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[1] Ecosystem carbon (C) uptake is determined largely by C residence times and
increases in net primary production (NPP). Therefore, evaluation of C uptake at a regional
scale requires knowledge on spatial patterns of both residence times and NPP increases.
In this study, we first applied an inverse modeling method to estimate spatial patterns
of C residence times in the conterminous United States. Then we combined the spatial
patterns of estimated residence times with a NPP change trend to assess the spatial
patterns of regional C uptake in the United States. The inverse analysis was done by using
the genetic algorithm and was based on 12 observed data sets of C pools and fluxes.
Residence times were estimated by minimizing the total deviation between modeled and
observed values. Our results showed that the estimated C residence times were highly
heterogeneous over the conterminous United States, with most of the regions having
values between 15 and 65 years; and the averaged C residence time was 46 years. The
estimated C uptake for the whole conterminous United States was 0.15 P g C a�1. Large
portions of the taken C were stored in soil for grassland and cropland (47–70%)
but in plant pools for forests and woodlands (73–82%). The proportion of C uptake in
soil was found to be determined primarily by C residence times and be independent of the
magnitude of NPP increase. Therefore, accurate estimation of spatial patterns of C
residence times is crucial for the evaluation of terrestrial ecosystem C uptake.
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1. Introduction

[2] Rising atmospheric CO2 concentration, due to fossil
fuel combustion and deforestation, has resulted in global
warming [Houghton et al., 2001]. To prevent dangerous
anthropogenic interference with the climate system and to
predict future environmental change, we have to quantify
the magnitude and spatial distribution of carbon (C) uptake
in terrestrial ecosystems. Recent analyses of the global C
cycle indicate that terrestrial ecosystems absorb a significant
proportion of anthropogenic CO2 [Schimel et al., 2001;
Canadell et al., 2007]. However, C uptake rates and their
spatial distributions have not been well quantified
[Houghton, 2003].
[3] Carbon uptake is regulated by C influx via photosyn-

thesis and residence times in various plant and soil pools.
The C cycle in an ecosystem usually initiates when plants
fix CO2 via photosynthesis. A portion of photosynthate is
used to grow plant tissues while the rest is released back
into the atmosphere via plant respiration. The plant tissues
can live for several months (e.g., leaves and fine root) up to

hundreds of years for wood in forests (i.e., longevity of
plant tissues or residence times of carbon in plant pools).
Dead plant materials (i.e., litter) are partially decomposed
by microbes and partially incorporated into soil organic
matter (SOM), which can store C in soil for hundreds and
thousands of years (i.e., residence times of carbon in soil
pools) before it is broken down to CO2 through microbial
respiration. Among the processes, carbon influx drives
carbon cycling. The fraction of influx carbon that can be
uptaken by an ecosystem is determined by residence times:
the length of time a carbon atom can stay in plant and soil
pools from the entrance via photosynthesis to the release
back to the atmosphere via plant and microbial respiration
(see Luo et al. [2001, 2003] for more discussion).
[4] Without changes in external driving forces such as

disturbances and climate change, the C influx and efflux are
gradually equilibrating so that the magnitude of C uptake
approaches zero. However, the external driving forces,
including climate change [Dai and Fung, 1993], CO2

fertilization [Cramer et al., 2001], increased N deposition
[Holland et al., 1997], and land use change [Houghton et
al., 1999] break up the balance of the ecosystem C cycle,
and possibly cause more C influx to the ecosystem through
net primary production (NPP) increase [Nemani et al.,
2003]. As a result, the NPP increase makes ecosystem C
uptake possible in the next few decades despite the fact that
global warming is likely to stimulate decomposition of
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organic matter [Cox et al., 2000]. It is fortunate that the
spatial patterns of NPP changes are relatively well quanti-
fied by using ecosystem production models in concert with
remote sensing techniques [Field et al., 1995]. Those
studies indicate that an apparent NPP increase trend exists
in the conterminous United States [Hicke et al., 2002].
Therefore, advances in spatial patterns of carbon residence
times are crucial for modeling C uptake. Unfortunately, the
spatial patterns of carbon residence times, to the best of our
knowledge, have not been quantified for the conterminous
United States.
[5] Several methods have been used to estimate the

carbon residence times. One is an experimental approach
that usually measures a certain standing stock of C pools
and the corresponding fluxes; and then uses the ratio of
stock divided by flux as the approximation of residence
times [e.g., Vogt et al., 1996]. This method is simple and
easy to conduct, but the challenge is that not all standing
stocks and fluxes of subpools can be easily measured (e.g.,
root mortality). Another method to estimate carbon resi-
dence times is to use C isotopes. Nuclear bomb tests in the
1960s caused a drastic increase of 14C in the atmosphere.
This so-called ‘‘bomb carbon’’ has been successively trans-
ferred from the atmosphere to plants and to soil organic
carbon (SOC). Thus, the bomb carbon has been used as a
tracer to estimate carbon residence times in various pools
[e.g., Gaudinski et al., 2001]. However, the residence times
estimated from ‘‘bomb carbon’’ method for individual plant
and soil pools have to be incorporated into models to
estimate the ecosystem carbon residence times on regional
scales.
[6] Other than those experiment-based methods, inverse

analysis, which has recently become one major tool for
data-model fusion [Raupach et al., 2005], has been used to
estimate carbon residence times [Barrett, 2002; Luo et al.,
2003; Xu et al., 2006]. For example, inverse analysis was
applied to estimate carbon residence times from six data sets
obtained at the Duke Forest Free-Air CO2 Enrichment
(FACE) experimental site [Luo et al., 2003; White et al.,
2005; Xu et al., 2006]. The estimated carbon residence
times, together with canopy photosynthesis, were used to
characterize C uptake in that forest ecosystem [Luo et al.,
2003; Xu et al., 2006]. Barrett [2002] applied inverse
analysis technique to the Vegetation-And-Soil-Carbon-
Transfer (VAST) model to estimate carbon residence times
on the continental scale in Australia.
[7] The objective of this study is to evaluate the spatial

patterns of C uptake in the conterminous United States
under the current driving force of NPP increases. To achieve
this goal, we focused our studies on three interrelated
subobjectives. First, we used an inversion method to esti-
mate the spatial patterns of carbon residence times. Second,
we applied the NPP increase trend that has been monitored
by remote sensing data [Hicke et al., 2002] to evaluate C
uptake. To evaluate relative importance of carbon residence
times and strength of NPP increase on C uptake, we made
two kinds of simulations. One assumed a spatially uniform
NPP increase (i.e., each spatial grid has the same strength)
as the driving force for the conterminous United States to
evaluate the spatial patterns of C uptake caused mainly by

the spatial patterns of carbon residence times. Two applied
the actual spatial patterns of NPP increases [Hicke et al.,
2002] to evaluate the spatial patterns of C uptake caused by
spatial patterns of both carbon residence times and NPP
increases. Third, we conducted sensitivity analyses to eval-
uate impacts of observation errors, equilibrium assumption,
and initial soil organic carbon on parameter estimation and
on the C uptake.
[8] Note that this study focused on carbon uptake driven

by NPP changes in various ecosystems with different
residence times, which were estimated with an inversion
method described below. Other mechanisms, such as fire
and land use change, also influence land carbon sink/source
by altering not only NPP but also residence times and pool
sizes to cause disequilibrium of C cycling processes. Thus,
carbon sink/source associated with the disequilibrium was
not be fully accounted for in this study.

2. Methods and Materials

[9] The inverse analysis conducted in this study was
based on a Terrestrial Ecosystem Regional (TECO-R)
model, where 12 data sets were used for parameter estima-
tion. The TECO-R model was developed by combining the
Carnegie-Ames-Stanford-Approach (CASA) model [Potter
et al., 1993; Field et al., 1995] with the Vegetation-And-
Soil-Carbon-Transfer (VAST) model [Barrett, 2002] to
estimate the spatial patterns of carbon residence times in
the conterminous United States. The TECO-R model uses
the CASA algorithms on net primary productivity (NPP),
which was estimated from satellite observation and ground
measurements, and the VAST algorithms for the relation-
ships of C transfer among pools. The TECO-R model is
described in Appendix A, with a schematic diagram shown
in Figure 1 and the parameter definitions given in Table 1.
The parameters estimated in this study included the maxi-
mum potential light-use efficiency (e*), C allocation coef-
ficients among pools, and C residence times in individual
plant and soil pools. The allocation coefficients and resi-
dence times of C in the individual pools were integrated to
estimate the whole ecosystem residence times over the
conterminous United States. To facilitate parameter estima-
tion, this study divided soil organic carbon (SOC) and root
biomass into three soil layers (top: 0–20 cm, middle: 20–
50 cm, and bottom: 50–100 cm) as by Barrett [2002],
instead of compartmentalized SOC according to decompo-
sition rates as in the Century model [Parton et al., 1987]. In
this way, the state variables of root biomass and SOC in the
model have a one-to-one correspondence with the respec-
tive observations and do not need extra mapping functions
(or observational operators) as by Luo et al. [2003].

2.1. Data

[10] In this study, 12 observed data sets were used for the
parameters estimation, which included three NPP data sets
(i.e., NPP in leaves, stems, and roots), five biomass data sets
(i.e., one for biomass of leaves, one for stems, and three for
roots in three soil layers), one litter data set (i.e., fine litter
mass), and three SOC data sets in the three soil layers. There
were a total of 7660 observed data points, which contained
7 data points in fine litter, 468 data points in NPP, 316 data
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Figure 1. Terrestrial Ecosystem Regional (TECO-R) model structure for inversion analysis of carbon
residence times. Net primary production (NPP) is modeled by the light-use efficiency model (Carnegie-
Ames-Stanford-Approach (CASA)), and it allocated to plant tissues (leaf qL, stem qW, and root qRj) on the
basis of allocation coefficients (aL, aW, aR). Plant tissues enter into fine litter (qF), coarse litter (qC), and
soil organic carbon pools (qs) through litterfall. Decomposed litter releases part of the carbon to the
atmosphere, and the rest transfers into the soil (qC, qF). Through mechanical breakdown, part of the
coarse litter becomes fine litter (h). To reflect the differences in soil profile, roots and soil organic carbon
pools are divided into three layers (top: 0–20 cm, middle: 20–50 cm, and bottom: 50–100 cm).

Table 1. Symbol and Definition of Parameters, Their Lower and Upper Limits, and Other Constraints for Inverse Analysisa

Symbol Definition LL UL Other Constraint

e* Maximum light-use efficiency 0.0 2.76
aL Allocation of NPP to leaves 0.0 1.0 aL > aW

aW Allocation of NPP to wood 0.0 1.0 aW = 0 for grassland and cropland
aR Allocation of NPP to roots 0.0 1.0 aL + aW + aR = 1
xR1 Allocation proportion of NPP for roots (0–20 cm) 0.0 1.0 xR1 > xR2 > xR3
xR2 Allocation proportion of NPP for roots (20–50 cm) 0.0 1.0
xR3 Allocation proportion of NPP for roots (50–100 cm) 0.0 1.0 xR1 + xR2 + xR3 = 1
qF Carbon partitioning coefficient of the fine litter pool 0.0 0.5
qC Carbon partitioning coefficient of coarse litter pool 0.0 0.5 qC = 0 for grassland and cropland
qS1 Carbon partitioning coefficient of SOC (0–20 cm) 0.0 0.1
qS2 Carbon partitioning coefficient of SOC (20–50 cm) 0.0 0.1
h Fraction of mechanical breakdown for coarse litter pool 0.0 0.1
tL Site specific carbon residence time of leaves 0.0 10.0 0 � tL � 1 for deciduous broadleaf forest
tW Site specific carbon residence time of wood 0.0 500.0 tW > tL, not for grassland and cropland
tR1 Site specific carbon residence time of roots (0–20 cm) 0.0 10.0 tR1 < tR2 < tR3
tR2 Site specific carbon residence time of roots (20–50 cm) 0.0 20.0 tR2 � 5 for grassland and cropland
tR3 Site specific carbon residence time of roots (50–100 cm) 0.0 50.0 tR3 � 5 for grassland and cropland
tF* Moisture and temperature corrected residence time of fine litter 0.0 10.0
tC* Moisture and temperature corrected residence time of coarse litter 0.0 50.0 tC* > tF*, not for grassland and cropland
tS1* Moisture and temperature corrected residence time of SOC (0–20 cm) 0.0 100.0 tS1* < tS2* < tS3*
tS2* Moisture and temperature corrected residence time of SOC (20–50 cm) 0.0 250.0
tS3* Moisture and temperature corrected residence time of SOC (50–100 cm) 0.0 500.0

aUnits are gC MJ�1 PAR for e* and years for residence times. Allocation and partitioning coefficients are dimensionless. LL: lower limits; UL: upper
limits; SOC: soil organic carbon; NPP: net primary production.
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points in biomass, and 6869 data points in SOC. Spatial
distribution of the data points and the detailed information
of data points and their sources are listed in Figure S1 and
Text S1.1

[11] Sources of auxiliary data used in this study were
(1) the AVHRR-NDVI continental subsets of 8-km spatial
resolution from 1982 to 1999 available from the Data and
Information Services Center of Goddard Earth Science;
(2) annual solar radiation produced by the NASA/Global
Energy and Water Cycle Experiment with one-by-one
degree spatial resolution; (3) monthly precipitation and
temperature data sets with 4-km spatial resolution offered
by the Spatial Climate Analysis Service; (4) soil texture data
set from State Soil Geographic Database (STATSGO)
available from USDA Natural Resources Conservation
Service; and (5) 1-km spatial resolution land cover data,
containing eight vegetation types in the conterminous
United States, derived from AVHRR using a decision tree
classifier [Hansen et al., 2000]. All those auxiliary data sets
were resampled to a common projection (Lat-Long Projec-
tion) and spatial resolution (0.04 degree).

2.2. Parameter Estimation

[12] The parameter estimation was based on the weighed
least squares principle that minimized the deviations be-
tween the modeled and observed values of all the 12 data
sets for each of the eight biomes, which included evergreen
needleleaf forest (ENF), deciduous broadleaf forest (DBR),
mixed forest (MF), woodland (W), wooded grassland
(WG), shrubland (S), grassland (G), and cropland (C).
Given one biome, we defined a partial cost function jm as
the sum of squares of deviations between observed and
modeled values for data set m:

jm ¼
XNm

n¼1

ynm � ŷnmðxn; aÞ½ �2 ð1Þ

where ynm is the nth observed data point in the mth data set;
ŷnm(xn; a) is the modeled value that corresponds to the
observation ynm; Nm is the total data points in the mth data
set; xn is an auxiliary forcing vector that includes NDVI,
solar radiation, air temperature, precipitation, and soil
texture, in a spatial grid where the nth observation was
made; and a is a vector consisting of 22 parameters: a =
{e*, aL, aW, aR, xR1, xR2, xR3, tL, tW, qF, qC, h, tR1, tR2,
tR3, tF*, tC*, tS1*, tS2*, tS3*, qS1, qS2}. Each of the
parameters is described with equations in Appendix A and
also defined in Table 1.
[13] A particular data set may provide information to

constrain a subset of parameters in vector a. For example,
the data set of leaf NPP directly constrains the parameters of
e*, aL, and tL. When all 12 data sets are used, all
22 parameters can be constrained to a certain degree. One
parameter may be constrained by multiple data sets. In this
case, an integrated cost function J, which consists of M
(=12) partial cost functions jm, is defined to measure the

deviations between modeled and observed values for all the
data points in the 12 data sets. Thus the cost function, J, to
be minimized is

J ¼
XM
m¼1

lm

XNm

n¼1

ynm � ŷnmðxn; aÞ½ �2
( )

; m ¼ 1; 2 ; . . . ; M

ð2Þ

where lm is a weighing factor of the partial cost jm, which is
inversely proportional to the variance of each data set. Thus,
each data set was equally weighed in the cost function [Luo
et al., 2003]. The cost function, J, in equation (2) was
applied to each of the eight biomes so that eight sets of
biome-specific values of parameter vector, a, were obtained
in this study.
[14] To estimate the globally optimal parameters, the

genetic algorithm (GA) was used in this study. The param-
eter spaces and constraints shown in Table 1 were defined
primarily in reference to the work by Barrett [2002], but
specified for their applications to eight vegetation types in
this study instead of three biomes in the continent of
Australia. The steps of searching for the globally optimal
parameters in this study were (1) initializing the parameter
vector, a, from the parameter ranges in Table 1 with random
numbers; (2) applying genetic algorithm (selection, cross-
over, and mutation) to generate the new offspring of
parameter values of a; (3) using the generated parameter
values in equations (A5)–(A11) to calculate the modeled
value, ŷnm(xn; a), under a steady state assumption (i.e., the
dqi/dt = 0, i = L, W, R1, R2, R3, F, C, S1, S2, and S3);
(4) using observation data, ynm, and corresponding modeled
value, ynm(xn; a), to calculate partial cost function, jm, in
equation (1); (5) calculating integrated cost function J; and
(6) judging stopping condition of evolution (change of J in
last 100 offspring less than 0.01%). If the stopping criterion
was satisfied, then the algorithm exported the optimal
parameters. Otherwise it went to step (2) to continue the
search.
[15] The estimated C residence times and allocation

coefficients for individual C pools in plants and soils were
used to calculate the aggregated C residence time for the
whole ecosystem tE using the following formula [Barrett,
2002]:

tE ¼ aLðtL þ tFÞ þ haW tF þ aW ðtW þ tCÞ
þ aR xR1

ðtR1
þ tS1Þ þ xR2

ðtR2
þ tS2Þ þ xR3

ðtR3
þ tS3Þ

� �
þ F1tS1 þ F2qS1tS2 þ F3qS2tS3 ð3Þ

where

F1 ¼ qFðaL þ haW Þ þ qCaW

F2 ¼ aRxR1
þ F1

F3 ¼ aRxR2
þ qS1F2

ð4Þ

[16] We have run the optimization algorithm for 30 times
to obtain means and standard errors of the estimated
parameters. Estimated standard errors reflected integration

1Auxiliary materials are available in the HTML. doi:10.1029/
2007GB002939.
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of model errors, data errors, and errors in the data-model
fusion technique.

2.3. Carbon Uptake

[17] The means of parameter values estimated from ge-
netic algorithms together with the corresponding carbon
pool sizes in the inverse analysis were used in forward
modeling to simulate carbon uptake. The same set of
environmental variables (e.g., temperature, precipitation,
land cover, and soil texture) used in the inverse analysis
was used in the simulation of carbon uptake.
[18] We applied the NPP increase trend estimated by

Hicke et al. [2002] to quantify spatial distributions of
carbon uptake in the conterminous United States in two
ways. One was that an assumed uniform NPP increase,
1.83 g C m�2 a�1 (i.e., the averaged NPP increase in the
conterminous United States estimated by Hicke et al.
[2002]), was used for each spatial grid to evaluate C uptake.
So, the spatial difference of C uptake potential in this case
was caused only by the spatial pattern of C residence times.
The other case was that the actual spatial pattern of NPP
increases [Hicke et al., 2002], combined with the spatial
pattern of C residence times, was used as the driving forces
to evaluate the actual C uptake potential caused by both
NPP increases and C residence times. The two ways of
evaluating carbon uptake can help distinguish roles of NPP
increase and residence times in regulation of C uptake. The
NPP increase trend was a direct driving force as it induced
more C (extra carbon) to enter into the ecosystem. Carbon
residence times determined the length of time the extra
carbon can stay in the ecosystem and then regulated the
capacity of C uptake in the ecosystem [Luo et al., 2001,
2003].
[19] To focus on these two factors of NPP increases and C

residence times in influencing C uptake, we assumed that
there were no changes in other environmental factors (e.g.,
temperature) and the same rate of NPP change continued for
50 years.

2.4. Sensitivity Analysis

[20] Sensitivity analyses were conducted to evaluate
impacts of observation errors, steady state assumption,
and initial soil organic C on parameter estimation and on
the C uptake. Because of the lack of well-documented time
serials of data on NPP, plant biomass, and SOC in most of
the ecosystems, this study was unable to estimate residence
times and initial values of pool sizes to assess nonsteady
state carbon dynamics as done by White et al. [2005]. To
examine influences of the steady state assumption on the
estimated residence times, we conducted a sensitivity anal-
ysis to estimate nonsteady state carbon residence times. In
the analysis, we increased C influx into an ecosystem so that
C uptake equals 10 to 50% of NPP (NPP). That is, the
yearly C uptake equals 0.1 NPP, 0.2 NPP, 0.3 NPP, 0.4
NPP, and 0.5 NPP, respectively. Under these nonsteady
state scenarios, the C residence times were estimated and
compared with those under steady state.
[21] As measurement errors in the observed data sets

potentially impact the precision of the estimated parameters
in the inverse analysis [Raupach et al., 2005], we conducted

a sensitivity analysis to assess the sensitivity of the esti-
mated parameters to measurement errors. Eight scenarios
were used in this study; each scenario assumed only one
observation data set being overestimated and underesti-
mated by 20%, respectively. The observation data sets in
eight scenarios included (1) leaf NPP; (2) stem NPP; (3) root
NPP; (4) leaf biomass; (5) stem biomass; (6) SOC in layer 1
(0–20 cm); (7) SOC in layer 2 (20–50 cm); and (8) SOC in
layer 3 (50–100 cm).
[22] Land use change can substantially influence carbon

uptake. We did a sensitivity analysis to evaluate potential
impacts of land use on parameter estimation. We decreased
soil organic carbon by 40% for the woodland to simulate
land use change from previous croplands and increased it by
40% for cropland to simulate land use change from previ-
ously forested lands.
[23] Another factor that influences soil C uptake is the

initial value of SOC content when C cycling processes were
not in steady state. We did a sensitivity analysis to assess
effects of initial values on parameter estimation with three
scenarios: initial SOC being 20% below, at, and 20% above
the equilibrium level.

3. Results

3.1. Comparisons Between Modeled and Observed
Data Sets

[24] Comparisons between modeled and observed data
sets are important to evaluate the validity of the inverse
analysis method. The searching process for the best param-
eters (shown in Figure S2) shows that the genetic algorithm
was effective in this study; all the best parameters were
obtained in 100,000 trials. With the best parameters in the
model, the modeled values were closely related to the
corresponding observed data (Figure 2). There were a few
cases where modeled values deviated from observations.
For example, modeled NPP in stem was lower than the
observed values, probably because of correlative relation-
ships between parameters of carbon partitioning and resi-
dence time. The tradeoff of estimated parameter values
under the integrated cost function J (equation (2)) mini-
mized the total deviation for all data sets possibly at expense
of stem NPP.

3.2. Estimated Carbon Allocation Coefficients
and Light-Use Efficiencies

[25] Allocation coefficients of NPP to leaves, stem, and
roots estimated from this inverse analysis varied with biome
types (Figure 3). The evergreen needleleaf forest, deciduous
broadleaf forest, and woodland had similar C allocation
coefficients for leaves (33–37%), wood (33–37%), and
roots (26–34%). The mixed forest had higher C allocation
for leaves and wood (40%) and accordingly lower allocation
for roots (20%). The wooded grassland had relatively higher
C allocation for roots (38%), compared with the other
forests and woodland. The shrubland and grassland had
the highest C allocation for roots (56–58%). Although both
the grassland and cropland allocated C only between leaves
and roots, the grassland allocated much more C to roots
(58%) than the cropland does (24%). This is consistent with
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results from Bradford et al. [2005], who found that the
cropland allocated 28% of NPP to roots, much lower than
the grassland.
[26] The estimated maximum potential light-use efficien-

cies (e*) of the deciduous broadleaf forest, mixed forest,
and woodland were similar, with values of 0.43 to 0.49 g C
MJ�1 PAR (Figure 3). The wooded grassland had higher
light-use efficiency (0.55) than the evergreen needleleaf
forest and shrubland (0.36 and 0.28, respectively). Com-
pared to the forests and woodlands, the grassland and
cropland had relatively high light-use efficiencies of 0.56
and 0.93, respectively. Our estimated light-use efficiency of
cropland was at the upper end of the range from 0.41 to
0.94 g C MJ�1 PAR given by Lobell et al. [2002].

3.3. Estimated Carbon Residence Times in Plant
Biomass, Litter, and Soil Pools

[27] The residence times of aboveground biomass pools
estimated from this inverse analysis were from 1.0 to 2.03
years for leaves (tL) and from 30.7 to 49.7 years for wood

(tW) among the deciduous broadleaf forest, mixed forest,
woodland, and wooded grassland. Leaves and wood of the
evergreen needleleaf forest and shrubland had longer resi-
dence times, ranging from 2.73 to 3.90 years for leaves and
from 96.7 to 109.0 years for wood. The root residence times
were 6.78–9.98 years in the topsoil layer and 9.19–
19.6 years in the middle soil layer for the forests, woodland,
and shrubland. The root residence times in the bottom soil
layer were longer than those at the top and middle layers.
The residence times for leaves in the grassland and cropland
were 0.59 and 0.26 years, respectively, smaller than those
for the forests and woodlands. Root residence times for the
grassland and cropland did not vary much along soil
profiles.
[28] The temperature- and moisture-corrected C residence

times (tk*) for litter and SOC in the different biomes were
plotted in Figure 3. The estimated C residence times values
for fine litter (tF*) were 0.83 to 0.94 years for all the forests
and woodlands. The grassland had the lowest value (tF* =
0.17). The residence times for coarse litter (tC*) ranged

Figure 2. Comparisons between modeled and observed values of NPP, biomass, fine litter, and soil
organic carbon (SOC) in eight biomes. Points in each panel represents means of biomes with horizontal
and vertical standard error bars to indicate variations among observed and modeled values, respectively.
Overall, modeled NPP, biomass, fine litter, and SOC are highly correlated with observed ones. Some
panels do not have eight data points because of the lack of observations in some of the biomes.
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from 1.97 to 6.01 years. The values of SOC (tS1*,tS2*,tS3*)
were much higher than those for litters, ranging from 6.19 to
19.6 years for the topsoil layer, from 8.47 to 24.0 years for the
middle layer, and from 22.9 to 53.3 years for the bottom layer.
Among the eight biomes, the mixed forest had the highest
residence times for SOC in all three layers, whereas the
grassland had the lowest residence times for SOC.
[29] Because of spatial heterogeneities of temperature and

moisture, the actual residence times of litter and soil (tk)
were different fromtk*. The values of tk ranged from about
1 to 4 years for fine litter, with the minimum for the
grassland and the maximum for the evergreen needleleaf
forest and shrubland. The actual residence times for coarse
litter ranged from 5 years for the wooded grassland to
24 years for the evergreen needleleaf. The tk values ranged
from 26 to 77, from 32 to 102, and from 63 to 195 years,
respectively, for SOC in the three soil layers, much larger
than the corresponding temperature- and moisture-corrected
tk* values.

3.4. Spatial Patterns of Ecosystem Residence Times

[30] The C residence times of the whole ecosystem in the
conterminous United States were highly heterogeneous,
ranging from 10 years in some cropland grids to 150 years
in some shrubland grids. However, the residence times in
most grids were between 15 and 65 years (Figure 4). The
central Great Plains had the lowest residence times and the
west regions had the highest values, with the east regions in

middle. The averaged C residence time of the whole
conterminous United States was 46 years.
[31] The forest, woodland, and shrubland had higher

residence times than the grassland and cropland. Within
the entire conterminous United States, the evergreen needle-
leaf forest had the highest residence time of 85 years,
because of low temperature in its habitat. The shrubland
also had a high residence time of 67 years because of the
dry conditions in its habitat. The cropland and grassland had
the lowest residence times (19 and 29 years) because of the
lack of long-residence wood tissues and litter. The other
biomes had residence times between 36 and 50 years.

3.5. Carbon Uptake in Ecosystems

[32] When the assumed uniform NPP increase of 1.83 g C
m�2 a�1 (i.e., the averaged NPP increase at the contermi-
nous United States) was applied to each spatial grid, east
and west regions had relatively higher C uptake, with the
values ranging from 23 to 38 g C m�2 a�1 (Figure 5a). The
estimated C uptake in the center regions was relatively
smaller, with the values ranging from 14 to 23 g C m�2 a�1.
As the magnitude of NPP increase was the same for each
spatial grid under the assumed uniform NPP increase, the
differences of C uptake in Figure 5a reflected spatial differ-
ences in the ecosystem C residence times (Figure 4). Thus,
the residence times determined the fraction of influx C
uptaked.
[33] Modeled soil C uptake (Figure 5b) under the as-

sumed uniform NPP increase shows that grassland, shrub-

Figure 3. Optimized values of 22 parameters for eight biomes with mean ±one standard deviation of
optimized values from 30 runs of genetic algorithm. Symbols for the 22 parameters are described in
Table 1.
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land, and cropland had apparently higher percentages of C
uptaked in soils, whereas forests and woodlands tended to
uptake lower percentage of C in soils (about 20%). The
spatial pattern of percent soil C uptake was controlled by the
residence times of soil C pools (Figure 3) and their relative
C allocation coefficients of NPP to roots, leaves, and stems.
[34] When the actual, spatially heterogeneous NPP

increases [Hicke et al., 2002] were used in the forward

modeling, the spatial patterns of the estimated ecosystem C
uptake (Figure 5c) were quite different from Figure 5a. The
southeast region had higher C uptake, because of the
relatively higher values of both NPP increase and carbon
residence times (Figure 4). The fact that the central Plains
had higher C uptake was mainly attributed to the highest
NPP increase in the conterminous United States. Some

Figure 5. Ecosystem carbon uptakes driven by NPP increases. (a, b) Ecosystem carbon uptake and
proportions of soil carbon uptake, respectively, driven by an assumed uniform NPP increase. (c, d)
Ecosystem carbon uptake and proportions of soil carbon uptake, respectively, driven by the actual
spatially heterogeneous NPP increases [Hicke et al., 2002].

Figure 4. Spatial patterns of ecosystem carbon residence times estimated by inverse modeling for the
conterminous United States. Estimated residence times are high in Rocky Mountain alpine and northern
forest regions but low in croplands in the Great Plains.
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southwest regions had negative C uptake because of
decreased NPP during the period.
[35] Although the rate of NPP increase impacted ecosys-

tem C uptake (Figures 5a and 5c) and then induced differ-
ences in magnitude for soil C uptake between the assumed
uniform NPP increase and the actual spatially heteroge-
neous NPP increase, the proportions of C uptake in soil
relative to the total C uptake in the ecosystem were nearly
invariable (Figures 5b and 5d). That means that the pro-
portions of soil C uptake were mainly controlled by C
residence times and independent of the rate of the NPP
increase. On the biome scale, grassland and cropland had
relatively higher proportions of soil C uptake (47–70%)
than did forests and woodlands (18–27%) (Figure 6).
[36] Integration of the spatial patterns of both the NPP

increase and C residence times shows that the ecosystems of
the conterminous United States were a C sink. Their
averaged C uptake was 19.91g C m�2 a�1, and the total
C uptake was 0.15 Pg C per year, about one third (38%) of
which was stored in soil.

3.6. Sensitivity Analysis

[37] When the magnitude of carbon uptake varied from 10
to 50% of the total NPP, the estimated residence times
increased by 4.7–42.4% (Figure 7). Thus, the steady state
assumption resulted in underestimation of residence times
when ecosystems were C sink. The magnitude of C sink was
usually around 5% of cumulative C input via NPP increases
except in regions where land use change or other disturbances
had dramatically altered C balance. Thus, the influence of this
steady state assumption was not substantial.
[38] When NPP, biomass, and SOC increased or de-

creased by 20%, the cost function, J, and the majority of
the parameters did not change much (usually, <5%)
(Figure 8). That means the estimation of most parameters
by this inversion method was relatively robust. Neverthe-
less, the allocation coefficient (aL) and residence time for
leaves (tL) were somewhat sensitive to changes in leaf NPP.
When leaf and stem biomass increased or decreased by
20%, residence times for leaves (tL) and wood (tW) varied
by more than 20% in the corresponding directions. Simi-

Figure 6. Proportions of soil C uptake for different biomes with either uniform or actual NPP increases.
Although ecosystem C uptake varies with the two scenarios of NPP increases, the proportions of net C
uptake to be stored in soil are almost identical among biomes.

Figure 7. Sensitivity analysis of the estimated C residence times in nonsteady state. Estimated C
residence times increase as the magnitude of carbon uptake varied from 10 to 50% of the total NPP.
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larly, residence times for SOC (ts*) were sensitive to
changes in SOC.
[39] When data that are directly related to the parameter

were not available, the residence time of fine litter (tF*) was
sensitive to variations in observed values of all eight data
sets tested in this study and changed up to 50% in response
to a 20% increase in leaf biomass (Figure 8). In addition,
variations in leaf NPP data by 20% strongly affected not

only the parameters that are directly related to this data set
(e.g., e*, aL, aW, aR) but also downstream parameters along
C transfer processes (i.e., litter and SOC). In contrast,
variations in SOC data by 20% hardly affected upstream
parameters along C transfer processes.
[40] When observed SOC values decreased by 40% for

the woodland and increased by 40% for cropland, inverted
coefficients and residence times in plant and litter pools did

Figure 8. Sensitivity analyses on estimated parameters as eight sets of observed data, which are (a) leaf
NPP; (b) stem NPP; (c) root NPP; (d) leaf biomass; (e) stem biomass; (f) SOC in layer 1 (0–20 cm); (g)
SOC in layer 2 (20–50 cm); and (h) SOC in layer 3 (50–100 cm), varied by ±20%. Note that cost
function J and parameters xR1, xR2, and xR3 were not plotted here because they did not vary much in
response to changes in the eight sets of observed data.
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not change much (Figure 9). The inverted soil residence
times (tS1*, tS2*, and tS3*) and carbon partitioning coef-
ficients of SOC (qS1, qS2) among soil carbon pools de-
creased by 20–40% in response to a 40% decrease in SOC
in the woodland but increased in a similar magnitude with
the opposite direction in response to a 40% increase in SOC
in the cropland.
[41] The lower the initial SOC, the higher the rate of

carbon uptake was in soil under the same driving of NPP
increase (Figure 10). The soil carbon uptake was 24.06,
6.56, and �10.94 g C m�2 a�1, respectively, when initial
SOC at the beginning of simulation was 20% below, at, and
20% above the equilibrium level.

4. Discussions

4.1. Carbon Residence Times

[42] Our estimated C residence times of leaves for forests
and woodland ranged from 1.0 to 2.73 years. As compar-
ison, observation-based residence times (i.e., ratios of
observed stock divided by observed flux) are 1.64 years
for woodland [DeAngelis et al., 1997] and 2.32 years for
forest [Cannell, 1982]. The estimated residence time of
leaves was 0.59 years for grassland, which is very compa-
rable with the observation-based 0.50 years [Turner, 1994;
Scurlock et al., 2003]. Except for the evergreen needleleaf
forest, the woods of forests and woodlands had residence
times of 30.7–49.7 years, similar to the observation-based
values [DeAngelis et al., 1997; Cannell, 1982]. The esti-
mated residence times for forest and woodland roots at the
depth from 0 to 100 cm ranged from 11 to 18 years, which
were in the low end of the observation-based 18–23 years

[DeAngelis et al., 1997; Cannell, 1982]. Our estimation of
temperature-dependent residence time of fine litter (tF) was
0.77 years, slightly higher than the observation-based
0.51 years [Scurlock et al., 2003].

Figure 9. Sensitivity analysis for simulating land use change on parameter estimation with SOC in
woodland decreasing by 40% and SOC in cropland increasing by 40%.

Figure 10. Sensitivity analysis of carbon uptake caused by
different initial SOC contents of 20% below (low), at
(middle), and 20% above (high) the equilibrium level.
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[43] The inverse of temperature-dependent residence time
of coarse litter is the decomposition constant (usually so-
called k value). The k value of this study was 0.05 for the
evergreen needleleaf forest, 0.08 for the deciduous broad-
leaf forest, 0.10 for the mixed forest and woodland, 0.20 for
the wooded grassland, and 0.12 for the shrubland. These k
values are consistent with the estimations that derived from
wood decomposition experiments. For example, Todd and
Hanson [2003] summarized the k values of coarse-wood
decomposition for deciduous and coniferous species of the
eastern United States and indicated that the k values ranged
from 0.03 to 0.43. The estimated k value for fine litter in this
study was about 1.06–1.20, very similar to the mean values
from meta-analyses by Silver and Miya [2001] and Zhang et
al. [2008].
[44] Consistencies between our estimated residence times

through inverse analysis and observation-based values and
between modeled and observed data in Figure 2 suggested
the validity of the inversion approach to estimation of C
residence times. The inversion approach is advantageous
over the observation approach in that not only did it reveal
the parameters that can be observed through experiments
but also parameters that are not observable or difficult to
observe from experiments, such as residence times of root
or SOC. In addition, the estimated residence times in
different C pools from the inverse analysis can be used to
characterize the whole ecosystem C dynamics.

4.2. Carbon Uptake

[45] Total C uptake driven by NPP changes in the
conterminous United States was estimated to be 0.15 Pg
C a�1. This value is comparable with the estimate of 0.15–
0.35 Pg C a�1 based on the analysis of historical data on
land use and land cover changes by Houghton et al. [1999].
Our estimation of the continental C sink is larger than the
modeled value of 0.08 Pg C a�1 conducted by the VEMAP
study [Schimel et al., 2000]. The estimation of carbon sink
by atmospheric inversion suggested a relatively higher
carbon sink (0.30	0.58 Pg C a�1) [Pacala et al., 2001]
than our estimate probably because carbon export of 0.11 to
0.24 Pg C a�1 by rivers was contained in the atmospheric
inversion but not accounted for in terrestrial ecosystem
models and inventory surveys.
[46] The study shows that both forest and nonforest

ecosystems were important for C uptake in the contermi-
nous United States. The most important forests for C uptake
were located in the southeast regions (Figure 5c). This study
indicates that grasslands and croplands in Great Plains also
uptaked substantial amounts of C (Figure 5c). This result
was similar to the estimation by atmospheric inverse anal-
ysis that about one half of the total C uptake in the United
States continent was outside the forest sector [Pacala et al.,
2001]. As croplands had the highest increasing trend in NPP
[Hicke et al., 2002], and the largest area (23% of total area
in the conterminous United States), C uptake in croplands
was very important (Figure 5c).
[47] The parameters of C residence times and allocation

coefficients are very important in determining how the
uptaked C is distributed among various pools [Post et al.,
2004]. Our study showed that the forests and woodland

stored 18% to 27% of uptaked C in soils (Figure 6), which
was consistent with the forest inventory. For example,
Goodale et al. [2002] used the forest inventory data from
more than 42 countries to analyze forest C sinks in the
Northern Hemisphere. They found that the total sink in the
entire forest ecosystem in the Northern Hemisphere was
0.6–0.7 Pg C a�1, of which the soil sink was 0.13 Pg C a�1

(accounting for about 20% of the total sink). Similarly, the
European forests survey showed that forests (both trees and
soil) uptaked 0.117 Pg C a�1, of which 0.023 Pg C a�1 (i.e.,
19.7%) was uptaked in soil [de Vries et al., 2006]. Plant
biomass stored most of the uptaked C in the forests and
woodlands because of relatively high C allocation coeffi-
cients for woods (Figure 3) with high C residence times
(Figure 4). In contrast, grasslands and croplands stored the
majority of uptaked C in soils (Figure 6) because of
relatively small amounts of biomass with long C residence
times.
[48] Terrestrial carbon sink can be attributable to a variety

of mechanisms, such as CO2 fertilization, N-fertilization,
forest regrowth, intensive crop and forest management
practices, and any recovery from prior land use change
and disturbances. The carbon uptake in the central Plains,
for example, could be a result of intensive crop management
[Lobell et al., 2002]. The southeastern United States could
be attributed to the young stand age of pine plantations
[Sheffield and Dickson, 1998] and the immature hardwood
forests [Brown et al., 1997]. Much of pine stands in the
southern states were below maximum aboveground produc-
tivity [Allen et al., 1990]. Intensive management of the
southern pine forests could increase C uptake. Although this
study was not designed for attribution of C sink to various
mechanisms, the estimated carbon sink included all influ-
ences of those potential mechanisms that had been captured
in remote sensing data for the estimated NPP increase trend
[Hicke et al., 2002]. However, mechanisms such as fire and
land use change that influence carbon sinks by altering
residence times and pool sizes to cause disequilibrium of C
cycling processes were not fully accounted for in this
analysis. Nevertheless, we did sensitivity analysis to eval-
uate uncertainties in parameter estimation under nonsteady
state (Figures 9 and 10).

4.3. Uncertainties in Estimated Parameters and C
Uptake

[49] This study estimated regional C uptake by quantify-
ing a spatial pattern of C residence time together with a
given NPP increase trend. We accordingly conducted ex-
tensive sensitivity analysis to evaluate various causes of
uncertainties in estimated C residence times and C uptake.
We ran the genetic algorithm 30 times to obtain standard
errors of estimated 22 parameters for each of the eight
biomes. Overall, most parameters were well constrained
with relatively small standard errors except carbon parti-
tioning coefficients (Figure 3). We have also used a prob-
abilistic approach [Xu et al., 2006] to evaluate uncertainties
in inverted parameters for the regional analysis and found
the majority of the parameters were well constrained (X. H.
Zhou et al., Carbon residence time and sequestration in
terrestrial ecosystems of the conterminous USA: A Bayes-
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ian approach to uncertainty analysis, manuscript in prepa-
ration, 2008). In contrast, the number of parameters that can
be constrained for ecosystem-scale analysis is very low. For
example, the analysis of the covariance matrix in parameter
estimation conducted by Wang et al. [2001] showed that
only three or four parameters could be determined indepen-
dently from the CO2 flux observation. Multiple years of
NEE data sets can constrain 13 parameters out of 23 in a
Simplified Photosynthesis and Evapo-Transpiration model
(SIPNET) by stochastic Bayesian inversion [Braswell et al.,
2005]. Six data sets of soil respiration, woody biomass,
foliage biomass, litterfall, and soil carbon content from the
Duke Forest Free-Air CO2 Experiment (FACE) experiment
can constrain four at ambient CO2 and three at elevated CO2

out of seven carbon transfer coefficients [Xu et al., 2006].
The good constraint of parameter estimation by this regional
analysis is due to the use of a very large set of various
observations whereas those ecosystem-scale studies used a
limited set of data in inverse analysis.
[50] Disequilibrium of carbon cycling processes under

nonsteady state (Figure 7), caused by land use change
(Figure 9) or influenced by different initial values of SOC
(Figure 10) influenced estimated residence times and C
uptake. So did variations in data (Figure 8). The analysis
indicated that changes in observational data (Figure 8) or
pool sizes (Figure 9) affected not only parameters that were
directly related but also downstream parameters along C
transfer processes. For example, a 20% increase in the leaf
NPP resulted in increases in directly related parameters of
maximum light-use efficiency (e*) and allocation coeffi-
cient for leaves (aL) but decreases in allocation coefficients
for stems (aW) and roots (aR) because of the constraint of
the sum of aL, aW, and aR equaling 1. A decrease in aR led
to increases in C residence times for roots in three soil
layers (tR1, tR2, and tR3). However, changes in SOC values
hardly affect estimated values of any upstream parameters
but strongly affected related parameters such as residence
times and partitioning coefficients in the three soil carbon
pools (Figures 8f, 8g, 8h, and 9). The model structure of C
cycling processes is useful for analysis of uncertainties in
parameter estimation with regard to observation errors in a
particular data set.
[51] Disequilibrium caused by land use change and other

disturbances is a major mechanism under C uptake (or
release) as also showed by the sensitivity analysis in this
study (Figure 10). Investigation and mapping of land use
change and other disturbance are important to quantify
carbon uptake, particularly in the human-impacted ecosys-
tems. To quantify carbon sink caused by disequilibrium, we
also need well-documented time series data of NPP, plant
biomass, and SOC so that we can estimate residence times
and initial values of pool sizes to assess nonsteady state
carbon dynamics [White et al., 2005] at regional scales.

5. Conclusions

[52] Terrestrial ecosystems play an important role in
regulating atmospheric CO2 concentration. Quantification
of net ecosystem C uptake from the atmosphere at a regional
scale requires identification of spatial patterns of both C

residence times and NPP changes. In this study we used an
inverse modeling method that combined a process-based
model and genetic algorithm to estimate a spatial distribu-
tion of C residence times in the conterminous United States.
The estimated residence times are highly heterogeneous
over the conterminous United States, with most of the
regions having values between 15 and 65 years. The
averaged C residence time for the whole conterminous
United States is 46 years. When the estimated residence
times and the spatially heterogeneous NPP increases were
incorporated into the forward modeling, the estimated total
C uptake of the whole conterminous United States is 0.15 P
g C a�1, about one third of which were stored in soil. The
cropland and grassland have a higher proportion of C
uptaked in soil (47–70%) than do forests and woodlands
(18–27%). Although the spatial pattern of net C uptake is
controlled by both C residence times and rate of NPP
change, we found that the proportion of soil C uptake is
determined only by ecosystem C residence times and they
are independent of the rate of NPP increase. Therefore the
spatial patterns of C residence times are valuable for the
evaluation of terrestrial ecosystem C sink.

Appendix A: Model Description

[53] In the TECO-R model, NPP is a function of the
absorbed photosynthetically active radiation (APAR), max-
imum potential light-use efficiency (e*), and temperature
(Te) and moisture (We) scalars that represent climate stresses
on vegetation light-use efficiency. This relationship is
expressed by

NPP ¼ fAPAR 
 PAR 
 e� 
 Te 
We ðA1Þ

where fAPAR is a fraction of PAR that is absorbed by
vegetation and determined by using a linear relationship
between fAPAR and satellite-data derived normalized
difference vegetation index (NDVI). Thus, APAR equals
fAPAR times PAR. Solar radiation is converted to PAR by
multiplying 0.5. In the TECO-R model, we used the same
scalars as Potter et al. [1993] for Te and We.
[54] The estimated NPP is allocated to plant tissues of

leaves, stem, and roots according to the following
equations:

NPPL ¼ aLNPP ðA2Þ

NPPW ¼ aWNPP ðA3Þ

NPPR ¼ aRNPP ðA4Þ

where aL, aW, aR are allocation coefficients of NPP for
leaves, wood, and roots, respectively. Thus, the C dynamics
in leaf, stem, and root pools can be described by

dqL

dt
¼ aLNPP� qL=tL ðA5Þ
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dqw

dt
¼ aWNPP� qW=tW ðA6Þ

dqRj

dt
¼ xRj

aRNPP� qRj
=tRj

; j ¼ 1; 2; 3 ðA7Þ

where qL, qW, and qRj are C pool sizes in leaves, wood, and
roots, respectively; tL, tW, and tRj are carbon residence
times in the pools of leaves, wood, and roots, respectively;
the subscript Rj indicates three soil depths (0–20 cm, 20–
50 cm, and 50–100 cm) for root biomass partitioning; and
xRj are the partitioning coefficients of root biomass into
three depths. The C dynamics in the litter and soil organic
carbon (SOC) pools are partially determined by C
transferred from plant biomass pools (Figure 1) and can
be modeled by the first-order differential equations as

dqF

dt
¼ qL=tL þ hqC=tc � qF=tF ðA8Þ

dqC

dt
¼ qW=tW � qC=tC ðA9Þ

dqS1
dt

¼ qR1
=tR1

þ qFqF=tF þ qCqC=tC � qS1=tS1 ðA10Þ

dqSj

dt
¼ qRj

=tRj
þ qSj�1

qSj�1
=tSj�1

� qSj=tSj ; j ¼ 2; 3 ðA11Þ

where qF and qC are C pool sizes for fine and coarse litter,
respectively; qS1, qS2, and qS3 are pool sizes of SOC in three
soil layers, respectively; tF, tC, tS1, tS2, and tS3 are carbon
residence times in fine litter, coarse litter, and SOC in three
layers, respectively; h is a fraction of C exiting the coarse
woody debris pool by mechanical break down; qF and qC
are C partitioning coefficients of the fine litter and coarse
litter pools, respectively; qS1 and qS2 are partitioning
coefficients of soil C in the first and second soil layers,
respectively.
[55] The carbon residence times in pools of litter and SOC

(tF, tC, tS1, tS2, and tS3) vary with both climatic and biotic
factors [Schimel et al., 1994]. To specify the biotic influ-
ences on the residence times, the TECO-R model divided
the conterminous United States into eight vegetation types
on the basis of the 1-km land cover classification by Hansen
et al. [2000] and then estimated the parameters separately.
To quantify the impacts caused by spatial heterogeneity of
climatic factors, the TECO-R model relates the site-specific
residence times (tF, tC, tS1, tS2, and tS3) to the moisture
and temperature corrected residence times (tF*,tC*, tS1*,
tS2*, and tS1*) by

tk ¼ t�k=ðWs 
 TsÞ; k ¼ F;C; S1; S2; S3 ðA12Þ

where Ws and Ts are moisture and temperature scalars for
carbon residence times. The moisture scalar is estimated by
monthly precipitation (PPT), potential evapotranspiration
(PET), and soil moisture (SoilM) [Randerson et al., 1996]:

SM ¼ PPTþ SoilM

PET
ðA13aÞ

Ws ¼ 0:1þ 0:9 
 SM 0 � SM � 1 ðA13bÞ

Ws ¼ 1:0 1 < SM � 2 ðA13cÞ

Ws ¼ 1:0þ ð1:0=28:0Þ½ � � ð0:5=28:0ÞSM 2 < SM � 30

ðA13dÞ

Ws ¼ 0:5 30 � SM ðA13eÞ

The temperature scalar of decomposition, Ts, is obtained
directly from temperature data (T), as in the Century soil-
carbon model [Parton et al., 1987]:

Ts ¼
1=ð1þ 19e�0:16T Þ; T < 45�C
10� 0:2T ; 45 � T � 50�C
0; T > 50�C

8<
: ðA14Þ
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