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Abstract

A system of stochastic differential equations is studied describing a

compartmental carbon transfer model that includes uncertainties arising

in the model from environmental and photosynthetic effects as well as ini-

tial conditions. Justification is given for the modeling of observed times

series as Weiner processes. The solution of the resulting system is obtained

as a stochastic process, a formulation is given appropriate for obtaining

continuity and differentiability with respect to model transfer coefficients,

and numerical approximation results are given. Estimation results of coef-

ficients from NEE data are obtained using quasi-Monte Carlo techniques.

The error resulting in NEE stochastic models is observed to be approx-

imately Gaussian. This result is used to construct a joint probability

density defined on a sample space of transfer coefficients. Finally, the

joint probability density function is used with quasi-Monte Carlo to ob-

tain information on transfer coefficients and predicted carbon pools. This

information is compared with a priori results obtained without the benefit

of NEE data.

Key Words: Stochastic differential equations, probabilistic inversion, output-

least-squares estimation.
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1 Introduction.

Global carbon dioxide CO2 circulation has been the focus for ecology study in
recent years after the signing of the Kyoto Protocol in 1997. One method to an-
alyze the terrestrial carbon sequestration is by a compartmental carbon transfer
model [1] where the sequestration amounts of carbon in various biomes is linked
by carbon transfer rates governing carbon uptake, storage, and release. Such
relations provide an underlying model that is useful in determining a context
from which ecological data may be interpreted and predictions may be made.

Observed net ecosytem exchange (NEE) of carbon reflects a balance be-
tween canopy photosynthetic carbon influx into and respiratory efflux out of
an ecosystem. To quantify terrestrial carbon sinks, the biosphere-atmosphere
interactions research community has employed the eddy-covariance technique
to measure NEE, water, and energy in more than 210 sites worldwide [1]. Ap-
proximately 1000 site years of NEE data and millions of data points have been
accumulated from the FluxNet measurements. Consequently, it appears that
the eddy-flux database will increase substantially in the coming years and will
become a great resource for ecological research. Flux data, for example, have
been used to estimate the components of net ecosystem productivity (NEP) at
many of the flux sites [7], to validate ecosystem models [2],[8],[9], and to char-
acterize diurnal, seasonal, and interannual patterns [5]. It will continue to be a
fruitful yet challenging task for the research community to exploit this massive
database to improve our mechanistic understanding and predictive knowledge
of ecosystem processes.

The present work focuses on the modeling of carbon sequestration by means
of a stochastic initial value problem and on the utilization of NEE data in the
context of that model. Uncertainty in the model arises from the photosynthetic
carbon flux input vector as well as the environmental inputs that are obtained
through measurements. Uncertainty also enters through the initial conditions
and the flux partitioning vector as well. The consequence of the modeling of
these terms as stochastic processes is that the solution of the carbon seques-
tration system is a stochastic process as well. In previous work [18, 19, 20],
the model is viewed as a deterministic initial value problem with coefficients
that are treated as deterministic functions obtained as perturbations from trend
functions. Here we investigate the usefulness of NEE data in the estimation of
parameters within a stochastic compartmental carbon sequestration model. Pre-
viously, we have used other data sets that are less extensive than NEE [18, 19].
In that previous work, the model was treated as a deterministic initial value
problem. The objective in this paper is to give a proper mathematical formula-
tion for the use of this data in the context of a stochastic compartmental model
and to compare the effect on carbon predictions based on NEE data with those
obtained using only a priori parameter constraints.

Our analysis is based on an underlying compartmental model with seven
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carbon pools in which scaling factors along with initial conditions and flux dis-
tribution terms are known to various extents. We view the model as a stochastic
initial value problem in which environmental and flux terms are presented as
approximations of observed time series with errors modeled as Weiner processes.
The parameters to be estimated belong to an admissible set Qad prescribed by
a priori bounds. Initially, it is assumed that all parameters in the admissible set
are equally likely. Hence a uniform distribution, designated as the homogeneous
distribution, is defined on the sample space Qad. A posteriori distributions re-
sulting from the incorporation of NEE data are obtained and are then compared
with this a priori homogeneous distribution [17].

Information on parameters may be deduced by means of various operations
on the resulting joint probability density function (pdf). One such operation is
marginalization by which a cumulative distribution function (cdf) of each of the
individual parameters is obtained. From the marginal distributions, information
such as mean values for the individual parameters may be determined. An ad-
ditional measure of the information provided by data is obtained by comparing
the corresponding probability intervals between the a priori and the a posteriori
marginal distributions for parameters. Information on the parameters may be
carried forward to the states to provide a comparison through a priori and a
posteriori predicted distributions of the different biomes. In this comparison we
wish to assess the effect that the inclusion of data has on the cdf of predicted
likely biomes.

We outline the main results of this work. Central to our treatment are the
formulation and justification of the stochastic compartmental model. The use of
Weiner processes to model the uncertainty in the environmental and flux contri-
butions is examined and justified. The resulting uncertainty is carried through
to the NEE state model. A mathematical setting is posed sufficient to analyze
the continuity and differentiability of the parameter-to-state mappings. The
approximation of the initial value problem using the Euler Murayama scheme is
introduced and the unform convergence with respect to admissible parameters is
noted. Existence of output least squares estimators is established. To obtain ap-
proximations, the admissible set Qad is approximated by a discrete subset QL

ad

using equi-distributed sequences and minimization is carried out over the set
QL

ad. We observe the error between synthesized NEE associated with a parame-
ter c and NEE data time series is Gaussian where the mean and variance of the
error while dependent on c, are close to zero and and a constant, respectively.
A joint pdf motivated by the normality of the error is then defined over a sam-
ple space consisting of Qad(Q

L
ad). The initial condition and the flux distribution

vectors are taken to be uniformly distributed over their ranges. The resulting
pdf takes into account the uncertainty arising from the multiple sources in our
problem. The marginal pdfs for the parameters along with biomes are presented
and compared with those obtained without the benefit of the NEE data.

In Section 2 we pose the underlying model as a stochastic initial value prob-
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lem. The modeling of various coefficients as Weiner processes is justified. Differ-
entiability, stability, approximation, and convergence results are discussed that
are important for the analysis of the problem in Section 3. In Section 4 the NEE
operator is defined. Its differentiability and sensitivity properties with respect
to perturbations of parameters are observed. The observational NEE data is
also introduced and the distribution of the error between our models and the
data is indicated. In Section 5 the a posteriori joint pdf function based on NEE
data is given. A posteriori distributions of carbon transfer coefficients are ob-
tained and compared with the a priori homogeneous distributions. In addition,
distributions of predicted pools sizes based on the NEE data are presented.

2 Formulation of the underlying system and its

justification.

In [1], the following nonautonomous initial value problem modeling the carbon
transfer mechanism among natural biomes was proposed

(2.1)
dx(t)

dt
= ACξ̃(t)x(t) + bũ(t)

(2.2) x(0) = x0

where t ∈ [0, tf ]. For each t, x = x(t) is a 7×1 vector x = [x1, x2, x3, x4, x5, x6, x7]
T

the components of which represent the quantity of material per square meter of
nonwoody biomass, woody biomass, metabolic litter, structural litter, microbes,
slow organic matter, and passive organic matter pools [18]. The matrix A is a
7 × 7 matrix given by

(2.3) A =




−1 0 0 0 0 0 0
0 −1 0 0 0 0 0

0.712 0 −1 0 0 0 0
0.288 1 0 −1 0 0 0

0 0 0.45 0.275 −1 0.42 0.45
0 0 0 0.275 0.296 −1 0
0 0 0 0 0.004 0.03 −1




describes the distribution of carbon among the various pools. The matrix C is
7 × 7 diagonal matrix given by

(2.4) C =




c1 0 0 0 0 0 0
0 c2 0 0 0 0 0
0 0 c3 0 0 0 0
0 0 0 c4 0 0 0
0 0 0 0 c5 0 0
0 0 0 0 0 c6 0
0 0 0 0 0 0 c7




.
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We write
C = diag(c).

where c = [c1, ..., c7]
T ∈ R7. The vector c consists of nonnegative parameters

that scale the carbon transfer coefficients. An objective is to use NEE data
to obtain estimates and information on the parameter c in the presence of
uncertainty from initial conditions, flux contributions, and environmental terms.
Towards this end, a set of admissible vectors c is defined consisting of bounds on
the entries of c. Thus, we define a vector whose components are upper bounds
of the entries of c

cmax =




0.005
0.0002
0.03
0.002
0.01

0.0001
0.000005




.

The lower bound vector is simply the zero vector.

The flux distribution vector b is specified by

b =




0.25
0.3
0.0
0.0
0.0
0.0
0.0




with possible bounds on the input vector given by

bmax = (1 + bpert)b

bmin = (1 − bpert)b

The initial condition

x0 =




469
4100
64
694
123
1385
923




.

with possible bounds on the initial condition is given by

xmax
0 = (1 + xpert)x0
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xmin
0 = (1 − xpert)x0.

The parameter vector is given by q = (c, b, x0) and the set of admissible
parameters is given by

Qad = {q = (c, b, x0) : 0 ≤ ci ≤ cmax
i , bmin

i ≤ bi ≤ bmax
i , xmin

0i ≤ x0i ≤ xmax
0i }.

Since our focus is primarily on the uncertainty arising from the environmental
and flux stochastic processes, we consider x0 and b to be fixed in our theoretical
treatment and consider

(2.5) Qad = {c : 0 ≤ ci ≤ cmax
i }.

Remark 2.1. In fact in computations, we allow values of x0 and b to be
uniformly distributed between the above upper and lower bounds where bpert

and xpert are both 0.1. x0 and b are marginalized to obtain distributions on
the parameters ci. Even so inversion of NEE data to obtain distributions for
components of x0 and b result only in uniform distributions indicating that
NEE data contains little information on x0 and b. Thus, in this work it suffices
to take x0 and b as above and take Qad as defined in (2.5).

The real-valued function ξ̃(·) is a time series describing environmental mois-
ture and temperature effects on transfer properties. The environmental function
ξ̃ is expressed in the form

(2.6) ξ̃(t) = ξ(t) + ξ̂(t)

where ξ is a known deterministic function capturing environmental trends and
ξ̂(t) is a stochastic process that is included to capture random perturbations
from that trend. In addition, the real-valued function ũ(·) is a time series
indicating the system input from photosynthesis. It is partitioned, in a manner
similar to the environmental term, into a trend u(t) and a stochastic process
û(t), capturing the random perturbations from that trend. Hence, we express
the photosynthetic input as

(2.7) ũ(t) = u(t) + û(t).

Uncertainties in x(t) arise from the noise contained in environmental mea-

surements ξ̃(t), the lack of knowledge of coefficients in vector b and the matrix
C, the lack of complete knowledge of the initial condition x0, and the distur-
bances in ũ(t) due to natural effects (wind, pressure, light condition, etc). In

this study, Gaussian white noise is chosen to model the random effects ξ̂(t) and

û(t). Thus, ξ̂(t) is replaced by γξ N(t) and u(t) is replaced by γu N(t) where
N(t) represents Gaussian white noise with mean zero and unit variance, γξ and
γu are variances associated with their respective terms. The model is formally
given by

(2.8) dX(t)/dt = AC(ξ(t) + γξN(t))X(t) + b(u0(t) + γu N(t))
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(2.9) X(0) = x0

where X(t) is a 7-vector valued process. In differential form we write

(2.10) dX(t) = [ACξ(t)X(t) + bu(t)]dt + ACX(t)dWξ(t) + bdWu(t)

(2.11) X(0) = x0

where t ∈ [0, T ]. In this representation the terms Wξ(t) and Wu(t) designate
one dimensional Wiener processes with zero mean but different variances. The
initial condition x0, the diagonal matrix C and column vector b are members
of a sample space Qad that is independent of Wξ(t) and Wu(t). A probability
distribution is over Qad is to be deduced from data measurements through an
inversion procedure in the face of uncertainty in the environmental and flux
models.

Initial value problems of the type (2.10)-(2.11) are well-studied [3, 12, 6].
We consider the solution of (2.10)-(2.11) as a mapping c 7→ X(c), defined on
Qad from (2.5), and ultimately into NEE. Of importance is the existence, and
uniqueness of a solution of (2.10)-(2.11), continuous dependence and differentia-
bility of the solution X(c) with respect to the parameter c. Also, the numerical
approximation of the solution of (2.10)-(2.11) converges uniformly respect to
the parameters c belonging to Qad as time discretizations are refined.

The system (2.10)-(2.11) involves terms arising from the environmental and
flux contributions that are modeled as Wiener processes. These terms are based
on times series measurements and are presented in Figures 1 and 3. Our ap-
proach is to approximate these terms by trend functions. To approximate the
environmental function, moisture and temperature measurements are modeled
separately. The trend function for temperature is given as the composition of
the functions

(2.12) τ(t) = 14.8 + 14sin(
2π(t + 266)

365
)

and

(2.13) τ(t) = (0.65)2.2(τ(t)−10)/10.

The moisture model function m is expressed as a composition of the functions

(2.14) m(t) = 0.27 + 0.14sin(
2π(t + 46)

365
)

with

(2.15) m(t) =

{
5m(t) when m(t) < 0.2,

1 otherwise.
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The environmental modeling function is now expressed as

ξ(t) = µξ + τ(t) × m(t)

where µξ = 0.0219 and the variance is 0.14 The carbon flux time series is
approximated by the trend function

u(t) = µu + 87 sin(
2π(t + 269)

365
)

where µu = 0.6281 and the variance is 1.8. The resulting error between the
modeled trends, ξ and u and the observed time series are used to determine
cumulative distribution functions presented for comparison with normal distri-
butions in Figures 2 and 4, respectively. These comparisons are presented to
support our choice of Wiener processes to model the uncertainty in the flux and
environmental contributions.

3 Existence, uniqueness, and well-posedness of

solutions to the underlying equations

The modeling of the environmental and flux perturbations as Weiner processes
is justified above. The existence theory of solutions to the initial value problem
such as (2.10)-(2.11) is classical and is carried out by reformulating (2.10)-(2.11)
as an integral equation

(3.1) X(t) = x0 +

∫ t

0

[ξ0(s)ACX(s) + bu0(s)]ds +

+

∫ t

0

ACX(s)dWξ(s) + bWu(t)

When it is desirable to emphasize the dependence on c, we write X(c)(t) to
represent the solution of (3.1). As with the Picard theorem from ordinary
differential equations, the existence of a unique solution is obtained by showing
the iterates for (3.1) converge in a suitable sense. The Borel-Cantelli theorem
along with Gronwall’s inequality are the tools for showing convergence in this
case [3, 4]. We state the result in the following.

Proposition 3.1. For each c ∈ Qad there is a solution t 7→ X(c)(t) of (2.9)-
(2.10) defined on an interval [0, T ] that is continuous with probability 1 and for
any c ∈ Qad

(3.2) supt∈[0,T ]E|X(c)(t)|2 ≤ M < +∞.

where the constant M depends only on Qad and a particular value of c.

It is useful to distinguish various Banach spaces. We denote by U the Hilbert
space of Gaussian random variables X with E(X2) < ∞. Further, V denotes
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the Hilbert space of random vectors X̂ belonging to R7 the components of
which, X̂i, are Gaussian random variables satisfying E(|X̂|2) < +∞. Finally,
we designate the Banach space

V = {X : supt∈[0,T ]E[|X(t)|2] < +∞}

with the norm
‖X‖ = supt∈[0,T ][E|X(t)|2]1/2.

Continuous dependence on the parameter c is given in the following. Continuity
results with respect to the initial condition x0 and b are found in [3, 4].

Proposition 3.2. Let cn → c for cn ∈ Qad. Then

limn→∞‖X(cn) − X(c)‖ = 0.

Proof. We present estimates implying the result. For i = 1, 2 and with Xi(t) =
X(ci)(t), we have

Xi(t) = X0 +

∫ t

0

[ξ(s)ACiXi(s) + bu(s)]ds +

+

∫ t

0

ACiXi(s)dWξ(s) + bWu(t).

Taking the difference

X2(t) − X1(t) =

∫ t

0

ξ(s)A[C2X2(s) − C1X1(s)]

+

∫ t

0

A[C2X2(s) − C1X1(s)]dWξ(s),

we obtain

X2(t) − X1(t) = AC2

∫ t

0

ξ(s)[X2(s) − X1(s)]ds

+ A[C2−C1]

∫ t

0

ξ(s)X1(s)ds+AC2

∫ t

0

[X2(s)−X1(s)]dWξ(s)+A[C2−C1]

∫ t

0

X1(s)dWξ(s)

Squaring and applying Cauchy’s inequality, we obtain

E|X2(t) − X1(t)|2 ≤ 4|A|2|C2 − C1|2[
∫ t

0

ξ2(s)ds + 1]

∫ t

0

E|X1(s)|2ds +

+ 4|AC2|2[
∫ t

0

ξ2(s)ds + 1]

∫ t

0

E|X2(s) − X1(s)|2ds.

From Gronwall’s inequality, we obtain the estimate

E(|X2(t) − X2(t)|2) ≤ L|C2 − C1|2
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implying the result.

We next consider the differentiability of the c 7→ X(c) with respect to the
parameter vector c as a mapping from R7 into V.

Proposition 3.3. The mapping c 7→ X(c) is Frechet differentiable as a map-
ping from R7 into V. For an increment δ ∈ R7, DX(c)δ = Y(c, δ) where
Y(c, δ) satisfies the equation

(3.3) dY(c, δ)(t) = ξ(t)A[diag(c)Y (c, δ)(t) + diag(δ)X(c)(t)]dt

+A[diag(c)Y(c, δ)(t) + diag(δ)X(c)(t)]dWξ(t)

with
Y(c, δ)(0) = 0.

Proof. Let δ be a column 7-vector and consider the difference

X(c + δ)(t) − X(c)(t) =

+

∫ t

0

{ξ(s)A [diag(c + δ)X(c + δ)(s) − diag(c)X(c)(s)]}ds

+

∫ t

0

A [diag(c + δ)X(c + δ) − diag(c)X(c)(s)]dWξ(s)

Setting
∆(c, δ)(t) = X(c + δ)(t) − X(c)(t),

we have

∆(c, δ)(t) =

∫ t

0

ξ(s)A [diag(c + δ)∆(c, δ)(s) + diag(δ)X(c)(s)]ds

+

∫ t

0

A [diag(c + δ)∆(c, δ)(s) + diag(δ)X(c)(s)]dWξ(s).

Rearranging terms we obtain

∆(c, δ)(t) =

∫ t

0

{ξ(s)A diag(c + δ)∆(c, δ)(s)ds

+

∫ t

0

A diag(c + δ)∆(c, δ)(s)dWξ(s)

+

∫ t

0

ξ(s)A diag(δ)X(c)(s)ds

+

∫ t

0

A diag(δ)X(c)(s)dWξ(s).
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From continuity arguments we note that

E(|∆(c, δ)|2) ≤ L̂tf |δ|2.

Introduce the integral equation

Y(c, δ)(t) =

∫ t

0

{ξ(s)A diag(c)Y(c, δ)(s)ds

+

∫ t

0

A diag(c)Y(c, δ)(s)dWξ(s)

+

∫ t

0

ξ(s)A diag(δ)X(c)(s)ds

+

∫ t

0

A diag(δ)X(c)(s)dWξ(s)

for which existence of a unique solution follows from Proposition 3.1. Observe
that the difference

D(c, δ) = ∆(c, δ) − Y(c, δ)

satisfies the integral equation

D(c, δ)(t) =

∫ t

0

ξ(s)A diag(c)D(c, δ)(s)ds

+

∫ t

0

A diag(δ)D(c, δ)(s)dWξ(s)

+

∫ t

0

ξ(s)A diag(δ)∆(c, δ)(s)ds

+

∫ t

0

A diag(δ)∆(c, δ)(s)dWξ(s)

Using arguments analogous to those in [3], we obtain the estimate

E|D(c, δ)(t)|2 ≤ 4(

∫ t

0

ξ2(s)ds + 1)|A|2|c|2
∫ t

0

E|D(c, δ)|2ds

+4(

∫ t

0

ξ2(s)ds + 1)|A|2|δ|2
∫ t

0

E|∆(c, δ)(s)|2ds.

Defining the constants

K̃0 ≥ 4(

∫ tf

0

ξ2(s)ds + 1)|A|2

and
K̃1 ≥ K̃0|c|2L̂,
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we write

E(|D(c, δ)(t)|2) ≤ K̃0

∫ t

0

E(|D(c, δ)(s)|2)ds + K̃1|δ|4.

From Gronwall arguments we have

E(|D(c, δ)(t)|2) ≤ K̃1 exp(K̃0t)|δ|4,

and it follows that, for t ∈ [0, tf ],

E(|X(c + δ)(t) − X(c)(t) − Y (c, δ)(t)|)2 = K|δ|4

establishing the result.

The approximation of the stochastic differential equation is carried out using
the Euler-Murayama method [3, 6, 14]. Beginning with the equation

(2.10) dX(c)(t) = [ξ(t)A diag(c)X(c)(t) + u(t)b]dt

+ A diag(c)X(c)(t)dWξ(t) + bdWu(t)

with initial value

(2.11) X(c)(0) = x0.

Set Xn = X(c)(tn). The corresponding difference equations are given by

Xn = Xn−1

(3.4) + [ξ(tn−1)A diag(c)Xn−1 + u(tn−1)b]h

+ A diag(c)Xn−1∆Wn
ξ + b∆Wn

u

where h = tn − tn−1 and ∆Wn = W (tn) − W (tn−1). The solution of this
sequence of difference equations produces a sequence of random variables Xn

that are measurable with respect to the σ− algebras generated by the Weiner
processes Wξ and Wu and that satisfy

E(|Xn|2) < +∞

for each n = 0, 1, ...N. The convergence of these approximations is demonstrated
in [3] and is established for systems in [14].

Proposition 3.4. Under the assumptions for existence of a unique solution,
the scheme converges to the solution of (2.10)-(2.11) of order O(h) uniformly
on Qad. The terms of the solutions of the difference equation are continuous as
functions of c ∈ Qad to V. Furthermore, the terms of the solution are Frechet
differentiable and satisfy the equations

DXn(c)δ =
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I + [hξ(tn−1) + Wξ(tn) − Wξ(tn−1)]A diag(c)DXn−1(c)δ

(3.5) +[hξ(tn−1) + Wξ(tn) − Wξ(tn−1)]A diag(Xn−1(c))δ

where δ ∈ R7.

Finally, designate the mean by

m(c)(t) = E(X(c)(t))

with
m0 = E(X0).

A straight forward calculation [3] shows that function m(c)(·) is the solution of
the initial value problem

(3.6)
d

dt
m(c)(t) = ξ(t)ACm(c)(t) + bu(t)

(3.7) m(c)(0) = m0 = x0.

This is precisely the equation that we have studied in previous work [18, 19, 20].

4 The NEE observation operator and data.

Let φ = [1 1 1 1 1 1 1]T . The NEE value at time tn associated with the
parameter c is the change of the total carbon per change in time. Thus, the
NEE is approximated by

(4.1). zn(c) = φT [Xn(c) − Xn−1(c)]/h

We take the observational NEE operator for our problem to be given by (4.1).

That is, defined by the mapping c 7→ zn(c)
No

n=1 where No is the number of
observations. Clearly, from the discussion in the previous section, the mapping
c 7→ zn(c) is well-defined and differentiable from R7 into U.

The observed time series of NEE data is presented as a time series of discrete
points ζn for n = 1, ..., No and is portrayed in Figure 5.

As an estimate, we begin by determining a model describing the error be-
tween synthetically generated NEE and the observed NEE data. Toward this
end, we pose the minimization problem

(4.2) Minimize J0(c) =

No∑

i=1

(zn(c) − ζn)2 for c ∈ Qad
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Remark 4.1. Existence of a solution co to (4.2), of course, follows from the
continuity of the mapping c 7→ zn(c) and the compactness of the admissible set
Qad defined in (2.5).

Generally, the functional J0 in the minimization formulation may have multi-
ple minima. Our approach here is to designate a finite sub-collection of L admis-
sible parameters by QL

ad and minimize J(·) over that set. A convenient method
to generate such points with which to construct a discrete admissible set, QL

ad,
is by means of a quasi-Monte Carlo technique using equi-distributed sequences
[11]. Let the components of a vector of length 7 be given by pi = (i2 + 1)1/2

for i = 1, ..., 6. For i = 7 we take p7 =
√

65. It follows that the components of
p are linearly independent with respect to the rational numbers. The ith com-
ponent of the nth term in the sequence of vectors for n = 1, ..., L is generated
by

(4.3) (ci)
n = (npi − [npi])c

max
i

where [·] denotes the greatest integer function. It can be shown [11] that the se-
quence of vectors generated in this way distributes throughout the 7-dimensional
admissible set Qad in a regular way. Thus, we define an admissible set, QL

ad,
with finitely many (L) elements generated by means of equation (4.3). Denote
the solution of the discrete minimization problem

J0(c
L
o ) = min{J0(c) : c ∈ QL

ad}

Based on the approximating properties of such sequences, there is a sequence
cL, forL = 1, 2, ... in Qad such that

(4.4) |cL − co| = O(L
−1+ν

7 )

for any ν > 0 [11].

Proposition 4.1. Using the sequence of defined above, the estimate

(4.5) |minQL
ad

J0(c) − minQad
J0(c)| = J0(c

L
o ) − J0(co) = O(L

−1+ν
7 )

holds. Moreover, the sequence cL also converges to a solution to the problem
(4.2).

Proof.From the differentiability results we have equation (4.5) from the esti-
mate (4.4). From the compactness of the set Qad, it follows that the sequence
of elements cL

o converges to ĉo. From continuity it follows that ĉo is a solution
of the original problem as well.
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Using L = 10000, we find that

co =




3.77 × 10−3

1.05 × 10−4

2.44 × 10−2

9.86 × 10−4

2.88 × 10−3

7.29 × 10−5

3.24 × 10−8




The simulated NEE function obtained using the optimal least square (LSO)
estimated parameter is portrayed in Figure 5. The distribution of the error is
portrayed in Figure 6 for comparison with the Gaussian distribution with mean
µ = 0.0490 and variance σ2 = 1.13 computed from the resulting error time
series.

5 Joint probability density function, marginal-

ization, and predictions

In this section we view the parameter c as a vector from the sample space Qad.
The objective is to introduce a joint probability density function that incorpo-
rates the uncertainty in the data and provides information of the likelihood that
the parameters are in certain subsets Q̃ of Qad. Because the discrete admissible
set QL

ad is constructed as an equi-distributed sequence, the probability measure

of Q̃ is approximated by the number of elements in Q̃
⋂

QL
ad. Based on this

construction, marginal distributions for parameters and predicted biomes may
be obtained.

To construct the joint pdf, the beginning point is the model of the error
that may be deduced from the time series above. Suppose that c ∈ Qad is
given and consider the error at the observation times tn for n = 1, ..., Nobs. The
deterministic model for NEE is obtained by

z(c)(t) = φT m(c)(t)

where m(c) is the solution of the initial value problem (3.6)-(3.7). The stochastic
model of the NEE is obtained as

ζ(c)(t) = φT X(c)(t)

where for each t ∈ [0, tf , ],X(c)(t) is a random vector in V and X(c) ∈ V.
Hence, for each t, ζ(c)(t) ∈ U. Introduce the ”noise” as function ǫ(c)(t) by

ζ(c)(t) = z(c)(t) + ǫ(c)(t)
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as the difference between the stochastic and the deterministic models. For each
t ǫ(c)(t) is a random variable ǫ ∼ N(µ(c), σ2(c)) see Figure 6, as a typical case.

Remark 5.1. The mean and variance µ and σ2 of the error depend on c.
However, calculation of these quantities as c varies over QL

ad indicates that
the function c 7→ µ(c) is approximately zero while the function c 7→ ζ(c) is
approximately one. In computations, we take the variance to be constant but
larger than one (approximately 100) to account for the errors introduced in
numerical approximations that are in addition to the stochastic errors.

For times tn we set ζn(c) = ζ(c)(tn), zn(c) = z(c)(tn) and ǫn(c) = ζn(c)−
zn(c). In addition, define ζ̂(c) = {ζn(c)}No

n=1, ẑ(c) = {zn(c)}No

n=1, and ǫ̂(c) =
{ǫn(c)}No

n=1

Viewing c as a parameter, we define the conditional pdf by

f(ǫ̂|c) = [
1√
2πσ

]Noexp[
−|ǫ̂|2
2σ2

].

We rewrite the pdf to emphasize the distribution on ζ̂

f(ζ̂|c) = [
1√
2πσ

]Noexp[
−|ζ̂ − ẑ(c)|2

2σ2
].

Now we view Qad as a sample space with an a priori distribution fprior express-
ing prior information on the parameters c. Define

f(ζ̂, c) = f(ζ̂|c)fprior(c)

as a joint pdf. We use the relation

f(ζ̂, c) = f(c|ζ̂)fprior(ζ̂)

to obtain
f(c|ζ̂) = f(ζ̂|c)fprior(c)/fprior(ζ̂)

where ζ̂ is a random variable. Expressing data as

ζ̃o = {ζn
o }No

n=1,

we seek
f(c|ζ̃) = f(ζ̃|c)fprior(c)/fprior(ζ̃)

We obtain the expression

f(c|ζ̃) ∝ f(ζ̃|c)fprior(c)

indicating proportionality. The right side is normalized to satisfy the property
of integrating to unity over the sample space. In terms of the pdf derived from
model noise, we have

f(c|ζ̃) = [
1√
2π

]Noexp[
−|ζ̃ − ẑ(c)|2

2σ2
]fprior(c).
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We assume that c 7→ fprior(c) is a uniform distribution defined on Qad

Defining the pdf as above provides an approach in which probabilistic notions
are introduced to interpret results. Different from the minimization approach
used in least squares estimation [18, 19, 20]. The parameter space Qad is a sam-

ple space over which c 7→ f(c|ζ̃) is defined. The constant Ĉ is a normalization

constant used to scale the pdf to unity over Qad. By integrating f(·|ζ̃) over sub-
sets of Qad, the probability that parameters belong to those subsets given the
data. We also think of functions of the sample parameters as random variables
defined over Qad. The pdf contains all the information in the problem from the
data, the model, and the a priori constraints. Having formed the joint pdf f
defined on Qad, the task remains to extract information contained in the joint
pdf concerning the parameters. Since our objective is to assess the information
added to knowledge by inclusion of NEE data over the a priori distribution, we
use quasi-Monte Carlo equi-distributed simulations described above to sample
the set Qad uniformly and retain all simulated values. Thus, we do not use
Markov Chain Monte Carlo (MCMC) methods [13].

As an aid towards comparison, we observe the reduction of likelihood in-
tervals of parameters by comparing the corresponding marginalized a posteriori
pdfs with the a priori uniform pdfs . These comparisons yield information on
how our knowledge of the value of the parameters has increased by including
data. In Figures 7 and 8 are shown the cdfs for a priori (solid) and a posteriori
(dashed). Note that there is improvement in parameters c1, c3, c4, and c5 while
there is very little in the parameters c2, c6, and c7.

We calculate the parameter intervals for 90 percent probability. Towards
this end, we determine intervals whose left and right end points are obtained
by inverting cdf values of 0.05 and 0.95, respectively. The ratio between the
lengths of these intervals between the a posteriori and the a priori distributions
from is a measure of the improvement resulting from the inclusion of the NEE
data. We find

90 percent likelihood ratio forc = {0.70, 0.99, 0.86, 0.81, 0.89, 1, 1}

indicating again improvement in estimates for parameters c1, c3, c4, and c5.

The mean value for the parameters is given by the vector

cmean =




3.5 × 10−3

1.07 × 10−4

1.77 × 10−2

1.34 × 10−3

6.04 × 10−3

5.24 × 10−5

2.53 × 10−6




.
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A second measure of the value of the data is to compare the predicted pool
size distributions of the biomes based on a posteriori distribution joint pdf as
compared with the predictions without the benefit of the data based only on the
a priori information. Since NEE data is available for approximately four years
and the approximating time series for temperature, moisture, and CO2 flux is
over five years (in fact can be extended indefinitely using the functional forms),
we use the 4-year NEE data to determine distributions. These distributions
are then used to predict the future cdfs of biomes at year 5. In principle, it is
possible to make predictions at any time in the future using the models and the
joint pdfs determined from the NEE data. The cdfs for x1, ...x7 are shown in
Figures 9 and 10 where the solid curves are the distributions obtained using a
priori information and the dashed curves are obtained using NEE data. We see
that distributions have been improve in the cases of x1, x3, x4, x5 and x6 with
little or no improvement over the a priori case for x2, and x7. Similarly, for the
parameters c, we calculate 90 percent likelihood ratios for the biomes to find

90 percent likelihood ratiofor x = {0.27, 0.96, 0.38, 0.67, 0.57, 0.78, 0.99}

again indicating improvement in estimates for biomes x1, x3, x4, x5, and x6

with only x2 and x7 showing virtually no improvement.
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Figure 1: Comparison of Environmental Time Series Data with Trend Function
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Figure 2: Comparison of Normal and Empirical cdfs for Environmental Model
Error
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Figure 3: Comparison of Flux Time Series Data with Trend Function
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Figure 4: Comparison of Normal and Empirical cdfs for Flux Model Error
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Figure 5: Comparison of NEE Time Series Data with Simulated NEE Using
Optimal Least Squares Estimated Parameters
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Figure 6: Comparison of Normal and Empirical cdfs for NEE Model Error with
Optimal Least Squares Estimated Parameters
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Figure 7: Comparison of a Posteriori and Uniform Marginal Cumulative Distri-
butions for c1 − c4
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Figure 8: Comparison of a Posteriori and Uniform Marginal Cumulative Distri-
butions for c5 − c7
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Figure 10: Comparison of a Posteriori and Uniform Marginal Cumulative Dis-
tributions for x5 − x7
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