melnikov, 2008; Luo et al., 2009; Wang et al.,
2009; Williams et al., 2009]. Recently, data assimilation
techniques have been used to estimate carbon residence
times of terrestrial ecosystems as affected by CO2 treat-
ments [Luo et al., 2003; Xu et al., 2006], among five
terrestrial ecosystems in southeast Sweden [Karlberg et
al., 2006], and among biomes in Australia [Barrett, 2002]
and United States [Zhou and Luo, 2008]. The probabilistic
inversion at Duke Forest indicated that carbon residence
times of plant biomass and structural litter pools can be well
constrained by six biometric and soil data sets over five
years but the best estimates of residence times for metabolic
litter, microbes, and passive SOM pools cannot be identified
[Xu et al., 2006].
[5] Eddy flux networks record net ecosystem exchange

(NEE) of CO2 between the atmosphere and ecosystems and
offer another important data source to estimate parameters
of carbon cycle models [Wang et al., 2001; Braswell et al.,
2005] and to reduce parameter and prediction uncertainties
[Knorr and Kattge, 2005; Williams et al., 2005]. A recent
study suggested that parameters associated with dynamics
of wood and fine roots were poorly characterized by eddy
covariance data alone [Fox et al., 2009]. Clearly, multiple
data sets obtained from measurements of different carbon
processes potentially contribute information to constrain
parameters at different timescales. Combinations of biomet-
ric, soil data and NEE measurements would be beneficial to
constrain carbon residence times. In particular, biometric
and soil data are useful to constrain residence times in slow
turnover pools while NEE measurements provide additional
information to quantify residence times in fast turnover
pools.
[6] This study was designed to evaluate the effectiveness

of daily NEE, biometric and soil data sets from 2003 to

2005 for estimating mean residence times in eight carbon
pools (i.e., foliage, fine root, wood, metabolic litter, struc-
tural litter, microbes, slow and passive soil organic matter)
with a terrestrial ecosystem (TECO) model. Biometric and
soil measurements consisted of 6 data sets, which are
foliage biomass, fine root biomass, woody biomass, litter-
fall, soil organic carbon (SOC), and soil respiration. We
conducted Bayesian probabilistic inversions to estimate
mean residence times of carbon by using biometric and soil
measurements, daily NEE measurements alone, and all data
sets in three respective simulation experiments. A Markov
Chain Monte Carlo (MCMC) sampling method was used to
construct the posterior probability density functions of
residence times for eight carbon pools. All three simulation
experiments were performed at three different forest eco-
systems in eastern China.

2. Methods

2.1. Data

[7] The data used in this study were obtained at three
ChinaFLUX sites, Changbaishan temperate broad-leaved
Korean pine mixed forest, Qianyanzhou subtropical conif-
erous plantation and Dinghushan subtropical evergreen
coniferous and broad-leaved mixed forest. The three sites
had distinct climate conditions and vegetation types from
north to south in eastern China. The mean annual temper-
atures were 4.1�C, 18.3�C and 20.0�C, and the average of
annual precipitations were 604 mm, 1240 mm and 1337 mm
over 2003–2005 for Changbaishan, Qianyanzhou and
Dinghushan, respectively. Detailed descriptions of sites
characteristics were made by L. M. Zhang et al. [2006]
and Yu et al. [2008] and summarized in Table 1.
[8] Two types of data sets were used in this data assim-

ilation study for estimating carbon residence times, NEE,
biometric and soil measurements. All data were collected
from 2003 to 2005 at each of the three forest sites. NEE
were aggregated to a daily time step from half-hourly CO2

flux data measured by eddy covariance technique [Baldocchi
et al., 1988] at 40 m, 39 m, and 27 m heights above the
canopies at Changbaishan, Qianyanzhou and Dinghushan,
respectively. Outlier data with extremely large CO2 flux
(jFcj > 3 mg CO2 m2 s�1) were rejected and unreasonable
nighttime values were excluded according to friction veloc-
ity (u* < 0.15 m s�1). We used gap-filled flux data in this

Table 1. Site Characteristics of Three Forest Ecosystems

Changbaishan Qianyanzhou Dinghushan

Latitude (�N) 42.45 26.73 23.17
Longitude (�E) 128.10 115.06 112.53
Elevation (m) 736 102 300
Mean annual temperaturea (�C) 3.6 17.9 21.0
Annual precipitationa (mm) 695 1485 1956
Predominant species Pinus koriaensis, Quercus

mongolica, Acer mono,
Tilia amurensis, Fraxinus
mandshurica

Pinus massoniana Lamb,
Pinus elliottii Engelm,
Cunninghamia lanceolata
Hook

Schima superba, Castanopsis
chinensis, Pinus massoniana

Canopy height (m) 26 12 20
Forest age (year) 200 23 100
Soil type dark brown forest soil red soil latosolic red soil
pH value of soil 5.8 4.8 4.5

aValues are the averages from 1985 to 2005.
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analysis because the percentage of daily intervals with no
gap-filled data after quality control was less than 10%. Gaps
in half-hourly CO2 flux data were filled using nonlinear
regression algorithm [Falge et al., 2001]. Detailed steps in
data processing of NEE at the three sites were described by
L. M. Zhang et al. [2006]. To reduce the impact of gap-filled
data on estimating parameters, we only aggregated NEE
data for days with at least 50% observed half-hourly fluxes
in this analysis. We obtained 728 daily NEE values at
Changbaishan, 455 at Qianyanzhou and 524 at Dinghushan
site during 2003–2005.
[9] Biomass of foliage, fine root and wood were estimated

from measured diameters at breast height (DBH) and tree
heights using an allometric method. DBH and heights of
all trees were recorded in main plots at Changbaishan
(0.16 ha), Qianyanzhou (1 ha), and Dinghushan (0.25 ha)
near eddy flux towers. All allometric equations (correlation
coefficients ranged from 0.90 to 0.99) from the literature
were derived from destructive harvest of trees for dominated
species at Changbaishan [Xu et al., 1985], Qianyanzhou [Li
et al., 2006; Shen et al., 2006], and Dinghushan [Peng et
al., 1989; Peng, 1996; Fang et al., 2003]. During 2003–
2005, DBH and tree height measurements were sampled
twice (December 2003 and August 2005) at Changbaishan,
twice (August 2003 and July 2005) at Qianyanzhou, and
once at Dinghushan in October 2004.
[10] Aboveground litterfall biomass was measured by

10 replicates of 100 cm � 100 cm baskets monthly at
Qianyanzhou and Dinghushan but monthly during the
growing season (from May to October) and only once in
the nongrowing season at Changbaishan from 2003 to 2005.
All collected litter was dried at 70�C for 24 h and weighed.
We used annual litterfall biomass data for the inverse
analysis to avoid the effect of wind on litterfall biomass
measurement within an individual month. The carbon con-
tents of litter were assumed to be 0.50 g C g�1 at
Changbaishan and Dinghushan [Zhou et al., 2006], and
0.55 g C g�1 at Qianyanzhou [Shen et al., 2006].
[11] Soil carbon content was calculated from SOM mea-

sured by potassium dichromate oxidation titrimetric method
at each forest site. At least three soil samples were collected
from five soil layers (0–10, 10–20, 20–40, 40–60 and 60–
100 cm) at Changbaishan in September 2005 and Ding-
hushan in October 2004 and October 2005, from all soil
horizons at Qianyanzhou in December 2003 and August
2005. We converted SOM to SOC by multiplying 0.58 [Post
et al., 1985].
[12] Soil respiration was measured using static chamber-

gas chromatograph techniques at each forest site. Six
repeats were collected with weekly sampling time at 9:00
to 11:30 A.M. from January 2003 to October 2005, except
in winter with only once or twice measurements. All
samples were taken back to the lab and analyzed using
HP4890D Gas Chromatographer in sample days. The meth-
od of soil respiration measurement was described in detail
by D. Q. Zhang et al. [2006]. We estimated daily soil
respiration on the basis of a constant rate in each sample
day.

2.2. Modified TECO Model and Parameters

[13] We used a modified version of the terrestrial ecosys-
tem (TECO) model [Luo et al., 2003; Xu et al., 2006] with

eight carbon pools. The nonwoody biomass pool in the
original version was divided into foliage and fine root
biomass pools for data assimilation in this study. Carbon
entered the ecosystem through canopy photosynthesis and
was allocated into foliage (X1), fine root (X2) and wood
biomass (X3) (Figure S1, available as auxiliary material).1

Dead plant material went to metabolic (X4) and structure
litter (X5) pools and was decomposed by microbes (X6). Part
of structure litter carbon was respired and the rest was
incorporated into slow (X7) and passive SOM (X8). In this
model, carbon cycling processes are expressed by a first-
order ordinary differential equation as:

dX tð Þ
dt
¼ x tð ÞACX tð Þ þ BU tð Þ

X 0ð Þ ¼ X0

ð1Þ

where X(t) = (X1(t), X2(t), . . . X8(t)) is a vector of carbon
pool sizes at a daily time step (t = 1 day), A is an 8 � 8
matrix and represents partitioning of carbon among the
eight pools, C is a diagonal matrix with element vector c =
(c1, c2, . . ., c8)

0, representing the exit rate of carbon left in its
own pool at each time step, U(t) is canopy carbon influx to
the ecosystem and the input to drive the TECO model, B is a
vector of allocation coefficients that distribute carbon influx
to different plant pools, X0 is initial values of carbon pool
sizes, and x(t) is an environmental scalar.
[14] In this study, carbon transfer coefficients (i.e., exit

rate c) were the main target parameters to be estimated (see
Table 2 for more description), the inverse of which is equal
to carbon residence times in individual pools (1/c). Canopy
carbon influxU(t) was estimated by a canopy photosynthesis
model from Ji [1995]. Canopy photosynthesis is a function
of LAI, photosynthetically active radiation, air temperature,
and soil moisture (see supplementary Text S1). Modeled
carbon influx was compared with estimated daily gross
primary productivity (GPP) from eddy covariance NEE
measurements (Text S2). The prediction of GPP was gen-
erally consistent with estimated GPP from NEE measure-
ments at Changbaishan, Qianyanzhou, and Dinghushan
(Table 3). Estimated average annual GPP over 2003–2005
are 1207, 1610, and 1251 g C m�2 for Changbaishan,
Qianyanzhou, and Dinghushan, respectively.
[15] Allocation coefficients of canopy photosynthesis to

plant pools were defined by B = (0.13 0.12 0.30 0 0 0 0 0),
which indicates that 13%, 12%, and 30% of carbon influx
were allocated to foliage, fine root and woody biomass
pools, respectively. The remaining 45% of canopy input
was consumed by plant respiration. The allocation percen-
tages of net primary production to plant tissues and
respiration were estimated from our prior knowledge for
forest ecosystems [Shan et al., 1993; Wen et al., 1999; Luo
et al., 2003].
[16] An environmental scaler x(t) was defined to repre-

sent the effects of soil temperature and moisture on carbon
decomposition [Luo et al., 2001]. Thus, our estimated mean
residence times by probabilistic inversion were temperature

1Auxiliary materials are available in the HTML. doi:10.1029/
2009JG001004.
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and moisture independent residence times. Values of off-
diagonal, nonzero elements in the A matrix were given as:

A ¼

�1 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

a1 a2 a3 �1 0 0 0 0

1� a1 1� a2 1� a3 0 �1 0 0 0

0 0 0 a4 a5 �1 a9 a11
0 0 0 0 a6 a7 �1 0

0 0 0 0 0 a8 a10 �1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð2Þ

Besides carbon exit rates, the initial carbon pools and all
parameters in the A matrix were also estimated simulta-
neously. There were a total of 19 parameters and 8 initial
conditions were allowed to be estimated (Table 2). The
ranges of ai (i = 1, 2, . . ., 11) were estimated according to
lignin and N content [Parton et al., 1987; Luo and
Reynolds, 1999; Luo et al., 2001, 2003]. Initial values of
pool sizes, X0, were inversed within the ranges according to
measurements in relevant studies at Changbaishan [Yang
and Li, 2003; Jiang et al., 2005], Qianyanzhou [Li et al.,
2006] and Dinghushan [Fang et al., 2003]. Lower and

upper limits of parameter c were set based on the model
output and values reported by Luo et al. [2003] and Xu et al.
[2006].

2.3. Parameter Estimation

[17] We used a Bayesian probabilistic inversion approach
to estimate carbon transfer coefficients. According to
Bayesian theorem, the posterior probability density function
(PDF) of parameter c was expressed by

p cjZð Þ ¼ p Zjcð Þp cð Þ
p Zð Þ ð3Þ

Table 2. Target Parameters of the TECO Model to Be Optimized and Their Prior Ranges at Three Forest Sites

Parameters Description Units Changbaishan Qianyanzhou Dinghushan

X0(1) initial value of foliage pool gC m�2 100�400 100�400 200�400
X0(2) initial value of fine root pool gC m�2 100�400 10�200 300�400
X0(3) initial value of woody pool gC m�2 15,000�20,000 3,000�5,000 8,000�9,000
X0(4) initial value of metabolic pool gC m�2 40�100 150�300 10�100
X0(5) initial value of structural pool gC m�2 200�400 300�500 100�300
X0(6) initial value of fast SOM pool gC m�2 100�200 10�200 100�250
X0(7) initial value of slow SOM pool gC �m�2 2,000�3,000 3,000�4,000 2,200�3,200
X0(8) initial value of passive pool gC m�2 4,000�6,000 1,500�4,000 4,000�5,500
c1 exit rate of C from foliage pool gC d�1 gC�1 1.76E-04�6.55E-03 1.76E-04�2.95E-03 1.76E-04�2.95E-03
c2 exit rate of carbon from fine root pool gC d�1 gC�1 1.76E-04�2.95E-03 1.76E-04�2.95E-03 1.76E-04�2.95E-03
c3 exit rate of carbon from wood pool gC d�1 gC�1 2.48E-05�2.74E-04 2.48E-05�2.74E-04 2.48E-05�2.74E-04
c4 exit rate of carbon from metabolic litter

pool
gC d�1 gC�1 5.48E-03�2.74E-02 5.48E-03�2.74E-02 5.48E-03�2.74E-02

c5 exit rate of carbon from structural litter
pool

gC d�1 gC�1 5.48E-04�2.74E-02 5.48E-04�2.74E-03 5.48E-04�2.74E-02

c6 exit rate of carbon from fast soil pool gC d�1 gC�1 2.74E-03�6.85E-02 2.74E-03�6.85E-03 2.74E-03�6.85E-03
c7 exit rate of carbon from slow soil pool gC d�1 gC�1 2.28E-05�4.26E-04 2.28E-05�2.84E-04 2.28E-05�2.84E-04
c8 exit rate of carbon from passive soil

pool
gC d�1 gC�1 1.37E-06�9.13E-06 1.37E-06�9.13E-06 1.37E-06�9.13E-06

a1 fraction of carbon in foliage pool
transferring to metabolic litter

- 0.7�0.8 0.7�0.8 0.7�0.8

a2 fraction of carbon in fine root biomass
transferring to metabolic litter

- 0.7�0.8 0.7�0.8 0.7�0.8

a3 fraction of carbon in woody
transferring to metabolic litter

- 0.2�0.3 0.2�0.3 0.2�0.3

a4 fraction of carbon in metabolic
litter transferring to fast SOM

- 0.3�0.7 0.3�0.7 0.3�0.7

a5 fraction of carbon in structural
litter transferring to fast SOM

- 0.1�0.3 0.1�0.3 0.1�0.3

a6 fraction of carbon in structural
litter transferring to slow SOM

- 0.1�0.3 0.1�0.3 0.1�0.3

a7 fraction of carbon in fast SOM
transferring to slow SOM

- 0.1�0.4 0.1�0.4 0.1�0.4

a8 fraction of carbon in fast SOM
transferring to slow SOM

- 0.001�0.008 0.001�0.008 0.001�0.008

a9 fraction of carbon in slow SOM
transferring to fast SOM

- 0.2�0.6 0.2�0.6 0.2�0.6

a10 fraction of carbon in slow SOM
transferring to passive SOM

- 0.01�0.04 0.01�0.04 0.01�0.04

a11 fraction of carbon in passive SOM
transferring to fast SOM

- 0.3�0.7 0.3�0.7 0.3�0.7

Table 3. Fitness Between Modeled and Observed Daily GPP at

Three Forest Sitesa

Site
Sample
Size Regression Equation R2

RMSE
(g C m�2 d�1)

Changbaishan 59 y = 0.99x + 0.05 0.86b 1.72
Qianyanzhou 11 y = 1.01x � 0.27 0.90b 0.63
Dinghushan 23 y = 1.27x � 1.54 0.52b 1.61

aThe observed daily GPP was derived from NEE measurements for days
without missing values. Fitness was indicated by root mean square error
(RMSE) and coefficient of determination (R2).

bSignificance p < 0.001.
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Where p(c) represent prior probability density distributions,
p(Z) is the probability of observed data, and p(Z jc) is the
conditional probability density of observed data with prior
knowledge, also called likelihood function for parameter c.
Given the errors ei(t) follow a Gaussian distribution with a
zero mean, the likelihood function can be expressed by

P Zjcð Þ / exp

(
�
X
i

1

2s2
i

X
t2obs Zið Þ

ei tð Þð Þ2
)

ð4Þ

Where ei(t) is the error for each modeled value Yi(t) compared
with the observed value Zi(t) at time t, expressed by

ei tð Þ ¼ Zi tð Þ � Yi tð Þ ð5Þ

si
2 is the measurement error variance of each data set.

We assumed that each of elements ei(t) was independent
over the observation times and the covariance is zero, so si

2

was expressed by the variance for each observation data
(Table 4).
[18] To calculate modeled variables Yi(t) from modeled

pool sizes Xi(t), we defined observation operators 8i for each
measurement [Luo et al., 2003; Xu et al., 2006; White et al.,
2006] as

Foliage biomass 81 ¼ ð1 0 0 0 0 0 0 0Þ
Fine root biomass 82 ¼ ð0 1 0 0 0 0 0 0Þ
Woody biomass 83 ¼ ð0 0 1 0 0 0 0 0Þ
Litterfall 84 ¼ ð0:75c1 0:75c2 0:75c3 0 0 0 0 0Þ
Soil organic C 85 ¼ ð0 0 0 0 0 1 1 1Þ
Soil respiration 86 ¼ ð0:25c1 0:25c2 0:25c3 0:55c4 0:45c5 0:7c6 0:55c7 0:55c8Þ
NEE 87 ¼ ð1 1 1 1 1 1 1 1Þ

For each biometric and soil variable, the modeled value was
expressed as

Yi tð Þ ¼ 8iX tð Þ; i ¼ 1; 2; . . . ; 6 ð6Þ

Daily NEE was the sum of carbon change in all pools per
step time [White et al., 2006], which was expressed as

Y7 tð Þ ¼ d

dt
87X tð Þ ð7Þ

The posterior PDFs for model parameters were generated
from prior PDFs p(c) with observations Z by a Markov
chain Monte Carlo (MCMC) sampling technique. This
study used the Metropolis-Hastings (M-H) algorithm
[Metropolis et al., 1953; Hastings, 1970] as the MCMC
sampler. Whether a new point cnew was accepted or not

according to the value of ratio R =
p cnewjZð Þ
p ck�1jZð Þ compared with a

uniform random number U from 0 to 1. Only if R � U, then
the new point was accepted; otherwise ck = ck�1 (see Xu et
al. [2006] for detailed description on MCMC sampling
procedure).
[19] Five parallel runs of the M-H algorithm were per-

formed with 20,000 simulations for each run. We assumed a
Gaussian distribution for prior probability function p(c) in
the parameter space, and then new proposal points were
generated by cnew = ck�1 + N(0, cov0(c)). To find an effective
proposal distribution, a test run of the M-H algorithm with
20,000 simulations was made using a uniform proposal
posterior distribution. Constant variance of parameters
cov0(c) was then calculated from the test run. Specific steps
of the algorithm were described by Xu et al. [2006]. All five
parallel runs started from random initial conditions in
parameter spaces to eliminate the effect of initial condition
on stochastic sampling. The acceptance rates for the five
runs in three experiments ranged from 22 to 47% at three
sites.
[20] We chose the Gelman-Rubin (G-R) diagnostic method

[Gelman and Rubin, 1992] to examine whether Markov
chains converged. The value of scale reduction factor for
each parameter in all experiments approached to 1.0 after
the first 10,000 samples (data not shown). Furthermore,
means and standard deviations of posterior parameter sets
were approximately stabilized after the first 10,000 samples.
Thus, we regarded the first 10,000 times as the burn-in
period for each MCMC run. All accepted samples from five
runs after burn-in periods (about 50,000 samples) were used
to compute posterior parameter statistics of modes, correla-
tions, and 90% confidence intervals. The 90% confidence
intervals were estimated from the cumulative distributions
to quantify the uncertainty of estimated parameters.

2.4. Simulation Experiments and Sensitivity Analysis

[21] We designed three simulation experiments to estimate
mean residence times of carbon at the three sites. The first
experiment (experiment 1) used all biometric, soil and NEE
data in probabilistic inversion. Biometric and soil data in this
study included observed values of foliage biomass, fine root
biomass, woody biomass, litterfall, soil organic carbon, and
soil respiration. The second experiment (experiment 2) used

Table 4. Standard Deviation, s, of Observation Data Sets at Three

Forest Sites

Symbol Changbaishan Qianyanzhou Dinghushan

Foliage biomass
(g C m�2 d�1)

s1 1.43 0.76 0.95

Fine root biomass
(g C m�2 d�1)

s2 989.2 442.6 323.1

Woody biomass
(g C m�2 d�1)

s3 17.0 31.1 44.6

Litterfall
(g C m�2 yr�1)

s4 17.7 11.3 12.7

Soil respiration
(g C m�2 d�1)

s5 36.2 14.6 50.5

Soil organic C
(g C m�2)

s6 100.4 247.5 169.7

NEE (g C m�2 d�1) s7 1.83 1.31 1.15
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biometric and soil data only. The third experiment (exper-
iment 3) only used NEE data in the inverse analysis.
[22] In this study, the inverse model, TECO (i.e., the

model used for inverse analysis), uses daily GPP as input,
which was estimated from another independent canopy
photosynthesis model [Ji, 1995]. Ideally, we need to esti-
mate all the parameters simultaneously in an integrated
photosynthesis-carbon cycle model. In this study, we only
optimized parameters in the carbon cycle model and did
sensitivity analysis to explore the influence of GPP on
posterior estimates of carbon transfer coefficients. Specifi-
cally, we increased or decreased values of parameters in the
GPP model (Table S1) by 10% and 20%. The sensitivity
analysis was conducted by a one-parameter-at-a-time
method.
[23] Observation errors can substantially influence esti-

mates of parameters. We increased the standard deviations
of foliage, fine root, and woody biomass by 10% and 20%.
To evaluate influences of allometric equations, we per-
formed two Monte-Carlo simulations (1000 times) by
randomly adding Gaussian noises to the allometric conver-
sions. The standard deviations of Gaussian noises were
assigned as 0.1 kg for foliage and root, 5 kg for stem and
branch in Monte-Carlo simulation 1 and 0.2 kg for foliage

and root, 10 kg for stem and branch in Monte-Carlo
simulation 2.

3. Results

3.1. Performance of MCMC Simulations

[24] We evaluated the performance of MCMC simula-
tions by comparing observed and modeled values of six
biometric and soil variables and NEE. Figure 1 presented
comparisons among three assimilation experiments at the
Changbaishan site. Overall, the model fitted biometric and
soil data better than NEE when biometric and soil data were
used in experiments 1 and 2 but fitted NEE better than
biometric and soil variables when only NEE data were used
in experiment 3 (Figure 1). If carbon residence times were
inferred from NEE data together with biometric and soil
data (experiment 1), the modeled NEE using the optimized
residence times were improved compared with that from
biometric and soil data only (experiment 2). Root mean
square errors (RMSE) between modeled and observed
NEE values were 1.55, 1.27 and 1.33 g C m�2 d�1 in
experiment 1, less than RMSE of 1.63, 1.56 and 1.62 g C
m�2 in experiment 2 at the Changbaishan, Qianyanzhou and
Dinghushan sites, respectively (Table S2). However, this

Figure 1. Comparisons between observed and modeled (a–c) foliage biomass, (d–f) fine root biomass,
(g–i) woody biomass, (j– l) litterfall, (m–o) soil organic matter, (p–r) soil respiration, and (s–u) NEE at
the Changbaishan site after the target parameters listed in Table 2 were optimized. For each set of plots,
data-model comparisons are presented for experiment 1 (using all biometric, soil, and NEE data to
constrain parameter estimation), experiment 2 (using biometric and soil data only), and experiment 3
(using NEE data only).
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improvement in the agreement of modeled and observed
NEE data was at the cost of lower fitness of biometric and
soil variables. For instance, the RMSE between modeled
and observed soil respiration were 0.89, 0.78 and 0.69 g C
m�2 d�1 in experiment 1 versus that of 0.84, 0.60 and
0.61 g C m�2 d�1 in experiment 2 at the respective three
sites (Table S2). The model overestimated soil respiration in
its low range and underestimated it in the high range
(Figures 1p–1r). The model underestimation in the high
range was mainly reflected by 3–4 data points of high
values of observed soil respiration during summers, which
likely resulted from fluctuation of wind speed at the time of
measurements [Luo and Zhou, 2006]. In addition, monthly
measurements of litterfall were aggregated yearly for the
data assimilation so that the model may not accurately
simulate the seasonal variation of carbon input to soil via
litterfall.

3.2. Estimated Carbon Cycle Parameters

[25] Generally, estimated parameter by probabilistic in-
version can be divided into three groups: ‘‘well-con-
strained,’’ ‘‘poorly constrained,’’ and ‘‘edge-hitting,’’
depending on the shape of posterior distributions. At the
Changbaishan site, for example, exit rates of carbon from
foliage, fine root pools, structural litter, microbes, and slow
SOM (i.e., parameters c1, c2, c5, c6, and c7) were well

constrained by biometric, soil and NEE data in experiment 1
(Figures 2a, 2b, 2e, 2f, and 2g) and by biometric and soil
data in experiment 2 (Figures 2i, 2j, 2m, 2n, and 2o). Exit
rates of carbon from metabolic litter and passive SOM
(parameters c4 and c8) were poorly constrained in three
experiments (Figures 2d, 2h, 2p, 2t, and 2x) except for
parameter c4 in experiment 2 (Figure 2l). Estimated exit rate
of carbon from wood pool (parameter c3) hit the lower limit
in experiments 1 and 2 (Figures 2c and 2k) but was well
constrained by NEE data in experiment 3 (Figure 2s).
[26] Exit rates of carbon from foliage, fine root and

woody biomass pools (parameters c1, c2, and c3) were well
constrained in experiments 1 and 2 when assimilating
biometric and soil data, but cannot be constrained by
assimilating NEE data alone as shown in experiment 3
(Figures 2–4). In addition, biometric and soil data provided
more information of exit rate of carbon from slow SOM (c7)
than NEE data at Changbaishan and Dinghushan but
Qianyanzhou. In contrast, NEE data contained more infor-
mation than biometric and soil data on exit rates of carbon
from structural litter and microbes, i.e., parameters c5 and c6
(Figures 2m, 2n, 2u, and 2v). Parameter c4 was poorly
constrained by either biometric and soil or NEE data or
all data at Changbaishan and Qianyanzhou but well con-
strained using NEE data in experiments 1 and 3 at Ding-
hushan. However, NEE data was found having a strongly

Figure 2. Posterior distributions of carbon transfer coefficients from the eight pools using all biometric,
soil, and NEE data (experiment 1), biometric and soil data only (experiment 2), and NEE data only
(experiment 3) for parameter constraints using the MCMC optimization approach at the Changbaishan
forest site.
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influence on posterior PDF of parameter c4 at Changbaishan
and Qianyanzhou (Figures 2 and 3). Either biometric and
soil or NEE data or all data did not contain enough
information to constrain the exit rate of carbon from passive
SOM (parameter c8) in all cases.
[27] Among eight initial carbon pools, only three initial

plant pools were well constrained in experiment 1 (Figure S2)
and experiment 2, other initial carbon pools cannot be
estimated effectively when biometric and soil data were
assimilated. Similar to carbon transfer coefficients, even
initial condition of three plant pools cannot be identified in
experiment 3 if only daily NEE data were assimilated. For
11 parameters in matrix A, neither biometric and soil nor
daily NEE data could provide useful information to estimate
them (Figure S2).

3.3. Estimated Mean Residence Times of Carbon
Among the Three Sites

[28] The mean residence times of carbon are the inverse
of exit rates of carbon from the pool (1/c). Since not all
posterior distributions of the eight parameters followed
Gaussian distributions, we chose the mode of the posterior
distribution as the best estimate for each parameter, associ-
ated with 90% confidence interval (Table 5). The estimated
mean residence times ranged from 2 to 10 months for
metabolic litter and microbial biomass pools; from 1 to 3

years for foliage, fine root biomass, and structural litter
pools; and from 17 to 1361 years for woody biomass, slow
and passive SOM pools.
[29] Differences in the mean residence times were found

among three forest ecosystems in the study (Table 5).
Overall, the residence times of carbon were longer for leaf,
litter and microbes pools but shorter for fine root and wood
pools in the young evergreen coniferous plantation at
Qianyanzhou site than the two mature mixed forests at
Changbaishan and Dinghushan sites. Carbon in slow and
passive organic matter pools had shorter residence times at
the Changbaishan site than at the other two forest sites.
Leaves stayed longer in Qianyanzhou forest (2.63 years) than
in Changbaishan (1.86 years) and Dinghushan (1.85 years)
forests. Mean residence times of carbon in fine root biomass
at the Dinghushan site (3.02 years) was about two to three
times those at the Changbaishan (1.27 years) and Qianyanz-
hou site (0.97 years). Moreover, mean residence times of
woody biomass in the Changbaishan forest (99 years) and
Dinghushan forest (104 years) were over twice that in
Qianyanzhou forest (38 years). The mean residence time of
carbon in the metabolic litter pool at Qianyanzhou (0.47 years)
was about twice those at Changbaishan (0.22 years) and
Dinghushan (0.22 years). Carbon in microbial biomass
pool had a longer residence time at the Qianyanzhou site
(0.82 years) than Dinghushan (0.70 years) and Chang-

Figure 3. Posterior distributions of carbon transfer coefficients constrained by biometric, soil, and NEE
data (experiment 1), biometric and soil data (experiment 2), and NEE data (experiment 3) from MCMC
simulations at the Qianyanzhou site.
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baishan sites (0.48 years). Slow soil organic carbon turned
over at a much slower rate about at Qianyanzhou (110 years)
andDinghushan (112 years) than at Changbaishan (17 years).

3.4. Sensitivity Analysis

[30] To examine effects of prior ranges on posterior PDFs
of poorly constrained parameters, we decreased the lower
limits by 1/5 and increased by fivefold the upper limits as
defined in Table 2 for parameters c4 and c8 at the Chang-
baishan site. Histograms of parameters c4 and c8 still
appeared uniform distributions (Figures 5d and 5h) given
large prior ranges, and posterior estimate of parameter c3
was also close to the lower limit (Figure 5c). Furthermore,

we decreased the standard deviations of woody biomass,
litterfall, and SOC data by half (i.e., increased their weights
in likelihood function by four times) to examine their
effects on parameters c3, c4 and c8. Similar to Figure 2, well-
constrained parameters (i.e., parameters c1, c2, c5, c6 and c7)
were not influenced. Parameter c3 was still edge-hitting
within its prior range, and parameters c4 and c8 also followed
the similar distributions as Figure 2 (data not presented).
[31] In addition, estimated parameters were influenced by

sample sizes of NEE data. When we decreased the sample
size of NEE data with, for example, only 59 data points
without gap filling over three years at the Changbaishan site
in combination with biometric and soil data, posterior

Figure 4. Posterior distributions of carbon transfer coefficients constrained by biometric, soil and NEE
data (experiment 1), biometric and soil data (experiment 2), and NEE data (experiment 3) from MCMC
simulations at the Dinghushan site.

Table 5. Estimated Modes and Confidence Intervals of Potential Carbon Residence Times in Eight Pools at Three Forest Sitesa

Pool

Changbaishan Qianyanzhou Dinghushan

Mode 90% CI Mode 90% CI Mode 90% CI

Foliage biomass 1.86 (1.58, 2.16) 2.63 (2.06, 3.40) 1.85 (1.08, 2.70)
Fine root biomass 1.27 (1.03, 1.52) 0.97 (0.94, 1.13) 3.02 (2.71, 3.39)
Woody biomass 99.2 (71.0, 108.3) 37.7 (29.9, 49.0) 104.1 (82.2, 109.2)
Metabolic litter 0.22 (0.11, 0.36) 0.47 (0.36, 0.49) 0.22 (0.11, 0.35)
Structural litter 0.41 (0.23, 0.64) 1.44 (1.09, 2.50) 0.73 (0.50, 1.72)
Microbial biomass 0.48 (0.20, 0.76) 0.82 (0.44, 0.94) 0.70 (0.45, 0.88)
Slow soil organic matter 16.7 (8.7, 37.6) 109.7 (72.8, 117.8) 111.7 (73.3, 117.9)
Passive soil organic matter 715.8 (320.0, 1446.5) 1081.7 (357.8, 1699.3) 1361.2 (369.4, 1712.7)

aCI, confidence intervals. Units are in years. Note: We assumed that the carbon in leaf biomass transferred to litter pools from August to November at
Changbaishan site.
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estimation of parameters (Figures 5i–5p) appeared similar
to that using biometric and soil data only (Figures 2i–2p).
The negative log likelihood value for NEE data decreased
from 252.3 to 19.3 (Table S3), indicating substantially
weakened contribution of NEE data to parameter estimation.
[32] Estimation of carbon transfer coefficients among

plant and soil pools is influenced by carbon input from
photosynthesis. Accordingly, parameters of the GPP model
were another source of uncertainty in determining the
posterior distributions of carbon transfer coefficients.
Among eight parameters of the GPP model (Table S1),
predicted GPP was most sensitive to optimum temperature
for photosynthesis (Topt) and quantum yield (a) (Table S4).
When Topt increased or decreased by 10% and 20%,
predicted GPP changed by 6.5–8.9% and 11.9–16.5%,
respectively. Consequently, variations in GPP introduced
uncertainties to estimated carbon transfer coefficients, es-
pecially for parameters c4, c7, and c8 (Figure 6a).
[33] We also evaluated the possible influences of obser-

vation errors and allometric equations on estimated param-
eters. Increases in standard deviations of foliage, fine root,
and woody biomass by 10% and 20% did not affect much
transfer coefficients from three plant pools but influenced
the transfer coefficient from the microbial carbon pool by
40.5% and 67.4% (Figure 6b). The two Monte-Carlo
simulations showed that Gaussian random errors added to
the allometric equations resulted in large variations in
posterior estimates of c8 by 33.7% in Monte-Carlo simula-
tion 1 and 40.7% in Monte-Carlo simulation 2 (Figure 6b).
Cross-correlation analysis for posterior parameters showed

less significant correlations between pairs of the 27 param-
eters in the probabilistic inversion, except for the pair of
parameters X0(7) and X0(8) with a strong negative correla-
tion (Text S3).

4. Discussion

4.1. Constraints of Carbon Transfer Coefficients
by NEE, Biometric, and Soil Data

[34] This study compared the effectiveness of biometric
and soil versus daily NEE data for estimation of carbon exit
rates from individual plant and soil pools. Biometric data
were found to be effective in constraining exit rates of
carbon from plant pools (parameters c1, c2, and c3). Biomass
in those foliage, fine root, wood pools and litterfall (i.e.,
flux) can be directly measured and corresponded to varia-
bles in the model. Even limited data points can provide
enough information on carbon transfer from plant to litter.
[35] As for the estimation of transfer coefficients of litter

and soil carbon, Xu et al. [2006] used six biometric and soil
data sets to estimate carbon transfer coefficients and found
that the transfer coefficients of metabolic litter, microbes,
and passive SOM pools were poorly constrained. Our
inverse analysis with either biometric and soil or NEE or
all data in the three forest ecosystems of China showed that
NEE data contain substantial information on constraints of
exit rates of carbon from metabolic litter (c4), structural litter
(c5), and microbes (c6). It suggests that NEE data can be
used to help estimate transfer coefficients of litter and
microbial biomass together with biometric and soil data.
Because eddy covariance systems measure exchange of

Figure 5. Posterior distributions of carbon transfer coefficients when (a–h) the lower limits of
parameters c4 and c8 are reduced by 1/5 and the upper limits of parameters c4 and c8 are increased
fivefold and (i–p) constrained by biometric and soil in combination with non-gap-filled NEE data (i.e.,
59 observed NEE data only) at the Changbaishan site.
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CO2 between the atmosphere and ecosystems with high
frequency, daily NEE data provide more information on fast
turnover pools (with residence times of several months)
than the biometric and soil measurements as showed in this
study.
[36] Biometric and soil data also provided some informa-

tion for constraints of carbon exit rate from slow SOM (c7),
as shown in Figures 2o and 4o. When NEE data were used
together with biometric and soil data, the posterior estimate
of c7 differs from that with biometric and soil data alone,
probably because NEE provided information to differentiate
some cross correlations between c7 and other parameters.
Due to lack of long-term observation of soil carbon, neither
biometric and soil, nor NEE data were effective to constrain
the exit rate of carbon from passive SOM pool (c8).
Therefore, the estimate of c8 was strongly influenced by
the prior range assigned. A better estimate of this parameter
requires long-term SOM observation.

4.2. Estimated Carbon Residence Times

[37] Our best estimates of carbon mean residence times of
about 1.9–2.6 years in foliage biomass for three forest
ecosystems are well consistent with the inversion result
from tall forest, open woodland and arid shrubland biomes
in Australia (1.2–2.5 years) [Barrett, 2002]. Results from
this probabilistic inversion showed that leaves of vegetation
in the evergreen coniferous forest (Qianyanzhou) turned
over slower than in coniferous and broad-leaved mixed
forest (Changbaishan and Dinghushan), which reflected
the variations in leaf life spans with forest types and climatic
regimes. Leaf life span of conifers is generally longer than
broadleaves, and increases with higher altitude and eleva-
tion. The woody tissues at three forest sites in eastern China
are shorter-lived than that in tall forest biome in Australia

(138–227 years) [Barrett, 2002] but longer than that in
southeast Sweden forests (10–50 years) [Karlberg et al.,
2006]. Among the three sites, the turnover time of wood in
plantation (Qianyanzhou) was less than in natural mixed
forest (Changbaishan) and seminatural mixed forest (Ding-
hushan), probably due to the differences in forest age and
woody biomass pool size.
[38] Carbon was decomposed more slowly and resided

longer in Qianyanzhou evergreen plantation, compared with
that in Duke Forest with a similar age [Luo et al., 2003; Xu
et al., 2006]. The differences in estimated residence time
could result from more carbon inputs (1610 g m�2 a�1 for
Qianyanzhou forest versus 1307 g m�2 a�1 for Duke Forest)
and less aboveground biomass and litterfall (300–340 g
m�2 a�1 for Qianyanzhou forest versus 350–550 g m�2 a�1

for Duke Forest) under seasonal drought in summer at
Qianyanzhou.
[39] To compare inverted residence time of fine root with

that estimated from isotope techniques, we calculated aver-
age mean residence times at Changbaishan (1.7 years),
Qianyanzhou (0.3 years), and Dinghushan (0.7 years) using
local mean annual temperature and mean soil moisture
together with the environmental scaler x(t) in equation (1).
Fine root turnover time usually ranges from weeks to three
years [Edwards and Harris, 1977; Hendrick and Pregitzer,
1992; Matamala and Schlesinger, 2000]. Our estimated
residence time for fine root is well within this range but
lower than the residence time (4.2–5.7 years) estimated
from d13C signals [Johnsen et al., 2005; Matamala et al.,
2003]. Recent studies also found that isotope techniques
tended to systematically overestimate residence times of
fine roots due to sampling biases of different root cohorts by
missing the smallest and most ephemeral roots from soil
cores [Luo, 2003; Strand et al., 2008].

Figure 6. Sensitivity analysis of estimated carbon transfer coefficients with (a) optimum temperature
for photosynthesis (Topt) varying by ±10% and ±20%; (b) variances of foliage, fine root, and woody
biomass data increasing by 10% (Var1) and 20% (Var2), and added random errors to allometric
relationships by Monte-Carlo simulations 1 (MC1) and 2 (MC2). Symbols show posterior modes, and
error bars represent 90% confidence interval.
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[40] Our results also showed that soil organic carbon in
the natural mature forest at Changbaishan was decomposed
faster than that in the evergreen plantation at Qianyanzhou
and seminatural successional forest at Dinghushan. Espe-
cially, the potential residence times of slow SOM pools
varied by 1 order of magnitude among the three forests. The
differences may stem from soil physical and chemical
properties and microbial community structure for different
soil types (dark brown forest soil at Changbaishan while red
soil at Qianyanzhou and latosolic red soil at Dinghushan),
since the climatic effects on decomposition have been
considered in the probabilistic inversion. It was still difficult
to identify and quantify how these factors influence decom-
position of litter and soil organic carbon among the three
forest ecosystems.

4.3. Uncertainties in Estimating Carbon Residence
Times

[41] Uncertainties of carbon residence times estimated by
probabilistic inversion primarily derived from prior esti-
mates for parameters, data properties such as error type and
magnitude, fixed parameters, cross correlations among
different data and self-correlations with time, and model
structure [Luo et al., 2009]. In this study, we examined the
effects of priors, error variance of observations, and carbon
input on estimated parameters by sensitivity analysis. Over-
all, the constraints of NEE, biometric and soil data on
carbon transfer coefficients or residence times were not
weakened under various parameter ranges, observation error
variances, and carbon input, but the best estimates of
parameters did change, especially for litter and soil carbon
pools (Figure 6). Among these possible uncertainty sources,
posterior estimation of transfer coefficients was most sen-
sitive to parameters of the GPP model and observation
errors. The sensitivities of estimated transfer coefficients to
parameters of the GPP model and observation errors of
biomass increased if additional 19 parameters were included
with eight carbon transfer coefficients in Monte Carlo
sampling, which probably resulted from the equifinality of
parameters. In that case, the utilization of additional infor-
mation on prior estimates for the parameters and other kinds
of observations, or the fixation of some parameters might
reduce the uncertainty [Wang et al., 2009]. Estimated
transfer coefficients were also influenced by sample sizes
of NEE data in multiple constraints (Figure 5). We need
more studies to determine how much information provided
by each data set would be enough to constrain parameter
estimation in future.
[42] Estimated residence times in this study varied with

parameterization of the GPP model, error properties and
their covariance of data sets, and model structure of TECO.
It is still a difficult task to determine error types, cross
correlations among different data and self-correlations with
time, and model errors. Commonly the assumption of a
Gaussian error distribution was used when we knew nothing
about error properties, as did in this study. However, eddy
flux measurement error was found follow a double expo-
nential distribution [Hollinger and Richardson, 2005;
Richardson et al., 2006] due to a superposition of almost
Gaussian distributions with standard deviations varying by
flux magnitude [Lasslop et al., 2008]. Different choices of
cost functions according to error distribution of NEE

measurement led to big variations in parameter estimates
and model predictions [Richardson and Hollinger, 2005]. It
is yet to be determined how much variation of parameter
estimates will result from different error distributions for
NEE in multiple constraints. In addition, Sacks et al. [2006]
compared different model structures of SIPNET using best
estimates of parameters, which could be another source of
uncertainty in parameter estimation.

5. Conclusions

[43] We conducted three parameter estimation experi-
ments with different data sets to estimate carbon residence
times based on an eight-pool terrestrial ecosystem (TECO)
model. We found that biometric, soil and NEE data are
complementary in constraining mean residence times. Res-
idence times of three plant pools and slow soil organic
matter were well constrained by biometric and soil data,
whereas residence times of metabolic and structural litter,
and microbial biomass pools were constrained by NEE data.
We therefore suggest that combined measurements of slow
carbon pools and fast fluxes are most effective to constrain
estimation of model parameters and state variables. Our
sensitivity analysis suggested that estimated carbon resi-
dence times varied with gross primary production and the
volume of NEE data. It is highly desirable in future study to
use an integrated canopy photosynthesis and ecosystem
carbon cycle model to evaluate the confidence of parameter
estimation and model predictions.
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