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Abstract

Over the last two and half decades, strong evidence showed that the terrestrial ecosys-

tems are acting as a net sink for atmospheric carbon. However the spatial and temporal

patterns of variation in the sink are not well known. In this study, we examined

latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE)

of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere

research sites located at latitudes ranging from � 291N to � 641N. We computed the

standard deviation of annual NEE integrals at individual sites to represent absolute

interannual variability (AIAV), and the corresponding coefficient of variation as a

measure of relative interannual variability (RIAV). Our results showed decreased trends

of annual NEE with increasing latitude for both deciduous broadleaf forests and ever-

green needleleaf forests. Gross primary production (GPP) explained a significant propor-

tion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across

deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP

and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in

GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore,

RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous

broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed

air temperature was the primary environmental factor that determined RIAV of NEE in
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deciduous broadleaf forest across the North American sites, and none of the chosen

climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual

NEE significantly increased with latitude in grasslands. Precipitation was dominant

environmental factor for the spatial variation of magnitude and IAV in GPP and Re in

grasslands.

Keywords: ecosystem respiration, eddy covariance, gross primary production, interannual variability,

latitudinal pattern, net ecosystem exchange
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Introduction

There is strong evidence that terrestrial ecosystems

have acted as net carbon sinks over the last two and

half decades, accounting for 20–30% of annual total

anthropogenic CO2 emission into the atmosphere (Ca-

nadell et al., 2007). However, the geographic locations of

this accumulation are not well known (Friend et al.,

2007). Recent studies, using different approaches

including biomass inventory, ecological models and

inversions with atmospheric transport models, are in-

conclusive regarding the spatial distribution of carbon

sinks (Fan et al., 1998; Gurney et al., 2002; Yuen et al.,

2005). For example, Gurney et al. (2002) suggested the

temperate North American carbon sink was approxi-

mately 40% smaller compared with what was reported

by Fan et al. (1998), and a small boreal North American

carbon source, rather than a small sink, was also re-

ported. Furthermore, interannual variability (IAV) in

integrated net ecosystem exchange (NEE) is a common

phenomenon observed for almost all ecosystems world-

wide (Goulden et al., 1996; Baldocchi et al., 2001) and the

underlying variation in ecosystem metabolism causes

significant year-to-year variability in the annual growth

rate of atmospheric CO2 (Bousquet et al., 2000; Hought-

on, 2000). To date, however, the spatial patterns of IAV

in NEE have not been characterized.

The objective of the present study is to characterize

spatial patterns, in relation to latitude, of across-site

variation in mean annual NEE, and within-site inter-

annual variation in NEE. Latitude is a proxy for multi-

ple environ-climatic variables and also vegetation

attributes over large spatial scales. Indeed, it has been

suggested that the thermal and water variables fluctu-

ate differently from the equator to the poles (IPCC,

2001). For example, warming has generally increased

with latitude at northern hemisphere, and average

arctic temperatures increases at almost twice the global

average rate in the past 100 years (IPCC, 2007). As to the

precipitation, it increases over land north of 301N over

the period 1900 to 2005 but downward trends dominant

the tropics since the 1970s (IPCC, 2007). Moreover, the

standard deviation (SD) of temperature, indicating IAV

in temperature, is greatest in high-latitude regions, and

decreases toward the equator (Räisänen, 2002). Num-

bers of studies showed that temporal and spatial varia-

tions in climate along the latitudinal gradient strongly

regulate spatial patterns in NEE (Jarvis et al., 2001;

Oberbauer et al., 2007).

Most of synthesis analyses, however, assembled all

ecosystem types, which masked the differences of re-

sponsive mechanisms to climate change among ecosys-

tem types, suggesting the ambiguous spatial patterns of

ecosystem carbon fluxes across the regional scales

(Simmons et al., 1996; Oberbauer et al., 2007). Recent

studies showed different biological and environmental

regulations to ecosystem carbon fluxes among ecosys-

tem types, which directly related to the latitudinal

patterns of magnitude and IAV in NEE, gross primary

production (GPP) and ecosystem respiration (Re). Some

preliminary experimental evidences follow from recent

studies demonstrating that the responses of deciduous

broadleaf forests to temperature variation are much

more sensitive than evergreen needleleaf forests (Arain

et al., 2002; Welp et al., 2007). For example, increases in

spring air temperatures from 2002 to 2004 resulted in

increases of GPP during the spring by 74% and Re by

61% in a deciduous broadleaf forest, but in an adjacent

evergreen needleleaf forest, however, the temperature

only led to increases of GPP by 16% and Re by 15%

(Welp et al., 2007). Consequently, spatial patterns of IAV

in ecosystem carbon fluxes of deciduous broadleaf

forest will abide by the variation of temperature, but

there are complicated environmental controls on spatial

patterns in evergreen needleleaf forests (Kljun et al.,

2006; Stoy et al., 2008). Compared with the forest eco-

systems, precipitation is dominant variable not only in

the magnitude but also IAV of GPP, Re and NEE in

grasslands based on studies at individual sites (Li et al.,

2005; Jacobs et al., 2007).

Furthermore, it has been well established that the

magnitudes of NEE vary with latitude in forest ecosys-

tems (Valentini et al., 2000; Jarvis et al., 2001; van Dijk &

Dolman, 2004). In general, NEE rates are large in the

low latitudinal regions and become smaller in the high

latitudinal regions. However, it has been debated which
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of GPP and Re is dominant in determining geographical

distributions of NEE (Janssens et al., 2001; Barr et al.,

2002). A recent study suggested annual Re accounted

for a larger degree of the variability in annual NEE

(R2 5 0.6) at deciduous broadleaf forest than did GPP

(R2 5 0.1), in contrast, GPP was significantly related to

NEE at the adjacent evergreen needleleaf forest (Stoy

et al., 2008). Therefore, it is crucial to study the simila-

rities and differences, in terms of degree, mechanism,

and process, of biological and environmental regulation

to ecosystem carbon fluxes across various ecosystem

types, in order to reliably characterize the spatial pat-

terns of magnitude and IAV in NEE.

Continuous, high frequency, tower-based eddy cov-

ariance (EC) measurements of the surface–atmosphere

exchange of CO2, now being made at hundreds of sites

around the world, permit quantification of site-level

carbon balances. Concurrent measurements of envir-

on-climatic drivers, such as temperature, photosynthe-

tically active radiation (PAR) and precipitation, provide

the data necessary to investigate how variation in these

factors drives variation in NEE, GPP and Re. Further-

more, as CO2 flux measurements are now being made in

a wide range of biomes, it is of clear value to investigate

the differences of responsive mechanisms to climate

change among biomes. Therefore, the overarching goal

of this study is to investigate latitudinal patterns of NEE

and its IAV, and identify underlying mechanisms based

on EC flux measurements. Specific objectives are to (1)

analyze latitudinal patterns of NEE, GPP, and Re in

terms of their mean values and IAVs, (2) investigate the

contributions of GPP and Re to spatial variation of NEE,

and (3) examine environ-climatic regulation of these

patterns.

Data and methods

EC flux data

The data used in this study were downloaded from

the AmeriFlux (http://public.ornl.gov/ameriflux) and

EuroFlux internet webpages (http://www.fluxnet.ornl.-

gov/fluxnet/index.cfm; Valentini, 2003). Supplemen-

tary information on the vegetation, climate, and soils

at each site is available on-line. Half-hourly or hourly

averaged PAR, air temperature (Ta), precipitation (Prec),

and friction velocity (u*) were used together with EC

fluxes of CO2 (Fc), and latent heat (LE) in this study.

When available, datasets that were gap-filled by site PIs

were used for this study. For other sites, data filtering

and gap-filling was conducted according to the follow-

ing procedures.

An outlier (spike) detection technique was applied,

and the spikes were removed, following Papale et al.

(2006). Because nighttime CO2 flux can be underesti-

mated by EC measurements under stable conditions

(Falge et al., 2001), nighttime data with nonturbulent

conditions were removed based on a u*-threshold cri-

terion (site-specific 99% threshold criterion following

Reichstein et al., 2005, and Papale et al., 2006).

Nonlinear regression methods were used for filling Fc

data gaps (Falge et al., 2001) and partitioning NEE to

GPP and Re (Desai et al. 2008). The nonlinear regression

procedure (PROC NLIN) in the STATISTICAL ANALYSIS SYSTEM

(SAS Institute Inc., Cary, NC, USA) was applied to fit

the relationships between measured fluxes and control-

ling environ-climatic using a 15-day moving window.

The Van’t Hoff (Q10; see Lloyd & Taylor, 1994) equation

was used to fill the missing nighttime fluxes (Fc,night):

Fc;night ¼ AeðBTaÞ; ð1Þ

where, A and B are fit model parameters. A Michaelis–

Menten light response equation was used to fill the

missing daytime fluxes (Fc,day) (Falge et al., 2001):

Fc;day ¼
a� PAR� FGPP;sat

FGPP;sat þ a� PAR
� FRE;day; ð2Þ

where FGPP,sat (gross primary productivity at saturating

light) and a (initial slope of the light response function)

are fit parameters, and FRE,day (ecosystem respiration

during the day) was estimated by extrapolation of Eqn

(1) using the daytime air temperature.

Daily NEE, Re, and meteorological variables were

synthesized based on half-hourly or hourly values

and the daily values were indicated as missing when

missing data was 420% of entire data at a given day,

otherwise daily values were calculated by multiplying

averaged hourly rate by 24 (hours). GPP was calculated

as the sum of NEE and Re. Based on the daily data set,

yearly variables values can be calculated by multiplying

averaged daily rate by 365 (days). If missing daily data

was 420% of entire year data, the value of this year was

indicated as missing. On average, 30% of the year was

rejected due to insufficient daily observation. The years

rejected varied among sites from 60% (Blodgett) to 10%

(Harvard forest).

For a site to be included in this study it had to meet

the following criteria: minimum of 2 years of NEE and

Re, as well as all meteorological variables. Based on this

criterion, 39 sites consisting of 163 years were included

for analyzing latitudinal patterns, covering three major

terrestrial biomes: deciduous broadleaf forests, ever-

green needleleaf forests, and grasslands (Table 1).

Other calculations

Water balance index (WBI) was calculated from the

difference between daily evapotranspiration (ET), de-
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rived from EC measurements of LE, and daily precipi-

tation (Prec), summed over the year as an indicator of

water limitation (Law et al., 2002).

WBI ¼ ET� Prec: ð3Þ

We used the SD of annual flux sums to characterize

the absolute interannual variability (AIAV), and coeffi-

cient of variation (CV; the ratio of SD and mean value of

annual flux sums) to characterize the relative interann-

ual variability (RIAV).

We used the sum of squared deviation to characterize

the seasonal variation of climatic factors (Hui et al.,

2003), calculated as:

SS ¼
Xn

j¼1

ðxj � xÞ2; ð4Þ

Table 1 Sites characteristic in this study

Site Type Latitudew Longitudez Stand age (years) Available years Reference

Bartlett forest DBF 44.06 �71.29 95 2004–2005 Richardson et al. (2007b)

Duke Hardwood DBF 35.98 �79.11 80–100 2001–2005 Pataki & Oren (2003)

Harvard forest DBF 42.54 �72.17 100–230 1993–2004 Urbanski et al. (2007)

Indiana MMSF DBF 39.33 �86.41 60–90 2001–2005 Schmid et al. (2000)

Sarrebourg DBF 48.67 7.08 30 1997–1999 Granier et al. (2000)

Soroe DBF 55.48 11.65 78 1997–1999 Pilegaard et al. (2001)

Walker Brach DBF 35.96 �84.29 50–120 1999–2001; 2006 Wilson & Baldocchi (2000)

Willow Creek DBF 45.91 �90.08 60–80 2002–2003 Bolstad et al. (2004)

Aberfeldy ENF 56.60 3.80 14 1997–1998 Valentini et al. (2000)

Bayreuth ENF 50.20 11.87 40 1997–1999 Valentini et al. (2000)

Blackhill ENF 44.20 �103.70 – 2005–2006 –

Blodgett ENF 38.90 �120.60 10 2000–2003 Goldstein et al. (2000)

Brasschaat ENF 51.30 4.52 67 1997–1999 Carrara et al. (2003)

Duke Pine ENF 36.00 �79.10 17 1998–2005 Stoy et al. (2006)

Flakaliden ENF 64.10 19.45 31 1997–1998 Lindroth et al. (1998)

Howland ENF 45.20 �68.74 95–140 1996–2004 Hollinger et al. (2004)

Howland West ENF 45.20 �68.75 95–140 1999–2001 Hollinger et al. (2004)

Hyytiälä ENF 61.90 24.28 30 1997–2000 Suni et al. (2003)

Loobos ENF 52.20 5.74 80 1997–2000 Dolman et al. (2002)

Metolius Midpine ENF 44.50 �121.60 56 2002–2005 Law et al. (2004)

Metolius New-young ENF 44.30 �121.60 18 2004–2005 –

Metolius Old-young ENF 44.40 �121.60 15 2000–2002 Law et al. (2000)

Niwotridge ENF 40.00 �105.60 100 1999–2004 Monson et al. (2005)

Tharandt ENF 50.95 13.56 120 1997–2006 Grünwald & Berhofer (2007)

Uci1964 ENF 55.90 �98.38 43 2002–2004 Goulden et al. (2006)

Donaldson ENF 29.80 �82.16 11–13 2001–2003 Gholz & Clark (2002)

Windriver ENF 45.82 �121.95 500 2001–2004 Paw et al. (2004)

Boreas_nsa ENF 55.88 �98.48 90–120 1994–2006 Dunn et al. (2007)

Parkfalls ENF 45.94 �90.27 60–80 1997–2001 –

Uci1850 ENF 55.88 �98.48 150 2003–2004 –

Audubon GRS 31.59 �110.51 – 2004–2006 –

Brooking GRS 44.34 �96.84 – 2005–2006 –

Duke grass GRS 35.98 �79.10 – 2001–2005 Novick et al. (2004)

Lethbridge GRS 49.71 �112.94 – 2002–2004 Flanagan & Johnson (2005)

Shidler, OK GRS 36.93 �96.68 – 1998–1999 Suyker & Verma (2001)

Vairaranch GRS 38.41 �120.95 – 2001–2003; 2006 Baldocchi et al. (2004)

Walnut River GRS 51.52 �96.86 – 2000–2003 Song et al. (2005)

Santa Rita GRS(SAV) 31.82 �110.90 – 2005–2006 Scott et al. (2008)

Tonzi Ranch GRS(SAV) 38.42 �120.95 – 2002–2006 Baldocchi et al. (2004)

wValues indicate north latitude.

zPositive values indicate east longitude, and negative values indicate west longitude.

DBF, deciduous broadleaf forests; ENF, evergreen needleleaf forests; GRS, grasslands; SAV, savanna ecosystem.
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where xj is the mean of jth day environmental variables

across all years within one site, x is the mean of the

environmental variables for all days, n is number of all

days.

Many sites only had 2 or 3 years of available data

(Table 1), and the probability of the study year invol-

ving abnormal climatic conditions was magnified,

which would possibly result in extremely high IAV of

carbon balance resulting in extreme deviation of ana-

lyzed patterns of carbon balance from the normal

situation. Therefore, it was indispensable to investigate

the robustness of data before analyses. There were 33%

and 17% of the sites we examined which had 2 and 3

years of available data respectively, which accounted

for the half of all sites. Our analysis indicated that the

values of SD and CV in 2-year group were smaller

compared with the most groups (t-test, Po0.05; Fig.

1). Although, the large SD and CV of GPP and Re were

found in 3-year group, but did not have significant

differences with the 5 years or more than 5 years data

groupings (Fig. 1). Furthermore, no significant correla-

tions were found between SD or CV and the number of

available years (data not shown), indicating estimated

SD and CV were robust for analyzing in this study.

Results

Latitudinal patterns of annual GPP, Re, and NEE

The mean rate of NEE varied greatly with different

ecosystems. NEE was highest in deciduous broadleaf

forests (249 � 75 g C m�2 yr�1), intermediate in ever-

green needleleaf forests (189 � 50 g C m�2 yr�1), and

they were both significant larger (t-test, Po0.05) than

that in grasslands (19 � 31 g C m�2 yr�1). On the con-

trary, there were no significant differences in AIAV and

RIAV among three ecosystems (t-test, Po0.05). On

average, AIAV was 72 � 7 g C m�2 yr�1 across all sites,

and RIAV was 0.97 � 0.27.

Our analyses did not show consistent latitudinal

patterns of GPP, Re, and NEE among three vegetation

types: deciduous broadleaf forests, evergreen needleleaf

forests, and grasslands. The annual GPP decreased

significantly with increasing latitude (�27 � 10 g C m�2

yr�1 per degree; R2 5 0.24, Po0.05) in evergreen nee-

dleleaf forests, (Fig. 2b). In grasslands and deciduous

broadleaf forests, we were unable to detect a significant

relationship between GPP and latitude (Fig. 2a and c).

The annual Re decreased significantly with increasing
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latitude (�18 � 8 g C m�2 yr�1 per degree; R2 5 0.22,

Po0.05) in evergreen needleleaf forests (Fig. 2b), in-

creased significantly with increasing latitude (37 � 13

g C m�2 yr�1 per degree; R2 5 0.60, Po0.01) in decid-

uous broadleaf forests (Fig. 2a), and was not signifi-

cantly correlated with latitude in grasslands. Across

different ecosystem types, there were distinctly differ-

ent patterns of variation in annual NEE with regard to

the latitude (Fig. 2a–c). For forested ecosystems, carbon

sequestration rates were lower at high than low-lati-

tude, and latitudinal trends were significant both in

deciduous broadleaf forests (�28 � 6 g C m�2 yr�1 per

degree; R2 5 0.76, Po0.01) and evergreen needleleaf

(�11 � 5 g C m�2 yr�1 per degree; R2 5 0.2, Po0.05) for-

ests. In contrast, high-latitude grasslands sequestered

significantly more carbon than low-latitude grasslands

(10 � 4.6 g C m�2 yr�1 per degree; R2 5 0.44, P 5 0.05;

Fig. 2c).

Since NEE is a balance between GPP and Re, varia-

tions in NEE can be correlated with variations in GPP

and Re among different sites (Fig. 3). In deciduous

broadleaf forests, there was a significant negative cor-

relation between NEE and Re (Fig. 3a; R2 5 0.74,

Po0.01). However, variation in NEE appears more

related to GPP than to Re in evergreen needleleaf forests

(Fig. 3b; R2 5 0.49, Po0.01). Neither GPP nor Re

showed significant correlation with NEE in grasslands.

Latitudinal patterns of IAV in GPP, Re, and NEE

AIAV (measured by SD) in GPP and Re showed differ-

ent latitudinal trends between deciduous broadleaf

forests and evergreen needleleaf forests (Fig. 4a and

b). The AIAV of GPP (12 � 3.47 g C m�2 yr�1 per degree;

R2 5 0.69, Po0.01) and Re (16 � 2.52 g C m�2 yr�1 per

degree; R2 5 0.87, Po0.01) were positively correlated

with latitude in deciduous broadleaf forests (Fig. 4a).

However, AIAV of GPP (�5.70 � 1.76 g C m�2 yr�1 per

degree; R2 5 0.34, Po0.05) and Re (R2 5 0.04, P 5 0.36)

were negatively correlated with latitude in evergreen

needleleaf forests (Fig. 4b). For grasslands, AIAV in GPP

(R2 5 0.08, P 5 0.44) and Re (R2 5 0.03, P 5 0.62) were

highly variable across sites, regardless of latitude, and

for neither component flux was there a significant

correlation with latitude (Fig. 4c).

Trends towards decreasing AIAV in NEE at higher

latitudes were observed for both evergreen needleleaf

forests and broadleaf deciduous forests, but for neither
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Fig. 2 Latitudinal patterns of GPP, Re and NEE in different ecosystems: (a) deciduous broadleaf forests; (b) evergreen needleleaf forests;

(c) grasslands. Positive values at y-axes indicate that carbon is absorbed by the ecosystems, while negative values indicate that carbon is

released by the ecosystems to the atmosphere. The regression lines are presented, in (a) Re 5 37Lat – 570, R2 5 0.60, Po0.01;

NEE 5�28Lat 1 1438, R2 5 0.76, Po0.01; in (b) GPP 5�27Lat 1 2449, R2 5 0.24, Po0.05; Re 5�18Lat 1 1835, R2 5 0.22, Po0.05;

NEE 5�11Lat 1 730, R2 5 0.20, Po0.05; in (c) NEE 5 10Lat – 399, R2 5 0.44, P 5 0.05. Lat, latitude; NEE, net ecosystem exchange;

GPP, gross primary production; Re, ecosystem respiration.
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ecosystem types were these trends significant

(R2 5 0.12, P 5 0.10 and R2 5 0.07, P 5 0.52, respec-

tively). For grasslands, AIAV in NEE was constant with

latitude. RIAV (measured by CV) of GPP, Re, and NEE

significantly increased with latitude only in deciduous

broadleaf forests (Fig. 5a).

Environmental correlation of IAV in GPP, Re, and NEE

Mean rates of annual GPP, Re, and NEE did not show

significant correlation with any environmental factors of

Ta, Prec, PAR, LE, and WBI among three vegetation

types, and seasonal variation of climatic factors also

could not account for their variations, implying various

ecosystems had distinct differences on dominant envir-

onmental factors. Mean rates of annual Re in deciduous

broadleaf forests correlated negatively with the mean

annual air temperature, while GPP tended to be constant

with the temperature gradient. As a consequence, NEE

was positively correlated with the mean annual air

temperature (Table 2). In evergreen needleleaf forests,

GPP, Re, and NEE increased significantly with air tem-

perature (Table 2). GPP and Re also showed significantly

positive correlation with annual precipitation in the

evergreen needleleaf forests. Multiple regression equa-

tions of GPP and Re with temperature and precipitation

were GPP 5 68�Ta 1 0.22�Prec 1 504 (R2 5 0.72,

Po0.01), Re 5 39�Ta 1 0.27�Prec 1 443 (R2 5 0.69,

Po0.01), respectively. Annual precipitation was a major

cause for spatial distributions of GPP and Re in grass-

lands (Table 2), however, no significant correlation was

found with NEE.

In deciduous broadleaf forests, RIAV of air tempera-

ture had significant correlation with RIAV in GPP, Re,

and NEE across the North American sites (Fig. 6; Table

2). IAV of annual precipitation was well correlated with

IAV in GPP and Re in grasslands. AIAV of precipitation

explained 40% and 63% variables of AIAV in GPP and

Re, respectively, in grasslands, and RIAV of precipita-

tion accounted for 41% and 56% variables of RIAV in

GPP and Re (Table 2).

Discussion

Spatial pattern in NEE along latitude

Our analysis and many other studies have character-

ized the decreasing latitudinal patterns of NEE in forest
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Fig. 3 Correlations of NEE with GPP and Re in (a) deciduous broadleaf forests, (b) evergreen needleleaf forests and (c) grasslands. The

regression lines are presented if the correlations are significant, in (a) Re 5�1.32NEE 1 1375, R2 5 0.74, Po0.01; (b)
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ecosystems (Valentini et al., 2000; Jarvis et al., 2001; van

Dijk & Dolman, 2004; Kato & Tang, 2008), however it

has been debated which of GPP and Re is dominant in

determining geographical distributions of NEE (Jans-

sens et al., 2001; Barr et al., 2002). Valentini et al. (2000)

found that annual ecosystem respiration increases with

latitude, while GPP tends to be constant across Eur-

opean forests, suggesting that respiration might be the

determinant of the CO2 balance at the regional scale.

van Dijk & Dolman (2004), however, reported that the

absolute value of GPP towards the pole decreases more

rapidly than that of Re, which results in a decreasing

latitude trend of NEE. Our results showed that the same

latitudinal trends of NEE between these two forests

stemmed from different responses of GPP and Re. In

evergreen needleleaf forests, the decrease in GPP from

mid- to high-latitudes was greater than the decrease in

Re. A correlation analysis also showed GPP was re-

sponsible for the spatial variation of NEE (Fig. 3b). In

contrast, for deciduous broadleaf forests, the increase in

Re with increasing latitude accounted for the decline of

NEE at higher latitudes (Fig. 3a).

Differences of physiological responses to environ-

ments might be the major cause for different determi-

nant of NEE in these two ecosystems. In general,

ecosystem experienced two different phenophases

through the whole year, being carbon release and

uptake because of the balance between GPP and Re.

During the carbon sink period, GPP was dominant

carbon flux in the ecosystem, and constrained Re as

well as NEE (Janssens et al., 2001). However, vegetation

retained dormancy or weak photosynthesis during the

period of ecosystem carbon release, so Re governed the

variations of NEE. Thus, the proportion of two pheno-

phases period was important for the primary determi-

nant of NEE through the whole year. In this study, the

carbon uptake period, defined as the continuous period

when 5-day running mean value of NEE was positive,

in deciduous broadleaf forests was shorter than ever-

green needleleaf forests in the same thermal regions

because of slow recovery of plant canopy in spring and

defoliation in autumn across the deciduous broadleaf

forests (Fig. 7). For example, carbon uptake period in

deciduous broadleaf forests was shorter by 86 days than

evergreen needleleaf forests when mean annual tem-

perature was 9 1C (Fig. 7). Other lines of evidences also

showed that soil respiration was higher at the decid-

uous broadleaf than adjacent evergreen needleleaf for-

est, resulting from higher soil and forest floor moisture

and temperature in the deciduous broadleaf forests
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Fig. 4 Latitudinal patterns of standard deviation (SD) of GPP, Re, and NEE in different ecosystems: (a) deciduous broadleaf forests; (b)
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occurring mostly during the leafless nongrowing season

(Palmroth et al. 2005). Thus, Re was more important in

regulating NEE in deciduous broadleaf forests than in

evergreen needleleaf forests.

Because GPP and Re are correlated very well (Jans-

sens et al., 2001), the correlation of NEE with either GPP

or Re will involve the interaction of GPP and Re. The

correlation of NEE with either GPP or Re will decrease

compared with that when GPP and Re were uncorre-

lated (Richardson et al., 2007a). So, in order to quantify

how much the covariance between GPP and Re influ-

ences the spatial patterns in NEE, the total variance of

NEE was partitioned into three components:

VarðNEEÞ ¼ VarðGPPÞ þ VarðReÞ � 2
� CovarðGPP;ReÞ; ð5Þ

where Var indicates the variance of specific variable, and

Covar indicates covariance. The results showed variance

of Re (1.05� 105 g2 C m�4 yr�2) was much larger than

variance of GPP (3.03� 104 g2 C m�4 yr�2) and covariance

of GPP and Re (3.83� 104 g2 C m�4 yr�2) in deciduous

broadleaf forests, and variance of GPP (2.19� 105

g2 C m�4 yr�2) was the largest component in evergreen

needleleaf forest [Var(Re) 5 1.12� 105 g2 C m�4 yr�2 and

Covar(GPP, Re) 5 1.32� 105 g2 C m�4 yr�2], which sup-

ported the conclusion that GPP and Re were the primary

determinant of the spatial pattern of NEE in evergreen

needleleaf forests and deciduous broadleaf forests,

respectively.

Our finding, that Re in deciduous broadleaf forests

showed an increasing trend with latitude, is consistent

with results of Valentini et al. (2000). However, other

studies have suggested a positive (van Dijk & Dolman,

2004) or neutral (Enquist et al., 2003) relationship be-

tween annual temperature and respiration across regio-

nal scales. On a global scale, at individual sites plant

and soil respiration rates generally increase with tem-

perature (Raich & Schlesinger, 1992; Chapin et al., 2002).

However, variation in Re across regions is not only

affected by temperature but also regulated by other

abiotic and biotic factors, such as precipitation, soil

microbial activity, vegetation productivity, and soil car-

bon content. For example, a significant correlation was

observed between annual Re and GPP across undis-

turbed forests, and no relationship between Re and

mean annual temperature across sites (Janssens et al.,

2001). In addition, a global scale analysis showed that

the turnover of soil organic carbon in forest is remark-

ably constant across the gradient in mean annual tem-

perature, and that increased temperature alone will not

stimulate the decomposition of forest-derived carbon in

mineral soil (Giardina & Ryan, 2000). Thus, when soil
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Fig. 5 Latitudinal patterns of coefficient of variation (CV) of GPP, Re and NEE in different ecosystems: (a) deciduous broadleaf forests;

(b) evergreen needleleaf forests; (c) grasslands. The regression lines are presented if the correlations are significant, in (a) GPP 5 0.01Lat –
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organic matter and resultant basal respiration rates

increase with latitude, Re is likely to be positively

correlated with latitude (Valentini et al., 2000; Enquist

et al., 2003).

Regulation of IAV of GPP, Re, and NEE in forests

Our results showed temperature accounted for 95%,

77%, and 78% of RIAV in GPP, Re, and NEE in decid-

uous broadleaf forests, respectively (Fig. 6). The thermal

regulations resulted in increasing latitudinal patterns of

RIAV in GPP, Re, and NEE followed with that of

temperature (Fig. 8a). In contrast with the deciduous

broadleaf forest, RIAV in NEE did not show significant

latitudinal trend in evergreen needleleaf forests

although the RIAV of temperature increased signifi-

cantly with the latitude (Fig. 8b), even if data were

analyzed in North American and Europe separately

(data not shown).

Temperature influences almost all ecosystem carbon

cycle processes in various ecosystem types (Johnson

et al., 1974). In particular, interannual variation in length

of the growing season, resulting from temperature

variation, accounts for much of IAV in NEE (Urbanski

et al., 2007). Although correlations between annual NEE

and the length of growing season exists at various

ecosystems, canopy development results in greater in-

hibition to NEE in deciduous broadleaf forests com-

pared with quick recovery in evergreen needleleaf

forests (Black et al., 2000; Barr et al., 2002). Changes in

canopy duration (mainly through adjustment of spring

leaf-out) have been shown to be the most important

determinant of the IAV of net carbon uptake in decid-

uous broadleaf forests (Barr et al., 2006). However,

evergreen needleleaf forests do not appear to respond

to temperature to the extent that deciduous forests

(Arain et al., 2002; Kljun et al., 2006). The reduced

sensitivity at the evergreen needleleaf forests may be

partially caused by soils that are somewhat more buf-

fered from air temperature increases as compared with

those at the deciduous broadleaf forests (Welp et al.,

2007). On the other hand, IAV in NEE in evergreen

Table 2 Environmental correlations of mean annual values (MAV), absolute interannual variability (AIAV) and relative inter-

annual variability (RIAV) of GPP, Re and NEE at different ecosystems

Ecosystem MAV AIAV RIAV

DBF GPP – – – – Ta y 5 1.26x�0.001w
R2 5 0.95**

Re – – – – Ta y 5 0.74x 1 0.04w
R2 5 0.77**

NEE Taz y 5 52x�321

R2 5 0.68**

– – Ta y 5 4.13x�0.07w
R2 5 0.78**

ENF GPP Ta y 5 75x 1 591

R2 5 0.69**

– – – –

Prec y 5 0.68x 1 648

R2 5 0.36*

– – – –

Re Ta y 5 52x 1 563

R2 5 0.64**

– – – –

Prec y 5 0.54x 1 527

R2 5 0.46**

– – – –

NEE Ta y 5 22x 1 10

R2 5 0.3*

– – – –

GRS GPP Prec y 5 0.97x 1 108

R2 5 0.87**

Prec§ y 5 0.96x 1 14

R2 5 0.4*

Prec y 5 0.65x 1 0.06

R2 5 0.41*

Re Prec y 5 0.96x 1 77

R2 5 0.91**

Prec y 5 1.18x�22

R2 5 0.63**

Prec y 5 0.56x 1 0.02

R2 5 0.56**

NEE – – – – – –

wTwo European sites are excluded from the regression analyses.

zTa is the mean annual temperature ( 1C).

§Prec is the annual precipitation (mm). x in regression equation represent mean annual value, AIAV or RIAV of environmental

variables, and y represent mean annual value, AIAV or RIAV of GPP, Re and NEE.

*Significant level at Po0.05.

**Significant level at Po0.01.

DBF, deciduous broadleaf forests; ENF, evergreen needleleaf forests; GRS, grasslands; NEE, net ecosystem exchange; GPP, gross

primary production; Re, ecosystem respiration.
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needleleaf forests could also result from counteracting

environmental regulations across the regional scales.

For example, a black spruce forest changed from a

modest source into a weak sink of atmospheric CO2

because net uptake was enhanced and respiration was

inhibited by multiple years of rainfall in excess of

evaporative demand (Dunn et al., 2007): a 2 cm drop

in water table depth over the 100 days increased Re by

18 g C m�2 annually, which was enough to change the

overall carbon balance from a sink to a source. Further-

more, lag effects of environmental variables to ecosys-

tems are important for regulating IAV in NEE in

evergreen needleleaf forests. Compared with climate

moisture index (CMI, difference between annual pre-

cipitation and potential ET) of current year, CMI of

previous 3 years accounted for more variability of

NEE (Dunn et al., 2007), which suggested that the effects

of precipitation anomalies on carbon exchange may

only be evident after several years of drought or wet-

ness. As a consequence, there are no significant envir-

onmental variables that can account for IAV in NEE and

resulted in significant latitudinal patterns in evergreen

needleleaf forests.

There were no significant latitudinal trends of AIAV

of NEE in either deciduous broadleaf or evergreen

needleleaf forests. Although AIAV and RIAV in GPP
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and Re varied significantly with latitude in deciduous

broadleaf forests, but no environmental factors were

found to be responsible for them (data not shown). A

probable cause is that observed IAV is due not only to

variation in environmental drivers, but also to meta-

bolic changes (Hui et al., 2003). For example, one

modeling analysis (Richardson et al., 2007a) suggested

that, at the annual time step, about 40% of the variance

in modeled NEE could be attributed to variation in

environmental drivers, and 55% to variation in the

biotic response to this forcing (i.e., basal rates and

environmental sensitivities of photosynthesis and re-

spiration). Underlying causes for metabolic changes

have not yet been elucidated, but may include indirect

effects of climate on ecosystem processes and biogeo-

chemical cycling.

Environmental regulation of IAV in NEE in grasslands

Precipitation is the dominant environmental variable

for the across-site variation and within-site interannual

variation in ecosystem carbon balance, especially arid

and semiarid ecosystems (Knapp & Smith, 2001; Flana-

gan et al., 2002, Flanagan & Johnson, 2005; Suyker et al.,

2003; Li et al., 2005). It is widely accepted that increasing

precipitation promotes the grasslands vegetation pro-

duction across the spatial scales (Sala et al., 1988;

Lauenroth & Sala, 1992; Jobbágy & Sala, 2000; Jobbágy

et al., 2002; Bai et al., 2004). Our result showed that

annual mean precipitation was a strong predictor of

spatial patterns of average GPP in grasslands, which

accounted for 87% spatial variation of GPP. Compared

with the well-developed knowledge of precipitation

regulation to GPP, relatively few studies at the regional

scales have presented spatial variation of Re in grass-

lands. In this study, mean annual precipitation ex-

plained 91% spatial variation of Re. Recent studies

have demonstrated the strong coupling between GPP

and Re, with respect to physiological couplings and

environmental drivers, and this coupling exists from

diurnal, seasonal to annual time scale (Janssens et al.,

2001; Tang et al., 2005; Stoy et al., 2008), which showed

the promising causes for precipitation regulating spatial

patterns of Re across broad scales.

In addition, our correlation analyses showed signifi-

cant correlation of precipitation with GPP and Re in

both AIAV and RIAV. A number of studies within

individual sites have showed precipitation is the major

cause for IAV in GPP and Re (Craine et al., 1999;

Flanagan et al., 2002; Li et al., 2005; Jacobs et al., 2007).

For example, Luo et al. (1996) have shown that grass-

land soil respiration was more strongly linked to

changes in carbon availability and soil moisture than

to shifts in temperature. However, relatively few studies

have reported symmetry of ecosystem response to

variation in precipitation at the region scale. Across

the timescales, grasslands have very large asymmetric

responses to variation in precipitation. For example,

productivity increases in wet years are much more pro-

nounced than reductions in productivity during drought

years (Knapp & Smith, 2001). Significant correlation of SD

between precipitation and GPP showed the same sensi-

tivity in grasslands to AIAV in precipitation under the

various water conditions. In generally, precipitation

showed the larger AIAV at the wet regions (data not

shown), and which resulted in larger AIAV in GPP.

Generally, our results showed that precipitation was

dominant of spatial patterns of magnitude and IAV in

GPP and Re in grasslands. Strong sensitivity of GPP and

Re to precipitation resulted in the weak latitudinal

patterns because IAV in precipitation did not have

significant correlations with latitude. However, spatial
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changes in precipitation did not explained variation in

NEE, and the parallel and offsetting responses of GPP

and Re to precipitation across the sites probably were

the major cause for this nonsignificant relationship.

Furthermore, our results showed higher NEE of grass-

lands in the high latitude than low latitude regions,

which was opposite to that in forests (Fig. 2). Causes of

increasing NEE with latitude were not clear.

Ages effects on forest carbon fluxes

A number of chronosequence studies have investigated

the effect of stand age on NEE in forest ecosystems

(Clark et al., 2004; Desai et al., 2005), which would

overshadow the effects of other driving forces and

regulate the spatial patterns of carbon balance (Baldoc-

chi, 2008). Odum’s theory of forest succession (Odum,

1969) hypothesizes that GPP rapidly increases and then

decreases as forests age, while Re increases monotoni-

cally due to the increase in respiratory substrate (bio-

mass, litter falls soil organic content etc.). As a result,

net carbon uptake increases with stand age, reaching

the maximum net carbon uptake between 50 and 200

years, and then approaches to the carbon neutral (Law

et al., 2004; Arain & Restrepo-Coupe, 2005; Baldocchi,

2008). However, it is important to note that Odum’s

hypothesis was based on a single time series of tempe-

rate forest succession (Kira & Shidei, 1967; Stoy et al.,

2008). Across the spatial scales, forests reached the

maximum net carbon uptake at the different stand

age, and the succession showed the independent effects

with other driving forces (e.g. climate, soil, respiratory

substrate) (Magnani et al., 2007). Furthermore, recent

study also showed old-growth forest stands can accu-

mulate carbon, contrary to the long-standing view that

they are carbon neutral (Luyssaert et al., 2008). In this

study, large net carbon uptake occurred in various

stand age stages from 10-year (Blodgett) to more than

100 years (Tharandt) (Fig. 9), which suggested stand age

did not show the significant regulations of spatial

patterns of carbon balance.

Summary

This study has assessed spatial distribution of NEE and

its IAV across three major types of terrestrial ecosys-

tems. Our results showed that mean annual NEE sig-

nificantly decreased with latitude in both deciduous

broadleaf forests and evergreen needleleaf forests, but

increased in grasslands. Correlation analyses indicated

that GPP and Re played a dominant role in regulating

spatial variations of NEE in evergreen needleleaf forests

and deciduous broadleaf forests, respectively. Further-

more, RIAV in NEE significantly increased with latitude

in deciduous broadleaf forests and tended to be con-

stant with latitude in evergreen needleleaf forests and

grasslands. RIAV of temperature accounted for the

spatial patterns of RIAV in GPP, Re, and NEE in

deciduous broadleaf forests. In grasslands, RIAV in

GPP and Re was responsive to RIAV of precipitation.

However, none of the chosen climatic factors could

explain RIAV in GPP, Re and NEE in evergreen needle-

leaf forests.
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