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Abstract

Aims

Data assimilation is a useful tool to extract information from large

datasets of the net ecosystem exchange (NEE) of CO2 obtained by

eddy-flux measurements. However, the number of parameters in

ecosystem models that can be constrained by eddy-flux data is lim-

ited by conventional inverse analysis that estimates parameter values

based on one-time inversion. This study aimed to improve data as-

similation to increase the number of constrained parameters.

Methods

In this study, we developed conditional Bayesian inversion to max-

imize the number of parameters to be constrained by NEE data in

several steps. In each step, we conducted a Bayesian inversion to

constrain parameters. The maximum likelihood estimates of the con-

strained parameters were then used as prior to fix parameter values in

the next step of inversion. The conditional inversion was repeated

until there were no more parameters that could be further con-

strained. We applied the conditional inversion to hourly NEE data

from Harvard Forest with a physiologically based ecosystem model.

Important Findings

Results showed that the conventional inversion method constrained

6 of 16 parameters in the model while the conditional inversion

method constrained 13 parameters after six steps. The cost function

that indicates mismatch between the modeled and observed data de-

creased with each step of conditional Bayesian inversion. The Bayesian

information criterion also decreased, suggesting reduced informa-

tion loss with each step of conditional Bayesian inversion. A wavelet

analysis reflected that model performance under conditional Bayes-

ian inversion was better than that under conventional inversion at

multiple time scales, except for seasonal and half-yearly scales. In

addition, our analysis also demonstrated that parameter convergence

in a subsequent step of the conditional inversion depended on

correlations with the parameters constrained in a previous step.

Overall, the conditional Bayesian inversion substantially increased

the number of parameters to be constrained by NEE data and can

be a powerful tool to be used in data assimilation in ecology.
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INTRODUCTION

Understanding processes and mechanisms that control ecosys-

tem carbon balance can greatly improve our ability to predict

ecosystem responses to global climate changes (Luo et al.

2001a; Schimel et al. 2001; Valentini et al. 2000). Eddy covari-

ance technology, as a way to assess net ecosystem exchange

(NEE) of CO2, provides us a new opportunity to explore eco-

system processes and mechanisms (Baldocchi et al. 2001). At

present, NEE data are measured half-hourly or hourly in

;100 sites within the AmeriFlux network, resulting in huge

datasets of eddy-flux measurements. Eddy-flux data have

been used to estimate net ecosystem production (Van Dijk

and Dolman 2004; Zha et al. 2004), study seasonal and inter-

annual variability in environmental variables and carbon

processes (Hui et al. 2003; Wofsy et al. 1993), partition
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photosynthetic and respiratory CO2 fluxes (Baldocchi 2003;

Falge et al. 2002; Reichstein et al. 2005) and validate ecosystem

models (Clark et al. 2001; Law et al. 2000; Siqueira et al. 2006).

How to gain insights into fundamental mechanisms of eco-

system carbon processes from the rapidly expanding NEE

data continues to be one of the main challenges in ecology

community.

Recently, data assimilation techniques and inverse analysis

have been applied to extract ecological knowledge from mas-

sive eddy-flux data (Raupach et al. 2005). The approaches have

been used to (i) estimate model parameters that cannot be di-

rectly or easily obtained from experiments (Braswell et al.

2005; Hanan et al. 2002; Luo et al. 2003; Schulz et al. 2001;

White and Luo 2002; Xu et al. 2006); (ii) explore biogeochem-

ical processes at different temporal and spatial scales (Lai et al.

2002; Sacks et al. 2006); (iii) quantify uncertainty in carbon

budgets (Knorr and Kattge 2005; Williams et al. 2005; Xu

et al. 2006) and (iv) make inference for multiple-model selec-

tion (Sacks et al. 2006). Overall, the data–model assimilation

approaches have a potential to improve the capability of eco-

system carbonmodels to predict responses of terrestrial carbon

cycling to climate changes.

Application of the data assimilation techniques is an active

topic in ecological modeling studies (Xu et al. 2006). Many

aspects of the techniques have to be improved. One of the

issues is that the number of parameters in process-based eco-

system models that can be constrained by NEE or other eco-

logical data is extremely low. For example, the analysis of

the covariance matrix in parameter estimation conducted by

Wang et al. (2001) showed that only a maximum of three

or four parameters could be determined independently from

CO2 flux observation. Multiple years of NEE datasets can

constrain 13 parameters out of 23 in a simplified photosynthe-

sis and evapo-transpiration (SIPNET) model by stochastic

Bayesian inversion (Braswell et al. 2005). Six datasets of soil

respiration, woody biomass, foliage biomass, litterfall and soil

carbon content from the Duke Forest Free-Air CO2 Enrich-

ment Experiment (FACE) can constrain four at ambient

CO2 and three at elevated CO2 out of seven carbon transfer

coefficients (Xu et al. 2006). Knorr and Kattge (2005) pre-

sented the posterior standard deviation (SD) of parameters

instead of the number of constrained parameters after con-

ducting Bayesian inversion. They found that, in comparison

to prior SD of parameters, posterior SDs were obviously re-

duced in 7 out of 14 BETHY C4 model parameters and in

5 out of 23 BETHY C3 model parameters. Unconstrained

parameters have no convergence in their posterior probability

density functions (PDFs). In this case, any value chosen within

the lower and upper limits of the parameters would not make

any difference in reproducing the observed data. This situation

is called parameter equifinality. Parameter equifinality has

been identified as a major source of large uncertainty in the

prediction of carbon and heat fluxes (Schulz et al. 2001).

The issue of parameter equifinality has not been carefully

addressed in the model assimilation of NEE data (Luo et al.

2009). Most of the published studies on the model assimilation

of eddy-flux or biometrical data either avoid the issue by pre-

scribing many of the parameters in their models or merely re-

port which parameters were or were not constrained. For

example, all the partitioning coefficients of photosynthates in-

to plant pools, all the initial values of pool sizes and all the

parameters that describe carbon flows into receiving pools

were prescribed in the inverse analysis with six datasets from

Duke FACE experiments (Xu et al. 2006). They only analyzed

seven parameters related to residence times of the seven plant

and soil carbon pools based on the reason that the seven

parameters are probably among the most important ones in de-

termining ecosystem carbon cycling (Luo et al. 2003). Braswell

et al. (2005) prescribed the initial conditions and two param-

eters in SIPNET model and allowed the other 23 parameters to

vary in the parameter optimization. Similarly, Sacks et al.

(2006) conducted Bayesian inversion after fixing three param-

eters in the SIPNET model and did not report the number of

constrained parameters in their results. Little attention has

been paid to parameter equifinality in data assimilation al-

though carbon-flux partitioning, cross-site comparison and

long-term prediction strongly rely on accurate estimation of

parameters. Therefore, to improve model prediction of carbon

processes, we have to address the parameter equifinality issue

and to improve the parameter estimation method so that more

parameters can be constrained.

We have explored several methods to improve the param-

eter estimation, such as different model structures, different

lengths of NEE datasets and model synthesis with NEE and

other datasets. Here, we report our research results using

a modified Bayesian inversion method, which we call condi-

tional Bayesian inversion. The conditional Bayesian inversion

sequentially conducts Bayesian inversion by several steps. In

each step, we obtained convergence information for a subset of

parameters. Then maximum likelihood estimates (MLEs) of

the constrained parameters were then used as prior to fix

the parameter values at MLEs in the next step of Bayesian in-

version with decreased parameter dimensionality. Conditional

inversion was repeated until there were no more parameters

to be constrained. We applied this method with a physiologi-

cally based ecosystem model to hourly NEE measurements at

Harvard Forest. Then, the conditional inversion method was

evaluated in terms of the number of constrained parameters,

values of the cost function, Bayesian information criterion

(BIC) and the root mean square error (RMSE) in multiple

time scales.

MATERIALS AND METHODS
Data source

We used 1 year of data (1998) from the AmeriFlux site at

Harvard Forest, near Petersham, MA, USA, in our inverse

analysis. The flux site is located in a mid-latitude forest ecosys-

tem (42.54�N, 72.17�W). The data were downloaded from

the AmeriFlux database at http://public.ornl.gov/ameriflux/

56 Journal of Plant Ecology

 at U
niversity of O

klahom
a on A

ugust 3, 2012
http://jpe.oxfordjournals.org/

D
ow

nloaded from
 

http://public.ornl.gov/ameriflux/index.html
http://jpe.oxfordjournals.org/


index.html. Five datasets that were included in the data–model

assimilation to derive optimized parameter values are (i) NEE,

(ii) air temperature at top canopy (Ta), (iii) photosynthetically

active radiation (PAR), (iv) relative humidity (RH) and (5) leaf

area index (LAI). Among them, hourly NEE, Ta, PAR and RH

were meteorological measurements taken directly from the

eddy tower, whereas hourly LAI data were interpolated from

LAI measurements.

We chose datasets in 1998 because (i) LAI, as an important

variable to scale leaf-level photosynthesis up to canopy-level

photosynthesis, was available in that year; (ii) our previous

study indicated that parameter estimation in carbon models

from NEE data was most efficient by the inclusion of 1-year

data (White et al. 2006); (iii) the model used in this study

was not designed to study inter-annual variability with mul-

tiple-year hourly NEE data and rather (iv) our primary objec-

tive of this study was to examine and evaluate different

inversionmethods in terms of efficiency of extracting informa-

tion from NEE data.

Model description and parameters

The model used in this study was a flux-based ecosystem

model (FBEM), which was fully described in Appendix with

equations. In brief, the FBEM model described the short-time

processes of canopy-level photosynthesis (Ac) and ecosystem

respiration (Reco) as regulated by environmental variables.

NEE of CO2 to the atmosphere (NEE) was calculated by

NEE=Reco � Ac:

A positive NEE value denotes a release of CO2 from the eco-

system while a negative NEE value presents a net uptake of

CO2 from the atmosphere. Canopy photosynthesis was esti-

mated from LAI and leaf photosynthesis (Sellers et al. 1992).

The latter was described using themodel developed by Farquhar

et al. (1980) for both carboxylation and electron transport pro-

cess together with a stomatal conductance model (Chang

2003; Leuning 1995; van Wijk et al. 2000). Ecosystem respira-

tionwasmodeled by a function of temperaturewith thewidely

used Q10 function (van’t Hoff 1899). Although autotrophic

and heterotrophic respirationmay differentially respond to en-

vironmental variables (Luo and Zhou 2006), ecosystem respi-

ration equations are usually sufficient to describe NEE

(Janssens and Pilegaard 2003; Novick et al. 2004) and have

fewer parameters to be estimated. In total, there were totally

16 parameters that governed the model’s behavior (Table 1,

Appendix).

Bayesian inversion with Markov Chain Monte Carlo

technique

Data assimilation is to derive posterior information of model

parameters based on a given set of measurements and a model

structure. According to Bayes’ theorem, posterior PDFs of

model parameters (p) can be obtained from prior knowledge

of parameters and information generated by comparison of

simulated and observed variables. The theorem can be de-

scribed as (Mosegaard and Sambridge 2002).

f ðpÞ= v � LðpÞ � qðpÞ;

where f(p) is the posterior PDFs of model parameters, v is a nor-

malized constant, qðpÞ represents the prior PDFs of model

parameters and L(p) is the likelihood function, which expresses

the fit between modeled and measured NEE.

Table 1: symbols, definition, unit, prior value and range of parameters that were used in the model–data assimilation

Parameter Definition Unit Value Minimum Maximum Source

aq Canopy quantum efficiency of photon conversion mol mol�1 photon 0.28 0 0.5 1

K25
c Michaelis–Menten constant for carboxylation lmol mol�1 460 50 600 1

EKc
Activation energy of K25

c J mol�1 59 356 30 000 150 000 1

Eko Activation energy of K25
o J mol�1 35 948 10 000 60 000 1

K25
o Michaelis–Menten constant for oxygenation mol mol�1 0.33 0.2 0.5 1

EVm
Activation energy of V25

m J mol�1 58 520 10 000 100 000 1

C25
� CO2 compensation point without dark respiration lmol mol�1 42.5 10 200 1

rJmVm
Ratio of Jmto V25

m at 25�C 1.79 1 5 1

R0
eco Whole ecosystem respiration at 0�C lmol CO2 m�2 s�1 2.5 1 5 3

Q10 Temperature dependency of ecosystem respiration 2 1 3 3

V25
m Maximum carboxylation rate at 25�C lmol CO2 m�2 s�1 29 10 300 1

fCi Ratio of internal CO2 to air CO2 0.87 0.5 0.9 1

kn Canopy extinction coefficient for light 0.8 0.7 0.9 1

EC25
�

Activation energy of CO2 compensation point at 25�C J mol�1 60 000 30 000 100 000 1

gl Empirical coefficient in Leuning model 1657 100 2000 2

D0 Empirical coefficient in Leuning model kPa 2.74 1 10 2

1, Knorr and Kattge 2005; 2, van Wijk et al. 2000; 3, Novick et al. 2004.
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To carry out the data assimilation, we first specified ranges

for model parameters as prior knowledge (see Table 1). The

initial values and lower and upper boundaries of parameters

were defined according to values reported in the literature, ed-

ucated guesses and measurements (Knorr and Kattge 2005).

The parameter space was denoted as X. Then, we used theMe-

tropolis–Hastings (M-H) algorithm to select parameters. The

M-H algorithm uses a Markov Chain Monte Carlo (MCMC)

technique to generate high-dimensional PDFs of model

parameters via a sampling procedure (Hastings 1970;Metroplis

et al. 1953) and allows computation of correlation among

parameters. In performing the selection process, we ran the

M-H algorithm by repeating two steps: a proposing step and

a moving step (Xu et al. 2006). In each proposing step, the al-

gorithm proceeds as a random walk ðDpÞ from the previously

accepted parameter vector within the parameter space to gen-

erate a new parameter vector. Dp is defined by a random num-

ber (r) between 0 and 1, the vector of parameter minima (pmin)

and maxima (pmax) and a step length factor (s).

pi+ 1 = pi +Dp= pi +
ðr � 0:5Þ

s
� ðpmax � pminÞ;

where pi and pi + 1 are previously accepted and new parameter

vector, respectively.

In eachmoving step, the new vector of p is tested against the

Metropolis criterion (Xu et al. 2006) to examine whether it

should be accepted or rejected. The Metropolis criterion is

a probability to accept the proposed parameters, which is de-

rived from likelihood functions of proposed parameters rela-

tive to the parameters accepted last time. In practice, we

calculated a NEE value from the FBEMmodel by using the pa-

rameter vector generated in the proposing step and then com-

pared the calculated NEE valuewith the observedNEE value to

get the data–model error JðpÞ:

JðpÞ=1

2
� ðNEEs

i � NEEo
i Þ

T � C � 1
NEE � ðNEEs

i � NEEo
i Þ;

where NEEs
i is the NEE value simulated by the model while

NEEo
i is the observed value, i = 1, 2, . . ., N, where N is the total

number of observations in the NEE time series. CNEE is the co-

variance matrix and superscript T denotes the transposed vec-

tor. The likelihood function was expressed as the negative

exponential of themisfit againstmeasurements, J(p), such that

LðpÞ=
Yn
i=1

1ffiffiffiffiffiffiffiffiffi
2pr

p � e�ðNEE
o
i
�NEEs

iÞ
2

2r2 ;

where r is the SD of data–model error. Then, the probability to

accept the new parameters (moving to the next step) was cal-

culated by

Pðpi; pi+ 1Þ=min

�
1;
L
�
pi +1

�
LðpiÞ

�
:

Once the proposed parameters were accepted, the accepted

parameters were then used to generate a new set of parame-

ters. Otherwise, the proposed parameters were discarded and

a new set of parameters was generated based on the accepted

parameters from the previous iteration.

After we run the model for 20 000 000 times, the model

parameters estimated by the M-H algorithm converged to sta-

tionary distributions.

Conditional Bayesian inversion

Conditional Bayesian inversion was built upon the Bayesian

inversion described in the previous section. Suppose we had

a model with n parameters to be estimated. After we did the

Bayesian inversion once, we obtained MLEs for a number

of well-constrained parameters (the number denoted as n1).

Then, we used the MLEs for n1 well-constrained parameters

as prior values in the model for the next step of Bayesian in-

version. In this way, parameter dimensionality decreased to

n� n1. We repeated the Bayesian inversion again to search

for posterior PDFs of the rest of parameters (n� n1). The

obtained MLEs for additional well-constrained parameters

were used as prior values for the following step of Bayesian

inversion. This process was repeated until there were no

further parameters that could be constrained. Since each step

in the inversion process was based on information obtained

in the previous step, we call this process conditional Bayesian

inversion (Fig. 1). In contrast, the method of parameter esti-

mation by one-time inversion is called conventional Bayesian

inversion.

Convergence test

Here, we used Gelman–Rubin (G-R) diagnostic method to

monitor convergence of MCMC simulation. By starting with

different initial parameter values and running three parallel

chains, we compared the within-run variation (Wi) with the

between-run variations (Bi) of each parameter to examine

convergence of accepted series (Gelman and Rubin 1992).

Figure 1: schematic process of the conditional Bayesian inversion.

During each step, parameter dimensionality is reduced by using

MLE values of constrained parameters in previous step of inversion

as prior in the present step of Bayesian inversion.
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Specifically, for each parameter component pi of vector p,

denoting the samples from k parallel M-H runs of length n

as p
n;k
i ða=1; 2; . . . ;N; b=1; 2; . . . ;KÞ, then the between-run

and within-run variance are defined as

Bi =
N

K � 1
� +

K

b=1

�
p
:;b
i � p::i

�2

;

Wi =
1

KðN � 1Þ +
K

b=1

+
N

a=1

�
p
a;b
i � p

:;b
i

�2

:

The G-R scale reduction statistics (GRi) is given by

GRi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N � 1

N
+
K +1

K � N � Bi

Wi

	
� df

df � 2

s
;

where df is degree of freedom for parameters in each M-H run

(N � 1). When GRi approximately equaled to one, conver-

gence of MCMC simulation was reached.

Bayesian information criterion (BIC)

In order to examine whether the model with parameter values

optimized by conditional Bayesian inversion performs better

than that optimized by conventional Bayesian inversion, we

used BIC (also known as the Schwarz criterion (Schwarz

1978)) to calculate the information loss in each step within

conditional Bayesian inversion.

BIC= � 2 � lnL +K � lnðnÞ;

where L is the maximized value of the likelihood function, K is

the number of free parameters to be estimated and n is the

number of data points. Lower BIC is considered to be less in-

formation loss with better model performance (Braswell et al.

2005; Carlin et al. 2006).

Time scale analysis

We applied a wavelet decomposition analysis to observed NEE

series andmodeled NEE series with optimized parameters from

conventional and conditional Bayesian inversion, respec-

tively. Wavelet decomposition transforms the time series data

into coefficients vectors in different wavelet levels, corre-

sponding to multiple time scales. We selected Coif wavelet ba-

sis as a mother wavelet (Braswell et al. 2005) and generated

frequency-dependent coefficients in 12 levels. By comparing

the mismatch between coefficients from observed and mod-

eled NEE time series, we evaluated the time scales at which

conditional Bayesian inversion provided better estimates for

NEE than conventional inversion does.

RESULTS

Conventional Bayesian inversion constrained six parameters

(EVm
, rJmVm

, R0
eco, Q10, gl and D0) in the model (Fig. 2, left side

of the dashed line). Using the MLEs of the six parameters,

which were constrained in the first step of (i.e. conventional)

Bayesian inversion, the second step of the Bayesian inversion

constrained additional three parameters (aq, K25
c and V25

m )

(Fig. 2, right side, Column 1). Using MLEs of the additional

constrained parameters, the third step of Bayesian inversion

constrained onemore parameterC25
� . Similarly, the fourth step

constrained K25
o and fCi and the fifth step constrained EC25

�
. The

sixth step of the Bayesian inversion did not constrain anymore

parameters, suggesting that there was hardly any information

contained in the NEE measurements that can be used to con-

strain EKc
, Eko and kn. Overall, seven more parameters were

constrained by the conditional Bayesian inversion than by

the conventional Bayesian inversion (Fig. 2, right side of

the dashed line).

To explore posterior PDFs of the three unconstrained

parameters (EKc
, Eko and kn) after the last step of conditional

Bayesian inversion, we used theMLEs of all the 13 constrained

parameters as prior, increased the upper range of EKc
from

15 000 to 20 000 and decreased the lower range of kn from

0.7 to 0.5. The posterior PDFs of two unconstrained parameters

(EKc
and kn) were edge hitting at the sixth step of conditional

Bayesian inversion but showed well-constrained distributions

after the expansion of parameter ranges. The evenly distribu-

tion PDF of Eko was little affected (Fig. 3). However, the con-

vergence patterns of EKc
and kn would not happen if parameter

ranges were broadened at the first step of Bayesian inversion

(data not shown).

The MLEs of parameters retrieved from the conditional

Bayesian inversion were shown in Table 2 with corresponding

SD of parameters to indicate how well the NEE data con-

strained each parameter. Most of the posterior distributions

of parameters were well within the range published in the lit-

erature (Table 2).WhenMLEs of parameters were used to gen-

erate the modeled NEE time series, the modeled NEE matched

seasonal and diurnal dynamics of observed NEE very well

(Fig. 4a). The correlation coefficient between observed and

modeled NEE was 89.9% (Fig. 4b). The RMSE between ob-

served and modeled NEE was 0.000034 g C m�2 s�1.

To examine whether the new optimization algorithm per-

forms better than conventional inversion, we calculated

50 000 cost function values at each step of the conditional

Bayesian inversion, each corresponding to one accepted pa-

rameter set. Box plot showed that the distribution of the cost

function values was right-skewed and themedian value of cost

function decreased with the successive conditional Bayesian

steps (Fig. 5), indicating a better fitting between modeled

and observed NEE with each step. In addition, BIC values also

decreased with each step in the conditional Bayesian inversion

from 1321 to 1199 (Table 3). The information loss was re-

duced, suggesting that the model fitting with data was im-

proved during the conditional Bayesian inversion.

Improvements in the estimation of NEE by conditional

Bayesian inversion were also reflected at different time scales

after we conducted wavelet decomposition (Table 4). Norm

values, which represented the Euclidean distance between co-

efficient vectors from observed and modeled NEE time series,
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Figure 3: posterior PDFs of parameters, Ekc , Eko and kn, by broadening parameter ranges.

Figure 2: histogram to indicate frequency distribution of parameters derived from conditional and conventional Bayesian inversion with 50 000

accepted parameter sampling series by the M-H algorithm. Sixteen panels on the left side of the dashed line show six constrained parameters and

10 unconstrained parameters based on conventional Bayesian inversion, which is also the first step of conditional Bayesian inversion. Panels on

the right side of the dashed line show the changes in parameter posterior PDFs at each step of conditional Bayesian inversion.
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were smaller in conditional Bayesian inversion than those in

conventional Bayesian inversion from wavelet levels 1–5 and

levels 7–10. Meanwhile, RMSE were also smaller in those lev-

els, indicating modeled NEE dynamics optimized by condi-

tional inversion could match the observed data slightly

better than that optimized by conventional inversion.

A correlation analysis at each step of conditional Bayesian

inversion showed that either constrained (e.g. rJmVm
in the first

step) or unconstrained parameters (e.g. K25
c in the first step)

can have high correlations with other parameters (Table 5).

Conversely, either constrained (e.g. EVm
in the first step) or un-

constrained parameters (e.g. kn in the sixth step) can have no

or low correlations with other parameters. But, from the sec-

ond step on, each of the constrained parameters at that step

was highly correlated with at least one parameter constrained

by the last step. For example, for the three parameters con-

strained in step 2, aq, K25
c and V25

m were highly correlated with

rJmVm
and gl. And, aqand V25

m were highly correlated with each

other (0.95). The constrained parameter C25
� in the third step

was highly correlated with aqthat was constrained in the

second step.

DISCUSSION

The conditional Bayesian inversion developed in this study

substantially increased the number of parameters to be con-

strained by NEE measurements (13 of a total 16 parameters)

in comparison to the conventional inversion (6 of 16) (Fig. 2).

Other measures also indicated that more information was

extracted from the NEE data by the conditional than conven-

tional inversion approaches. For example, the cost function

(Fig. 5), BIC that measures information loss (Table 3), and

data–modelmismatch asmeasured by themisfit betweenwave-

let coefficients and RMSE at multiple time scales (Table 4)

almost all decreased at each step of conditional inversion, sug-

gesting that the new optimization algorithm improved param-

eter estimation.

Ecosystem simulation models have been relatively well de-

veloped and extensively applied to ecological research since

1960s (Odum 1956; Watt 1966). Most of the major ecosystem

and community processes have been incorporated into mod-

els (Ågren and Bosatta 1998; Parton et al. 1987; Rastetter et al.

1991). Despite the fact that diverse models exist in the re-

search community, most of them share similar structures that

fluxes of carbon among compartments are largely controlled

by donor pool sizes, and pools and fluxes are mostly linked by

first-order differential equations (Luo and Reynolds 1999).

The major sources of uncertainty in model prediction of eco-

system responses to global changes are from unconstrained

response functions and parameter values (Green et al.

1999; Luo et al. 2003; MacFarlane et al. 2000). Many of the

parameters in ecosystem models are difficult or impossible

to be directly measured (Luo et al. 2001b; Van Oijen et al.

2005). In the past, Monte Carlo simulation or sensitivity anal-

ysis has been conducted to identify key parameters (e.g.

Verbeeck et al. 2006; Zaehle et al. 2005) before efforts were

made to obtain more accurate estimates of the parameters.

Recently, data assimilation and inverse analysis have been

applied to estimate parameter values. But almost all the pa-

rameter estimation studies have showed that the number of

Table 2: optimized parameter distribution based on conditional Bayesian inversion and comparison with parameter ranges published in

the literature

Parameter Best value SD

Ranges in literature

Minimum Maximum Reference

aq 0.18 0.01 0.02 0.24 Farquhar et al. 1980; Larcher 1995; Verbeeck et al. 2006

K25
c 406 88 100 405 Bernacchi et al. 2003; Campell and Norman 1998;

Harley and Baldocchi 1995

Ekc 129 290 13 944 65 330 80 500 Bernacchi et al. 2003; Harley et al. 1992; Wang et al. 2004

Eko 29 395 12 553 14 500 60 110 Bernacchi et al. 2003; Harley et al. 1992; Wang et al. 2004

K25
o 0.32 0.05 0.10 0.42 Bernacchi et al. 2003; von Caemmerer et al. 1994

EVm
73 310 3067 60 000 116 300 Aalto and Juurola 2001; Kosugi et al. 2003; Leuning 1995

C25
� 17 3 2 110 Chabot and Mooney 1985; Larcher 1995

rJmVm
1.70 0.49 1.67 2.82 Carswell et al. 2000; Wullschleger 1993

R0
eco 1.81 0.12 0 4 Davidson et al. 2006; Goulden et al. 1996; Hollinger et al. 2004

Q10 1.63 0.04 2 3.1 Janssens and Pilegaard 2003

V25
m 145 5 6 194 Dreyer et al. 2001; Rey and Jarvis 1998; Wullschleger 1993

fCi 0.75 0.04 0.53 0.8 Haxeltine et al. 1996; Rey and Jarvis 1998

kn 0.7024 0.0024 0.3 0.7 Larcher 1995; Wang and Leuning 1998

EC25
�

66 992 13 049 29 000 Harley et al. 1992; Jordan and Ogren 1984

gl 243 195

D0 1.77 0.14
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parameters that can be constrained by NEE data is extremely

limited (e.g. Wang et al. 2001).

To cope with unconstrained parameters, previous studies

using conventional data assimilation methods usually pre-

scribed a subset of parameter values and estimated other

parameters. In their inverse analysis, e.g. Xu et al. (2006) pre-

scribed all the partitioning coefficients of photosynthate into

plant pools and all the initial values of pool sizes. Sacks

et al. (2006) also fixed initial conditions and three parameters

in the SIPNET model. The parameter values that are fixed be-

fore conducting data–model assimilation will affect conver-

gence patterns of estimated parameters. To our knowledge,

no study has been conducted to examine the implications of

prescription of a subset of parameter values for convergence

of the parameters to be estimated. In this study, we allowed

all the 16 parameters to vary in the first step of Bayesian in-

version to avoid subjective prescription of parameter values.

We then used the MLEs of constrained parameters as prior

in the next step of conditional inversion to increase the accu-

racy of parameter estimation.

There are four possible reasons explaining why the condi-

tional Bayesian inversion constrained more parameters than

the conventional inversion did. First, the M-H algorithm for

the Bayesian inversion searches for a vicinity of optimal param-

eter values that minimize the mismatch between the observed

and modeled variables (Metroplis et al. 1953; Raupach et al.

2005; Tarantola 2005). The algorithm chose a value with the

Figure 4: comparison of observed and modeled NEE with optimized

parameters by conditional Bayesian inversion, in time series (a) and by

correlation (b).

Figure 5: decreases in cost function within each step in conditional

Bayesian inversion. Box plot provides a visual summary for the distri-

bution of cost function, respectively, in the 5% (bottom points), 25%

(bottom hinge of the box), 50% (line across the box), 75% (upper

hinge of the box) and 95% (upper points) intervals.

Table 3: number of constrained parameters, cost function and BIC

during conventional and conditional inversion in the model–data

assimilation

Inversion process No. of CP

Cumulative no.

of CP Cost function BIC

Conventional inversion 6 6 52 473 1321

Conditional inversion

First 6 6 52 473 1321

Second 3 9 52 382 1264

Third 1 10 52 348 1235

Fourth 2 12 52 336 1226

Fifth 1 13 52 314 1208

Six 0 13 52 299 1199

CP, constrained parameters.
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highest probability (MLE) to be fixed for each constrained pa-

rameter in the next step of inversion, which reduced parameter

uncertainties as indicated by a gradual decrease in cost function

(Fig. 5). Second, parameter dimensionality decreased during

conditional Bayesian inversion, resulting in higher possibility

to find the optimal parameter values. The computational com-

plexity of Bayesian inversion increases quadratically with the

numberofobservations (Fearnhead 2006). It is difficult to obtain

the best parameter sets in a high-dimension space. When

dimensions were reduced after each step of conditional inver-

sion, the space inwhich theM-H algorithm searched for optimal

parameters also decreased, so that additional parameters can be

possibly constrained byNEE data. Third, parameter sensitivity to

NEE dynamics was altered during conditional Bayesian inver-

sion. Constraint of a parameter in inverse analysis is determined

by differentiability of the parameter to the data (Tarantola

2005). In our study, the sensitivity of a parameter ðpiÞ to

NEE as in @pi
@NEE was not only determined by the parameter itself

but also conditioneduponotherparameter values.Oncea subset

of parameter values were fixed, the sensitivity of parameters

to NEE were altered, leading to new possibilities to further

constrain parameters.

The fourth and probably most important reason is the cor-

relation. Our analysis of the correlation matrix of parameters

(Table 5) showed that parameters constrained in the second or

later steps were all highly correlated with at least one of the

parameters constrained in the previous step. When one of

the correlated parameters was fixed at the MLE, the other

parameters can also be constrained in the following inversion

step. Therefore, conditional inversion is to increase the num-

ber of constrained parameters partly by fixing the highly cor-

related parameters step by step. Correlation among parameters

has been speculated as a major cause for a low number of con-

strained parameters in eddy covariance data assimilation.

Wang et al. (2001) suggested that fixing those parameters that

had high correlations with other parameters can improve

parameter estimation. Meanwhile, high correlations between

parameters were considered to be a possible reason for poorly

constrained parameters (Braswell et al. 2005) or ecologically

not meaningful estimates of parameters (Sacks et al. 2006).

Our analysis supports those assertions.

Fixing constrained parameters at the MLEs in each step of

the conditional inversion, however, did introduce additional

assumptions since what we obtained in each step is the PDFs

for constrained parameters rather than exact values with 100%

certainty. Nevertheless, it is quite common in an inverse analysis

to fix some parameters and search for others. This conditional

inversion used MLEs identified in the previous step to fix those

constrained parameters for the next step of inversion. It is still

useful to identify more parameters with the same dataset.

Data assimilation obtains MLEs and SDs of parameters from

posterior PDFs. NEE is a small net flux resulting from a balance

between two large fluxes of photosynthesis and respiration

with substantial white noises (Hollinger and Richardson

2005; Valentini et al. 2000). When the optimization algorithm

minimizes the mismatch between observed and modeled NEE

to obtain MLEs, estimated parameters may not be ecologically

meaningful. Thus, we have to ultimately compare estimated

parameter values with ecologically meaningful values that

have been used in the literature. In our study, MLEs and

SD of constrained parameters were highly comparable to

the parameter values in the literature (Table 2). For example,

the estimated ratio of intercellular to air CO2 concentration

(fCi) was close to the commonly used value for C3 plants in sim-

ulation models (Haxeltine and Prentice 1996). The estimated

CO2 compensation point (C25
� ) was well constrained and in

good agreement with the experimental results for plant species

that were similar to those in Harvard Forest (Ni and Pallardy

1992; Wu et al. 2006). Likewise, the ratio between electron

transport and carboxylation rate (rJmVm
) was estimated to be

1.7, which was supported by the observations for C3 species

(Wullschleger 1993).

Table 4: comparison of mismatch (NORM) and RMSE betweenwavelet coefficients (under different Coif levels) of modeled and observed

NEE for both conventional and conditional Bayesian inversion

Wavelet level No. of wavelet coefficients Rough time scale

Conventional Conditional

ImprovementNORM RMSE NORM RMSE

1 4394 104.24 1.57 104.04 1.56 Yes

2 2211 90.82 1.93 90.66 1.92 Yes

3 1120 89.22 2.67 88.53 2.64 Yes

4 574 Half-daily 133.02 5.55 132.95 5.54 Yes

5 301 Daily 53.68 3.09 53.34 3.07 Yes

6 165 37.99 2.95 38.05 2.96 No

7 97 35.30 3.58 34.98 3.55 Yes

8 63 Monthly 37.62 4.74 37.24 4.69 Yes

9 46 30.80 4.54 30.06 4.43 Yes

10 37 30.48 5.01 30.14 4.96 Yes

11 33 Seasonal 47.32 8.24 47.93 8.34 No

12 31 Half-yearly 37.97 6.82 40.75 7.32 No
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After the sixth step of conditional inversion, three parame-

ters (EKc
, EKo

and kn) still could not be constrained. EKc
and EKo

are activation energy for carboxylation and oxygenation, re-

spectively, and describe biochemical processes onlywhen pho-

tosynthesis is limited by enzyme activity. We ultimately need

biochemical data on enzyme kinetics with respect to photosyn-

thesis to constrain EKc
and EKo

. Variation in measured NEE, es-

pecially at a daily time scale, is mainly regulated by light

availability and is unlikely to provide much information on ac-

tivation energy of photosynthetic enzymes. As a result, any

value of EKc
and EKo

will be accepted as ‘good’ values in search

with theM-H algorithm as long as a goodmodel–data fit can be

achieved by optimization of other parameters. Parameter kn is

a canopy light extinction coefficient. Canopy-level kn varies

with LAI (Larcher 1995; Wallace 1997), which changes over

a growing season as canopy develops (Hymus et al. 2002). Con-

sequently, the kn value is supposed to vary with seasons. How-

ever, our data assimilation algorithm only searches for one

value of kn in each M-H selection. Similarly, Braswell et al.

(2005) reported that temporal variation of parameter poten-

tially explained the edge-hitting behavior of half saturation

point in PAR and photosynthesis relationship (PAR1=2) in their

study. It is highly desirable to estimate dynamics of parameters

over time in the future.

In this study, we used data from one particular year to

test the conditional inversion method. In this year, 1998,

the NEE of Harvard Forest was only 40% of the mean annual

NEE due to some abnormal weather events (Urbanski et al.

2007). Data from different years generally should not

affect the evaluation of the conditional inversion method.

However, it is yet to be explored how disturbances and

extreme climate conditions affect the MLEs and PDFs of

constrained parameters.

CONCLUSIONS

Almost all the published studies using data assimilation

approaches report that the number of parameters that can

be constrained by NEE data is very limited. In this study,

we developed a conditional Bayesian inversionmethod, which

substantially increased the number of parameters constrained

by NEE data. Within each step of conditional Bayesian inver-

sion, cost function, BIC and RMSE within multiple time scales

almost all decreased, indicating that fitting between modeled

and observed NEE was improved. Such improvement in pa-

rameter estimation enhances our ability to extract information

from NEE data and potentially reduces uncertainty for predic-

tion of carbon dynamics in the future. While the number of

parameters to be constrained by NEE data increased by using

conditional Bayesian inversion, some other issues, such as

model structures, the length of NEE datasets and synthesis

of the model with NEE and other datasets, need to be further

explored in future data assimilation studies.

Table 5 continued

5th EKc
Eko kn EC25

�
1.00 �0.13 �0.08 �0.39 EKc

6th 1.00 0.07 0.18 Eko

EKc
1.00 1.00 0.17 kn

Eko 0.23 1.00 1.00 EC25
�

kn �0.04 0.07 1.00

EKc
Eko kn

Table 5 continued

3rd EKc
Eko K25

o C25
� fCi kn EC25

�
1.00 0.46 �0.53 0.48 0.60 �0.01 0.41 EKc

4th 1.00 �0.22 0.10 0.11 0.01 0.07 Eko

EKc
1.00 1.00 �0.54 20.84 0.09 0.11 K25

o

Eko �0.03 1.00 1.00 0.67 �0.23 0.26 C25
�

K25
o �0.01 0.21 1.00 1.00 0.01 0.03 fCi

fCi 0.32 �0.26 20.81 1.00 1.00 0.03 kn
kn 0.12 �0.03 �0.06 0.18 1.00 1.00 EC25

�
EC25

�
�0.06 0.13 0.61 �0.56 0.01 1.00

EKc
Eko K25

o fCi kn EC25
�

Table 5: correlation of parameters within each step of conditional Bayesian inversion (correlation coefficients were highlighted if their

absolute values were larger than 0.60)

1st aq K25
c EKc

Eko K25
o EVm

C25
� rJmVm

R0
eco Q10 V25

m fCi kn EC25
�

gl D0

1.00 0.46 �0.01 0.15 20.66 0.00 0.15 �0.59 0.03 �0.01 0.95 0.19 �0.06 �0.35 20.89 �0.06 aq
1.00 �0.26 0.17 20.61 �0.09 0.26 20.87 0.06 �0.05 0.67 0.71 �0.07 �0.34 �0.55 �0.08 K25

c

1.00 0.21 0.26 0.10 0.18 0.33 �0.01 0.01 �0.10 �0.04 0.05 0.00 0.14 0.05 EKc

1.00 0.18 0.06 0.23 �0.05 �0.08 0.08 0.11 0.14 0.09 �0.45 �0.26 �0.03 Eko

2nd 1.00 0.06 �0.03 0.79 �0.01 0.01 20.74 �0.33 0.08 0.36 0.71 0.15 K25
o

aq 1.00 1.00 0.42 0.20 �0.31 0.20 �0.04 �0.15 �0.03 �0.09 �0.02 �0.15 EVm

K25
c 0.09 1.00 1.00 0.00 0.08 �0.05 0.12 0.36 �0.01 �0.21 �0.10 0.19 C25

�
EKc

0.14 �0.18 1.00 1.00 �0.04 0.01 20.76 �0.42 0.07 0.38 0.68 0.13 rJmVm

Eko �0.06 0.10 0.11 1.00 1.00 20.80 0.03 0.12 0.01 0.09 0.05 �0.02 R0
eco

K25
o �0.24 0.39 �0.11 0.28 1.00 1.00 �0.02 �0.10 �0.01 �0.08 �0.05 0.14 Q10

C25
� 0.85 0.33 0.08 �0.12 �0.28 1.00 1.00 0.32 �0.07 �0.35 20.87 �0.10 V25

m

V25
m 0.45 0.28 0.19 �0.06 �0.40 0.69 1.00 1.00 �0.01 �0.13 �0.19 �0.04 fCi

fCi 0.04 0.72 �0.09 �0.02 0.07 0.26 0.05 1.00 1.00 �0.01 0.05 �0.01 kn
kn 0.03 �0.01 0.08 0.08 0.06 �0.05 0.04 �0.03 1.00 1.00 0.47 0.19 EC25

�
EC25

�
�0.43 �0.10 �0.42 �0.07 0.33 �0.44 20.64 �0.01 0.01 1.00 1.00 0.10 gl
aq K25

c EKc
Eko K25

o C25
� V25

m fCi kn EC25
�

1.00 D0
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Appendix: model structure description

Leaf-level photosynthesis

Leaf-level photosynthesis was described by a model developed

by Farquhar et al. (1980). For C3 plants, gross leaf CO2 uptake

(A, lmol CO2 m�2 s�1) is calculated as

A=minfJc ; Jeg;

where Jc and Je represent the rate limited by carboxylation

enzymes and by light electron transport, respectively.

The carboxylation processes (Jc , lmol CO2 m�2 s�1) are

Jc =Vm

Ci � C�

Ci +KC

�
1 +Ox

.
Ko

�:
Ci is the leaf internal CO2 concentration (lmol CO2 mol�1

air), expressed as

Ci = fCi � Ca;

with Ca is ambient CO2 concentration (365 lmol CO2 mol�1

air) and fCi is ratio of leaf internal CO2 to ambient air CO2

concentration. Ox is oxygen concentration in the air (0.21

mol O2 mol�1 air). Vm is maximum carboxylation rate (lmol

CO2 m
�2 s�1), which is related to canopy temperature Tk (K)

by Arrhenius’ equation:

Vm=V
25
m �exp

�
EVm

� ðTk � 298Þ
R � Tk � 298

	
with an activation energyEVm

;

where V25
m is maximum carboxylation rate at 25�C and R is uni-

versal gas constant (8.314 J K�1 mol�1). The CO2 compensa-

tion point without dark respiration is represented as C� (lmol

CO2 mol�1). It is also adjusted by Arrhenius’ equation in

C� =C25
� � exp

�
EC25

�
� ðTk � 298Þ

R � Tk � 298

	
;

where C25
� is the CO2 compensation point without dark respi-

ration at 25�C and EC25
�
describes the temperature dependence

of C�. Two Michaelis–Menten constants have a temperature

dependence based on the Arrhenius’ equation similar to Vm.

Kc , Michaelis–Menten constant for carboxylation (lmol

mol�1), was represented by

Kc=K
25
c � exp

�
EKc �ðTk�298Þ

R�Tk�298

�
with an activation energy EKc

,

where K25
c is the Michaelis–Menten constant for carboxylation

at 25�C. Ko, Michaelis–Menten constant for oxygenation (mol

mol-1), was represented as

Ko=K
25
o � exp

�
EKo �ðTk�298Þ

R�Tk �298

�
with anactivation energyEKo

,where

K25
o is the Michaelis–Menten constant for oxygenation at 25�C.
The light electron transport processes (Je, lmol CO2 m

�2 s�1)

are

Je =
aq � I � Jmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2m +a2q � I2

q � Ci � C�
4 � ðCi +2C�Þ

;

when I is absorbed PAR (lmol m-2 s-1). aq is quantum effi-

ciency of photon capture (mol mol�1 photon) and Jmis max-

imum electron transport rate (lmol CO2 m
�2 s�1). Jm depends

on temperature and is computed by

Jm = rJmVm
� V 25

m � exp
�
EVm

� ðTk � 298Þ
R � Tk � 298

	
;

where rJmVm
is the ratio of Jm to V25

m at 25�C.

Stomatal conductance

The stomatal conductance ðGsÞ is coupled with leaf-level pho-

tosynthesis by Leuning model (Leuning 1995), so that the car-

bon influx of the top leaf layer (An) is estimated by

An =Gs � ðCa � CiÞ;
Gs = gl � A

ðCi � C�Þ �
�
1 +

D

D0

	;

where gl and D0 (kPa) are empirical coefficients and D is vapor

pressure deficit (kPa).

Vapor pressure deficit is calculated by air temperature (Tk)

and RH (in %) (Chang 2003).

lnes =21:382 � 5347:5=Tk;

D=0:1 � es � ð1 � RHÞ;

where es is saturation vapor pressure (mbar).
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Canopy-level photosynthesis

In order to scale up leaf-level photosynthesis to canopy-

level photosynthesis, an approach of Sellers et al. (1992)

was used to describe the relationship between the canopy

photosynthesis (Ac) and the carbon influx of the top leaf

layer, derived as

Ac =An �
1 � expð � kn � LAIÞ

kn
;

where kn is light extinction coefficient.

Ecosystem respiration

Ecosystem respiration (Reco) is modeled as a function of tem-

perature (Ta, in �C) with the widely used van’t Hoff equation

(van’t Hoff 1899):

Reco =R0
eco � Q

Ta

.
10

10 ;

where R0
eco is ecosystem respiration at 0�C and Q10 is the rel-

ative increase
�
Reco

.
R0
eco

�
in respiration for every 10�C rise in

temperature.
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