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[1] Temperature sensitivity of soil respiration (Q10) is an important parameter in modeling
effects of global warming on ecosystem carbon release. Experimental studies of soil
respiration have ubiquitously indicated that Q10 has high spatial heterogeneity. However,
most biogeochemical models still use a globally constant Q10 in projecting future
climate change, partly because no spatial pattern of Q10 values has been derived. In this
study, we conducted an inverse analysis to retrieve a global pattern of spatially
heterogeneous Q10 values by assimilating data of soil organic carbon into a process-based
terrestrial carbon model (Carnegie-Ames-Stanford Approach model) at spatial resolution
of 1� by 1�. The estimated Q10 values were, in turn, incorporated into soil respiration
models to evaluate their impacts on global respiratory carbon release from soil (i.e., total
soil respiration is equal to microbial and root respiration) and from microbial
decomposition (i.e., heterotrophic respiration). Our results show that the optimized Q10

values are spatially heterogeneous and vary with environmental factors. In general, Q10

value tends to be high in the high-latitudinal regions. The mean Q10 values for different
biomes range from 1.43 to 2.03, with the highest value in tundra and the lowest value in
deserts. When spatially heterogeneous Q10 values were incorporated into global soil
respiration models, simulated soil respiration has a feedback intensity of 3.21 Pg C �C�1

to climate warming, which is approximately 40% higher than that with a globally
invariant Q10 value. The modeled heterotrophic respiration has a feedback intensity of
2.26 Pg C �C�1, about 25% higher than that derived from a globally invariant Q10 value.
Overall, the feedback intensity of soil carbon release to climate warming depends not only
on the magnitude of a global mean of Q10 values but also their spatial variability.
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and its implications for carbon-climate feedback, J. Geophys. Res., 114, G02016, doi:10.1029/2008JG000850.

1. Introduction

[2] Soil respiration in terrestrial ecosystems plays a
critical role in regulating global carbon cycling. One
significant factor that not only influences the response of
soil respiration to global change but also determines the
direction and magnitude of terrestrial carbon cycle feedback
to climatewarming is temperature sensitivity of soil respiration
[Schimel et al., 1994; Luo, 2007]. Temperature sensitivity
of soil respiration (often termed as Q10) is a factor by which
soil respiration is multiplied when temperature increases by
10�C [Davidson et al., 2006], which is an important parameter
to evaluate the feedback intensity between soil carbon efflux
and global warming [Cox et al., 2000; Luo et al., 2001;
Friedlingstein et al., 2003; Reichstein et al., 2003]. So far,

most models generally consider the temperature sensitivity
as globally invariant when simulate global soil respiration
[Friedlingstein et al., 2006]. If the spatially heterogeneity in
Q10 is considered, the direction andmagnitude of the terrestrial
carbon cycle feedbacks to climate warming could be signifi-
cantly changed [Jones et al., 2003]. It is an urgent need to
derive the global pattern of Q10 and quantify its feedbacks in
the terrestrial ecosystem carbon cycling to climate warming
[Holland et al., 2000; Luo, 2007].
[3] There are two kinds of definitions on temperature

sensitivity, i.e., ‘‘intrinsic temperature sensitivity’’ and
‘‘apparent temperature sensitivity’’ [Davidson and
Janssens, 2006]. The intrinsic temperature sensitivity is
the theoretic sensitivity determined by molecular structure,
while the latter is the observed temperature sensitivity
determined by both molecular structure and environmental
constraints caused by heterogeneous soil properties [Sollins
et al., 1996;Davidson and Janssens, 2006]. As environmental
constrains dampen or obscure the intrinsic temperature
sensitivity of substrate decomposition, the apparent (or
observed) temperature sensitivity is usually less than
expected value [Davidson and Janssens, 2006]. Hereafter,
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the temperature sensitivity (Q10) in this study is stated for
apparent temperature sensitivity.
[4] Experimental studies of Q10 have long and extensively

been conducted in many ecosystems [Luo and Zhou, 2006].
Experimental results demonstrated that Q10 values varied
with temperature [Lloyd and Taylor, 1994; Kirschbaum,
1995; Luo et al., 2001], quantity and quality of soil organic
matter [Taylor et al., 1989; Liski et al., 1999; Wan and Luo,
2003], soil moisture [Davidson et al., 1998; Reichstein et
al., 2002; Hui and Luo, 2004], and land cover type [Raich
and Tufekcioglu, 2000]. The Q10 values derived from
measured soil respiration and temperature usually decline
with temperature because substrate availability decreases as
temperature increases [see Tedla et al., 2009]. As described
by the Michaelis-Menten kinetics equation, the low
substrate availability generally results in a low Q10 value
[Davidson et al., 2006]. Soil water content influences
temperature sensitivity because diffusivity of soluble
substrates is low at low water content and diffusivity of
oxygen is low at high water content. Low diffusivity of
either soluble substrates at low water content or oxygen at
high water content limits soil microbial respiration [Davidson
et al., 2006]. All the environmental and biological factors
such as soil temperature, moisture, and soil organic matter are
spatially heterogeneous. Accordingly, estimated Q10 from
measured soil respiration likely varies spatially at different
geographic locations [Xu and Qi, 2001].
[5] In the past, Q10 values have been seldom estimated

using process-based modeling but mostly by regression
analysis of measured soil CO2 efflux rates against temper-
ature [e.g., Raich and Potter, 1995; Fang et al., 2005]. As
empirical models do not contain equations to represent the
underlying physical, chemical, and biological processes as
described in the above paragraph, the estimated Q10 values
may not reflect true temperature sensitivity of soil respiration.
High values of Q10 estimates, such as those significantly
higher than 2.5, may be caused by confounding factors,
e.g., substrate supply [Davidson et al., 2006]. In addition,
reliability of the estimated Q10 values also depends on the
precision of instruments used in soil CO2 efflux measure-
ment. The static chamber, for example, may underestimate
soil respiration [Raich et al., 2002].
[6] Inverse modeling can be potentially a useful method to

estimate temperature sensitivity of soil respiration [Raupach
et al., 2005]. This method assimilates data from observations
and experiments with a process-based biogeochemical model
for parameter estimation. For example, Ise and Moorcroft
[2006] applied an inversemodelingmethod to integration of a
CENTURY-based mechanistic decomposition model with
observed soil organic carbon content to estimate the optimal
Q10 of soil respiration. On the basis of the TECO-R model
and remote sensing data, inverse modeling was also used by
Zhou and Luo [2008] to estimate spatial distribution of
carbon residence times for plant and soil.
[7] In this study, we used an inverse modeling approach,

which assimilates a process-based model (CASA model)
with the measured soil organic carbon (SOC) [Global Soil
Data Task, 2000] using a constraint of the global mean Q10

value of soil respiration reported by Raich et al. [2002] to
retrieve a global distribution of spatially heterogeneous Q10

values at a resolution of 1� by 1�. Our approach assumed
that temperature sensitivity of the heterogeneous respiration

(Q10) can be constrained by the Q10 value of soil respiration.
Since the autotrophic component of soil respiration may be
more sensitive than its heterotrophic component to temper-
ature change [Boone et al., 1998], the constraint may
slightly overestimate Q10 values of the heterotrophic respi-
ration. On the basis of the estimated Q10 values, we
analyzed the statistical dependencies of Q10 values on
environmental factors at the global scale. Finally, we used
an empirical soil respiration model and a process-based
model to evaluate the impacts of the spatially heterogeneous
Q10 values on respiratory carbon release from soil (i.e., total
soil respiration is equal to microbial and root respiration)
and microbial decomposition (i.e., heterotrophic respira-
tion), respectively, in response to climate warming. As it
is difficult to separate a Q10 value for heterotrophic respi-
ration and autotrophic respiration in soil at global scale, we
assume the Q10 value for heterotrophic respiration equals
that for root respiration at the same spatial grid.

2. Materials and Methods

[8] Our inversion approach is based on an assumption
that at equilibrium, the soil carbon input from ecosystem
production and output from soil respiration is balanced. The
soil carbon output by soil respiration is closely related to a
Q10 value [Xu and Qi, 2001; Fang et al., 2005]. The latter
varies with climatic factors [Reichstein et al., 2003; Hui and
Luo, 2004], and chemical compounds of plant litter and soil
texture [Schimel et al., 1994]. Since Q10 significantly
regulates soil carbon release and then soil organic carbon
(SOC) at a steady state with the yearly soil heterogeneous
respiration equals ecosystem net primary production
(NPP), SOC at particular geographical locations contains
information on Q10. Therefore, using the measured SOC as
constraints, the optimal Q10 can be estimated based on a rule
that the deviation of the observed and modeled Q10-related
SOC is minimized.
[9] In this study, NPP and SOC were estimated using

Carnegie-Ames-Stanford Approach (CASA model), which
contains an ecosystem production submodel and a soil
carbon submodel [Potter et al., 1993; Field et al., 1995].
The model used in this study has been improved and
validated by Randerson et al. [1996], Potter and Klooster
[1997], and Friedlingstein et al. [1999]. The CASA model
calculates NPP as a function of normalized difference
vegetation index (NDVI), photosynthetically active radia-
tion, maximum possible light utilization efficiency, temper-
ature and precipitation. The soil carbon submodel simulates
carbon cycling using a set of compartmental difference
equations based on a simplified version of the CENTURY
model [Parton et al., 1987, 1988]. Carbon fluxes are
controlled using nondimensional scalars related to air
temperature, soil moisture, litter substrate quality (N and
lignin contents), and soil texture. Carbon in soil organic
form is represented by two storage pools: the SLOW pool,
which chiefly contains chemically protected C, and the
OLD pool, which mainly contains physically protected C.
Fluxes from litter and soil to microbial pools and from
microbial pools back to soil pools occur in proportion to C
assimilation rates:

CO2 x; tð Þi¼ C x; tð Þi�ki �Ws x; tð Þ � Ts x; tð Þ � 1�Með Þ ð1Þ
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where x and t represent spatial grid and time (month)
respectively; CO2(x, t)i is production of CO2 of pool i,
which results from microbe-mediated decomposition of soil
organic carbon; C(x, t)i is carbon content of pool i; Me is
carbon assimilation efficiency of microbes; Ws(x, t) is scalar
for the effect of soil moisture content on decomposition;
Ts(x, t) is scalar for the effect of temperature on decomposi-
tion, which was treated uniformly as an exponential (Q10)
response:

Ts x; tð Þ ¼ Q
T x;tð Þ�35ð Þ=10½ �

10 ð2Þ

where Q10 is temperature sensitivity of soil microbial
respiration and T(x, t) is monthly average air temperature.

2.1. Inversion Algorithm

[10] At each 1� by 1� spatial grid x, we searched for the
optimal value of Q10 in the domain Q 2 [Qmin, Qmax] such
that

Sm;x Q0
10 Qð Þ

� �
� S0;x

�� �� 	 Sm;x Q0
10

� �
� S0;x

�� ��;8Q0
10 2 Q ð3Þ

where S0,x is the measured SOC at grid x, which obtained
directly from the SOC database [Global Soil Data Task,
2000]. Sm,x(Q10

0 (Q)) is CASA modeled SOC with the
optimal Q10 value (Q10

0 ), which is related with the searching
domain Q. Sm,x(Q

0
10) is modeled SOC with an arbitrary Q10

value (Q0
10) that locates in the domain Q. After the optimal

Q10 values for all grids are estimated, the modeled global
mean SOC in the domain Q has the minimal deviation with
the global mean observations:

J Qð Þ ¼

X

x

Sm;x Q0
10 xð Þ

� �
� S0;x

�� ��� a xð Þ
X

x

a xð Þ
ð4Þ

where a(x) is grid area of x, and J is the global mean
deviation between modeled and observed SOC, which
depends on the optimal Q10 value of each grid and therefore
related with the searching domain Q.
[11] The reasonable low limit (Qmin) of domain Q is

relatively easy to assign. In this study Qmin equals 1, which
means that soil respiration do not change with temperature;
it usually appears at soil type of entisol where SOC is
absent. The reasonable upper limit (Qmax), however, is
somewhat difficult to define as the estimated upper limits
from soil respiration measurements can be very high (e.g.,
significantly above 2.5), which probably can be attributed to
some confounding effects from substrate supply and other
processes [Davidson et al., 2006].
[12] For this reason, we did not prescribe a prior Qmax

value. Rather, we constrained the Qmax value according to
the following considerations. The global mean Q10 value
(Q10) has been estimated from worldwide soil respiration
measurements [Raich and Potter, 1995; Raich et al., 2002].
Our globally averaged Q10 value should be matched

with this value derived from the measurements of soil
respiration:

Qg Qmaxð Þ ¼

X

x

a xð Þ � Q0
10 xð Þ

� �

X

x

a xð Þ
ð5Þ

Qg � Q10

�� �� < 0:01 ð6Þ

where Qg is the global mean Q10 value that related with
optimal Q10 values of grids and therefore, related with the
upper limit of domain (Qmax). The value of Q10 used in this
study equals 1.72 as reported by Raich et al. [2002] from
soil respiration measurements in major ecosystems of the
world.

2.2. Data

[13] The spatial data sets used in this study include
(1) vegetation type, soil texture, multiyear monthly mean
AVHRR-NDVI and solar radiation (provided by Climatology
Interdisciplinary Data Collection and issued by Distributed
Active Archive Center at Goddard Space Flight Center,
http://daac.gsfc.nasa.gov); (2) multiyear monthly mean
temperature and precipitation data sets (provided by C. J.
Willmott and K. Matsuura, http://climate.geog.udel.edu/

climate); and (3) the maps of soil organic carbon and
nitrogen (provided by IGBP-DIS [Global Soil Data Task,
2000]). All of those global data sets were resampled to the
same geographic projection and at spatial resolution of 1� by
1� in ERDAS IMAGINE 8.5.
[14] The observations of soil respiration used for verifi-

cation came from the literature and compiled by Raich et al.
[2002] and have been used to verify the Raich’s soil
respiration model. All of those soil respiration measure-
ments were made with dynamic chambers coupled to
infrared gas analyzers (IRGA).

2.3. Verification

[15] To verify if the spatial pattern of estimated Q10

values from the inversion algorithm is reasonable, we
estimated soil respiration at several representative sites
and compared them to the field measurements. As the
spatially heterogeneous Q10 values were estimated from
assimilation of the spatial pattern of observed SOC into
the CASA model and further constraints by the global mean
Q10 over worldwide soil respiration measurements, it was
expected that the estimated Q10 values could improve
fitness of modeled soil respiration to the measured one in
comparison to that with the invariant Q10 in different spatial
grids. To do so, we applied a statistic of root-mean squared
errors (RMSE) to evaluate its improvement of modeled soil
respiration using the spatially heterogeneous Q10 values
estimated from this inverse analysis relative to those using
a globally invariant Q10 in different spatial grids.

2.4. Evaluations of Spatial Patterns of Q10 on Modeling
of Soil Respiration

[16] To evaluate the potential influences of spatially
heterogeneous Q10 values on soil respiration modeling, we
used an empirical soil respiration model as in the work of
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Raich et al. [2002] to simulate soil respiration (i.e., both soil
heterotrophic respiration and root respiration), which is
matched with field soil respiration measurements. In addi-
tion, we used a process-based model, the CASA soil carbon
submodel, to simulate soil heterotrophic respiration, which
accounts for simultaneous changes in soil C stocks and
temperature sensitivity of soil respiration.
[17] The original Raich’s model uses a global invariant

Q10 value (Q10 = 1.72) and expresses as:

Model A : Rs ¼ F � e b�Tað Þ � P= K þ Pð Þ½ � ð7Þ

where Rs refers to the mean monthly soil respiration in
g C m�2 d�1; b is a constant temperature sensitivity (b =

LnQ10/10 = 0.054); Ta refers to the mean monthly air
temperature (�C), and P is the mean monthly precipitation
(cm);F andK are constants (F = 1.250 andK = 4.259) derived
from the observed soil respiration.
[18] The modified model uses the inverted global pattern

of Q10 values and expresses as:

Model B : R0
s ¼ F � e bx�Tað Þ � P= K þ Pð Þ½ � ð8Þ

where bx is our estimated temperature sensitivity at spatial
grid x (bx = LnQ10(x)/10); Rs

0 refers to the mean monthly
soil respiration with spatially heterogeneous Q10 values in
g C m�2 d�1.
[19] We selected Raich’s model because it is developed

upon the worldwide measurements of soil respiration. In
addition, the global mean value of our inverted Q10 is the
same with the Raich’s global invariant Q10 value (i.e., Q10 =
1.72), so the deviation of total modeled soil respiration is
completely induced by the spatial distribution of Q10 values.
[20] We also evaluated potential impacts of spatially

heterogeneous Q10 on carbon cycle–climate change feed-
back via soil respiration under two scenarios. The first one
is a 1�C increase of temperature evenly in each spatial grid.
The second one is the actual interannual variations of
temperature observed from 1982 to 1999 [Legates and
Willmott, 1990a, 1990b]. In both scenarios, soil respiration
was modeled simultaneously by empirical models A and B,
while the soil heterotrophic respiration was modeled by
CASA soil carbon submodel, in which the spatially hetero-
geneous and the globally invariant Q10 were both used.

3. Results

3.1. Global Pattern of Q10

[21] At the global scale, the optimal mean Q10 value
increases but the mean deviation between the modeled and
observed SOC decreases with the upper limit of domain Q
(i.e., Qmax) (Figure 1). As Qmax becomes larger, there are

Figure 1. Relationship between optimal global mean Q10

value and upper limit of domain Q. As Qmax becomes larger,
there are more chances to find a better Q10 by the inverse
algorithm to minimize the deviation of the modeled SOC
from the observed one. However, the rate of this improve-
ment of the model-data match declines to be sufficiently
small as Qmax becomes higher than 2.61, at which value the
globally mean Q10 value (Q10) that derived from worldwide
measurements of soil respirations is 1.72.

Figure 2. Spatial pattern of the optimal Q10 values. In general, tundra, C3 and C4 grasslands,
shrublands, and croplands have higher Q10 values than deserts, bare grounds, broadleaf deciduous forests,
and woodlands.
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more chances to find a better Q10 by the inverse algorithm
to minimize the deviation of the modeled SOC from the
observed one in any particular spatial grid. However, the
rate of this improvement of the model-data match declines
to be sufficiently small as Qmax becomes higher than 2.61,
at which the globally mean Q10 value (Q10) is 1.72. The
latter was derived from worldwide measurements of soil
respirations. Thus, the globally mean Q10 value of 1.72 is an
effective constraint in our inverse analysis to retrieve
optimal Q10 values from observed SOC in individual spatial
grids. It also suggests that the Q10 values derived from
measured soil respiration are, on average, consistent with
those estimated from our inverse analysis that assimilated
observed SOC into a process-based carbon cycle model.
[22] The derived spatial pattern of the optimal Q10 values at

global scale shows a great spatial heterogeneity (Figure 2).
The optimal Q10 values for each biome range from the lowest
of 1.43 for desert and bare ground to the highest of 2.03 for
tundra (Table 1). In general, tundra, C3 and C4 grasslands,
shrublands, and croplands have higher Q10 values than
deserts, bare grounds, broadleaf deciduous forests, and
woodlands. The optimal Q10 values are relatively higher in
the higher-latitude regions as reflected by a positive correla-
tion between latitudes (�) and the latitudinal mean Q10 values
(r = 0.51).

3.2. Comparison of Modeled With Observed Soil
Respiration

[23] Incorporation of site-specific Q10 values into the
model B (equation (8)) consistently improved simulated
soil respiration in comparison with those with the invariant
Q10 in model A (equation (7)) at all sites (Figure 3). The
root-mean squared errors (RMSE) between the modeled and
observed soil respiration decrease by 3.1 to 30.0% for
different sites with the site-specific Q10 values than the
globally invariant Q10 values. For instance, RMSE of a
deciduous forest in USA (43.1�N, 70.0�W) is 0.61 when
using our estimated Q10 of 1.80, while the corresponding
RMSE is 0.73 when using a constant Q10 of 1.72. Thus, the
RMSE decreased by 16.4%.

3.3. Statistical Dependency of Q10 on Environmental
Factors

[24] Correlation analysis indicates that the Q10 values
estimated by our inverse method are statistically related
with environmental factors such as soil organic carbon
content and mean annual precipitation (MAP). Q10 values
are positively correlated with soil organic carbon and soil
nitrogen contents, with the correlation coefficients of 0.30
and 0.31, respectively (Table 2). The correlation between
Q10 and MAP is positive for the broadleaf evergreen forests,
broadleaf deciduous forests, grassland, cultivation, and
desert and bare ground but negative for needleleaf forests
and high-latitude deciduous forest.

3.4. Impacts of Q10 on Global Soil Respiration
Modeling

[25] Under the first scenario with an even increase in
temperature by 1�C for each spatial grid, simulated soil
respiration by the empirical model Awith globally invariant
Q10 is considerably different from that by the model B with
spatially heterogeneous Q10 (Figures 4a and 4b). The
relative discrepancy between the two models is larger than
±5% (Figure 4b). The absolute discrepancy of the simulated
soil respiration between the two models is largest in the
latitude band of 0�–30�N and quite minor in the latitude
bands of 60–90�N and 30�–60�S. At the global scale, the
increment of modeled soil respiration with the spatially
heterogeneous Q10 values is 7.02 Pg C a�1 in response to
climate warming by 1�C, which is much higher than
4.16 Pg C a�1 estimated with an globally invariant Q10

value. Thus, the feedback intensity between soil respiration
and climate warming would be underestimated by 40.7% if
the spatially heterogeneous Q10 values were not considered.
[26] Under the first scenario, soil heterotrophic respiration

simulated by the CASA soil carbon submodel displays a
similar spatial pattern of relative discrepancy between the
spatially heterogeneous and invariant Q10 (Figure 4d), but
the absolute discrepancy between the two types of Q10 in
simulated heterotrophic respiration by the CASA model is
apparently less than total respiration by the empirical
models (Figure 4a versus Figure 4c).

Table 1. Area-Weighted Mean Values of Q10, Mean Annual Temperature, and Mean Annual Precipitation for Each Land Cover Typea

Land Cover Typeb Number of Grids Area (km2) Q10 MATc (�C) MAPd (mm a�1)

Broadleaf evergreen forest 1093 1.34E+07 1.50 25.0 2201
Broadleaf deciduous forest and woodland 318 3.28E+06 1.75 16.6 961
Mixed forest and woodland 763 6.55E+06 1.61 9.2 934
Coniferous forest and woodland 2000 1.29E+07 1.69 �2.1 547
High-latitude deciduous forest and woodland 952 5.75E+06 1.61 �5.7 442
Wooded C4 grassland 1456 1.71E+07 1.59 23.1 1324
C4 grassland 779 8.93E+06 2.02 23.8 580
Shrubs 1034 1.10E+07 1.82 17.6 266
Tundra 1507 7.00E+06 2.03 �10.4 335
Desert, bare ground 1598 1.68E+07 1.43 20.6 96
Cultivation 1368 1.33E+07 2.01 14.7 832
C3 wooded grassland 440 4.46E+06 1.66 14.6 1145
C3 grassland 1235 1.14E+07 1.96 7.3 423
All, global averagee 14543 1.32E+08 1.72 13.7 789

aMAT, mean annual temperature; MAP, mean annual precipitation.
bThe original land cover classification was produced by R. DeFries and J. Townshend (Department of Geography, University of Maryland at College

Park), with revisions made by J. Collatz (Code 923, NASA Goddard Space Flight Center).
cArea-weighted annual mean temperature.
dArea-weighted annual total precipitation.
eAntarctica and ice are excluded.
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[27] Under the second scenario with the actual observed
interannual variation of temperature from 1982 to 1999, the
temperature anomaly (i.e., the departure of the mean annual
temperature from the total mean) ranged from �0.40 to
0.47. In correspondence, the anomaly of modeled soil
respiration (i.e., the departure of modeled soil respiration
in a particular year from the total mean during the period)
ranges from �1.01 to 1.44 Pg C a�1 for the globally
invariant Q10 value in model A and from �1.79 to
2.96 Pg C a�1 for spatially heterogeneous Q10 values in
model B (Figure 5a). The linear regression between
the anomaly of global mean annual temperature and
the anomaly of modeled soil respiration has a slope of
1.88PgC�C�1forthegloballyinvariantQ10and3.21PgC�C�1

for the spatially heterogeneous Q10 values (Figure 5a).
Although the temperature sensitivity of soil respiration
estimated according to temperature anomaly under scenario
2 is less than that estimated under scenario 1 in the absolute

magnitude, the relative magnitude of underestimation of the
sensitivity by the globally invariant Q10 in comparison to
that by the spatially heterogeneous Q10 is 41.4%, similar to
that under scenario 1 (40.7%).
[28] Under scenario 2, soil heterotrophic respiration

simulated by the CASA model has the temperature sensi-
tivity of 2.26 Pg C �C�1 when the spatially heterogeneous
Q10 was considered (Figure 5b). As a comparison, the
corresponding sensitivity is 1.69 Pg C �C�1 (Figure 5b)
with the globally invariant Q10.

4. Discussion

4.1. Influences of Constraints on Estimation of Spatial
Pattern of Q10

[29] In this inverse analysis, we used spatially distributed
measurements of soil organic carbon and several ancillary
variables to constrain a process-based biogeochemical

Figure 3. Comparisons between measured (solid symbols) and estimated soil respirations in various
ecosystems. Dashed line is the values estimated by Raich’s globally invariant Q10 model (equation (7)),
and solid line is the values fitted by modified Raich’s model using the estimated site-specific Q10 values
(equation (8)). RMSE is root-mean squared error. (a) Data from a mixed deciduous forest in New
Hampshire, based on Crill [1991]. (b) Data from barley (solid circles) and fallow (solid triangles) fields in
Ottawa, Canada, based on Rochette et al. [1992]. (c) Data from spruce (solid circles), aspen (solid
triangles), and pine (solid squares) woodlands in Manitoba, as estimated from Figure 3 of Savage et al.
[1997]. (d) Data from a tallgrass prairie in Texas, as estimated from Figure 3 of Mielnick and Dugas
[2000]. (e) Data from taiga forest stands in interior Alaska, as estimated from Figure 1 of Gulledge and
Schimel [2000]: floodplain alder (solid circles); floodplain white spruce (solid triangles); upland birch and
aspen (solid squares); and upland white spruce (solid diamonds).
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model so as to extract information on temperature
sensitivity of soil heterotrophic respiration. We also
used the global mean of the experimentally derived Q10 as
a further constraint on estimation of the temperature sensi-
tivity. Soil organic carbon originates from plant production
and litter input. It accumulates slowly in soil to a steady
state if there is no disturbance [Li et al., 2004]. Therefore,
the Q10 values derived from the observed soil organic carbon
and relevant environmental factors are multiyear averaged

temperature sensitivity, which is somewhat different from
those derived from instantaneous measurements of soil
respiration. The derived Q10 values from this inverse anal-
ysis are more suitable for projecting long-term climate-
carbon cycle feedback at large spatial scales.
[30] Experimentally derived Q10 values from instanta-

neous soil respiration measurements reflect apparent
temperature sensitivity at local scales and vary with many
site-specific conditions [Davidson and Janssens, 2006]. The
site-specific Q10 values cannot be easily scaled up to
analysis at regional or global scales for at least two reasons.
First, observations of soil respiration are too sparse and the
ecosystems are too heterogeneous to allow large-scale
assessment with sufficient accuracy [Denman et al.,
2007]. Second, experiment-based Q10 values are usually
derived from regression analysis and can be unreasonably
high or low due to confounding factors [Davidson et al.,
2006]. To avoid these issues, we used the global mean Q10

value as a constraint instead of the site-specific Q10 values.
[31] The inversion approach searched for optimal Q10

values by minimizing differences between modeled and
observed SOC contents. The estimated Q10 values can be
influenced by the inverse method, the model used in the
analysis, and the searching range of Q10 values. When the
experiment-based global mean Q10 value (= 1.72) was used
as a constraint in the inverse analysis, the upper limit of
Qmax equals 2.61 (Figure 1), which is amazedly similar to
the value of 2.5 purely based on a theoretic analysis
[Davidson et al., 2006]. In addition, site-specific Q10 values

Figure 4. Absolute and relative discrepancies for total soil respiration and heterotrophic respiration
increments modeled by the empirical and the process-based model at the scenario that temperature in
each grid evenly increases 1�C. Absolute discrepancies for (a) total respiration and (c) heterotrophic
respiration (modeled values of global invariant Q10 minus modeled value of spatial pattern of Q10).
Corresponding relative discrepancies for (b) total respiration and (d) heterotrophic respiration.

Table 2. Correlations Between Q10 and Soil Organic Carbon and

Nitrogen Contenta

Land Cover Type Q10 and SOC Q10 and N

Broadleaf evergreen forest 0.56b 0.58b

Broadleaf deciduous forest
and woodland

0.28b 0.32b

Mixed forest and woodland 0.39b 0.42b

Coniferous forest and woodland 0.67b 0.57b

High-latitude deciduous forest
and woodland

0.84b 0.78b

Wooded C4 grassland 0.48b 0.45b

C4 grassland 0.38b 0.38b

Shrubs 0.11b 0.28b

Tundra 0.41b 0.34b

Desert, bare ground 0.23b 0.19b

Cultivation 0.22b 0.24b

C3 wooded grassland 0.39b 0.42b

C3 grassland 0.26b 0.28b

All vegetation 0.30b 0.31b

aSOC, soil organic carbon; N, nitrogen.
bCorrelation is significant at the 0.01 level.
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derived from this inverse analysis provide better estimations
of soil respiration with lower root-mean squared errors
(RMSE) than the globally invariant Q10 (Figure 3). This
further enhances the validity of the inversion method for
estimation of Q10 values.

4.2. Spatially Variable Q10 Values and Their Impacts
on Carbon Cycle–Climate Change Coupling

[32] One urgent mission in the Earth system science is to
couple climate models with biosphere models to examine
climate change–carbon cycle feedback [Solomon et al.,
2007]. However, the spatial resolution of climate system
models is usually much larger than those of Q10 values
derived form soil respiration measurements. As a conse-
quence, newly derived Q10 values from ecological research
could not be timely incorporated into the climate system
models to improve our prediction of climate change. For
example, it has been extensively illustrated by ecologists
that Q10 values are spatially heterogeneous. The coupled

models of a climate system with terrestrial carbon cycling,
however, still use an assumed, globally invariant Q10 value
[Luo, 2007]. The main cause is that ecosystems are too
heterogeneous to allow a global assessment with sufficient
accuracy [Denman et al., 2007]. In this study we retrieved a
spatial pattern of heterogeneous Q10 values at the 1� by 1�
resolution based upon two considerations. First, the global
data sets at 1� by 1� are plenteous for inversion algorithm.
Second, this spatial resolution is matched with the general
atmospheric circulation models (GCMs) and therefore
useful for research on the climate-carbon feedback.
[33] The feedback intensity of global warming and soil

carbon release depends not only on the magnitude of a
global mean Q10 value but also their spatial variability. Our
analysis on interannual variability in soil respiration caused
by temperature anomaly indicates that the feedback inten-
sity of total soil respiration and heterotrophic respiration to
climate warming is 1.88 Pg C �C�1 and 1.69 Pg C �C�1,
respectively, when a global invariant Q10 value was used.
When spatially heterogeneous Q10 values were incorporated
intomodels, the feedback intensity of total soil respiration and
heterotrophicrespirationis3.21PgC�C�1and2.26PgC�C�1,
respectively. Thus, a coupled climate-carbon cycle model
that ignores spatial heterogeneity of Q10 would underesti-
mate soil respiration by approximately 40% and heterotro-
phic respiration by about 25%.

5. Conclusions

[34] Temperature sensitivity of soil respiration (as indicated
by Q10) and its spatial variability are crucial for projecting
climate change and atmospheric CO2 concentration in the
future. Our inverse analysis show that the observed soil
organic carbon content and soil respiration offer good con-
straints on estimation of Q10 values in different spatial grids.
Estimated Q10 values have a high spatial heterogeneity and are
regulated by many spatially heterogeneous environmental
factors. Q10 values vary with biome types and, in general,
are higher at high-latitudinal bands. The derived spatially
heterogeneous Q10 values result in better soil respiration
estimation at different sites than the globally invariant Q10.
The feedback intensity of total soil respiration and heterotro-
phic respiration to climate warming would be underestimated
by about 40% and 25%, respectively, if a globally invariant
Q10 rather than spatially heterogeneous Q10 values are used in
models.
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