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Abstract

The use of net ecosystem exchange (NEE) data to estimate carbon transfer coefficients is investigated in the context of a
deterministic compartmental carbon sequestration system. Sensitivity and approximation properties are investigated for
the underlying model initial value problems. Joint probability distributions are obtained by including NEE data along with
corresponding synthetic NEE values generated from the model and are compared with a priori distributions. These distri-
butions are used to estimate individual transfer parameters and to predict future carbon states. Results are compared with
those obtained using only a priori information without the benefit of data. Shannon information content is introduced to
measure the dependence of results on the lengths of observational intervals and provide an additional indicator of the value
added by the inclusion of NEE data.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Observed net ecosystem exchange (NEE) of carbon reflects a fine balance between canopy photosynthetic
carbon influx into and respiratory efflux out of an ecosystem. To quantify terrestrial carbon sinks, the bio-
sphere–atmosphere interactions research community has employed the eddy-covariance technique to measure
NEE, water, and energy in more than 210 sites worldwide [1]. Approximately 1000 site years of NEE data and
millions of data points have been accumulated from the FluxNet measurements. Consequently, it appears that
the eddy-flux database will increase exponentially in the coming years and will become a great resource for
ecological research. Flux data, for example, have been used to estimate the components of net ecosystem pro-
ductivity (NEP, i.e., carbon sinks/sources) at many of the flux sites [7], to validate ecosystem models [2,8,10]
and to characterize diurnal, seasonal, and interannual patterns [6]. It will continue to be a fruitful yet challeng-
ing task for the research community to exploit this massive database to improve our mechanistic understand-
ing and predictive knowledge of ecosystem processes [5,16].
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The present work focuses on the utilization of NEE data and seeks to investigate its usefulness in the esti-
mation of parameters within a compartmental carbon sequestration model. Previously we have used other
data sets that are less extensive than NEE [17]. The objective in this paper is to give a proper mathematical
formulation for the use of this data in a compartmental model, to compare the information added using
NEE data over a priori constraints, to assess the effect on carbon predictions based on NEE data with those
using a priori constraints, and to determine the information value of time series observations of NEE as a
function of the length of the observational interval.

In this work our analysis is within framework of an underlying compartmental model with seven carbon
pools in which scaling factors along with initial conditions and flux distribution terms are known to various
extents. We view the model as a deterministic initial value problem in which environmental and flux terms
are presented as approximations of observed time series. Hence, we view certain coefficients as deterministic time
dependent functions and are interested in the stability of results when those functions are perturbed. The param-
eters to be estimated belong to an admissible set Qad prescribed by a priori bounds. Initially, it is assumed that all
parameters in the admissible set are equally likely. Hence a uniform distribution designated as the homogeneous
distribution is defined on the sample space Qad. A posteriori distributions resulting from the incorporation of
NEE data are obtained and are then compared with this a priori homogeneous distribution [15].

Information on parameters may be deduced by means of various operations on the resulting joint probabil-
ity density function (pdf). The first such operation is marginalization to obtain a cumulative distribution func-
tion (cdf) of individual parameters. While initially flux and initial conditions are assumed known, the effect of
uncertainty in these parameters is also included. A measure of the information provided by data is to compare
corresponding probability intervals between the a priori and the a posteriori marginal distributions for param-
eters. A further comparison is to compare a priori and a posteriori predicted distributions of pool sizes. In this
comparison we wish to assess the effect that the inclusion of data has on the cdf of predicted likely pool sizes.
Finally, we use the notion of Shannon relative information content to compare the effect of data.

From the perspective taken here, data is associated with an observational NEE mapping that takes the sys-
tem state to a data space where measurements are made. Our interest is to use the model and data to inves-
tigate the information associated with this mapping. Our approach is to use the model to generate simulated
data by specifying vectors of admissible parameters. By solving the model equations we obtain associated
states. Synthetic NEE output is then constructed by applying the observational operator to this state. Com-
paring the synthetic NEE data with observed NEE data, we then generate a joint pdf on the set of admissible
parameters. This pdf contains a priori information on the parameters as well as the information from the data.
From this pdf we calculate marginal pdfs, likelihood intervals, and estimators. We may then compare estima-
tors based on our procedure with the generating parameter.

In Section 2, we pose the underlying model as a deterministic initial value problem and indicate in detail the
assumptions on various coefficients. Differentiability, stability, approximation, and convergence results are dis-
cussed that are important for the analysis of the problem. In Section 3, the NEE operator is defined. Its differ-
entiability and sensitivity properties with respect to perturbations of parameters are observed. The observational
NEE data is also introduced. In Section 4, the a posteriori joint pdf function based on NEE data is given. A
posteriori distributions of carbon transfer coefficients are obtained and compared with the a priori homogeneous
distributions. In addition, distributions of predicted pools sizes based on the NEE data are presented. Finally,
results are presented that includes various degrees of uncertainty in flux and initial value distributions. In Section
5, Shannon information content is used and viewed as a function of the length of the observation time interval to
determine the value added of additional data as a function of the measurement time. Information efficiency is
also introduced as the ratio of information per unit time to use as an indicator of the value of information.

2. Underlying system and approximation

In this work, we consider a seven compartment model in which the state of various carbon pools at time t is
expressed in terms of a column 7-vector x(t) the components of which represent the quantity of material per
square meter of nonwoody biomass, woody biomass, metabolic litter, structural litter, microbes, slow organic
matter, and passive organic matter pools [17], respectively. The passage of carbon among these pools is mod-
elled by an initial value problem
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d

dt
xðtÞ ¼ nðtÞAoCxðtÞ þ buðtÞ for t 2 ð0; T �; ð2:1Þ

xð0Þ ¼ x0. ð2:2Þ

The matrix C is a 7 · 7 diagonal matrix whose entries consist of the components of a vector c
C ¼ diagðcÞ

of coefficients modelling the transfer of carbon among the various pools. The coefficients satisfy bounds
0 6 ci 6 cmax
i

for i = 1, . . . , 7, where the vector of upper bounds on the transfer parameters is given by
cmax ¼

0:004

0:0003

0:03

0:002

0:02

1:5� 10�4

4:0� 10�6

2666666666664

3777777777775
. ð2:3Þ
Bounds given in cmax are posed in [17–19]. Initially, we take the set Qad of admissible parameters to be given by
Qad ¼ fc : 0 6 ci 6 cmax
i g.
It is also of interest to allow the vectors bo and x0 to vary. Thus, we define bounds on the flux partitioning
vector b of the form
bmax ¼ ð1þ bpertÞbo;

bmin ¼ ð1� bpertÞbo

ð2:4Þ
and on the initial conditions x0 of the form
xmax
0 ¼ ð1þ xpertÞxo;

xmin
0 ¼ ð1� xpertÞxo;

ð2:5Þ
where the vectors bo and xo are given by
bo ¼

0:25

0:30

0

0

0

0

0

2666666666664

3777777777775
ð2:6Þ
and
xo ¼

469

4100

64

694

123

1385

923

2666666666664

3777777777775
; ð2:7Þ
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respectively. The bounds xpert and bpert are assumed to be zero initially so that b = bo and x0 = xo. However,
we will later include results allowing xpert and bpert to take on various values. In this case the admissible set of
parameters includes not only values for the transfer coefficients c but also the flux distribution vector b and
initial values x0.

The vector x(t) represents the density of carbon in grams per square meter in each pool at time t. The 7 · 7
matrix A gives interaction weights among the various pools. The matrix Ao is given by
Ao ¼

�1 0 0 0 0 0 0

0 �1 0 0 0 0 0

0:712 0 �1 0 0 0 0

0:288 1 0 �1 0 0 0

0 0 0:45 0:275 �1 0:42 0:45

0 0 0 0:275 0:296 �1 0

0 0 0 0 0:004 0:03 �1

2666666666664

3777777777775
ð2:8Þ
and describes the partitioning of carbon among the pools.
Environmental effects are modelled by means of a scalar-valued function t # n(t), cf [10] that we now dis-

cuss. The environmental function depends on temperature and moisture effects. The temperature effects are
modelled through a temperature-dependent function
sðtÞ ¼ T ðŝðtÞÞ; ð2:9Þ
where
t 7! ŝðtÞ ¼ 14:8þ 14 sin
2pðt þ 266Þ

365

� �
ð2:10Þ
is a function approximating the actual temperature time series [9] see Fig. 1.
The function s is expressed by
sðtÞ ¼ T ðŝðtÞÞ ¼ ð0:65Þ2:2ðŝðtÞ�10Þ=10 ð2:11Þ

see [11].
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Fig. 1. Temperature time series with approximation.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (days)

Fig. 2. Moisture time series with approximation.
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The environmental function is also dependent on a function that captures moisture effects. The moisture
time series and its approximating function is portrayed in Fig. 2. The approximating function is
bmðtÞ ¼ 0:27þ 0:14 sin
2pðt þ 46Þ

365

� �
. ð2:12Þ
The moisture model function m is expressed by
mðtÞ ¼ MðbmðtÞÞ ¼ 5bmðtÞ when bmðtÞ < 0:2;

1 otherwise.

�
ð2:13Þ
The environmental modelling function [11] is now given as the product
nðtÞ ¼ sðtÞ � mðtÞ ¼ T ðŝðtÞÞ �MðbmðtÞÞ. ð2:14Þ

We note that the temperature model T is differentiable with respect to the temperature function ŝ. The

moisture model M is Lipschitz continuous with respect to the moisture function bm and satisfies
jMðbm1ðtÞÞ �Mðbm2ðtÞÞj 6 5jbm1ðtÞ � bm2ðtÞj

for each t 2 [0,T]. Hence, it follows that the function n is only Lipschitz continuous with respect to t.

The carbon flux time series is portrayed in Fig. 3 and is approximated [9] by the function
uðtÞ ¼ 8þ 7 sin
2pðt þ 269Þ

365

� �
. ð2:15Þ
The functions n and u all are periodic of the same period 365 and bounded. We also note that daily readings
are available for approximately 5 years. Denote a common bound for n and u by K so that
jnðtÞj 6 K
and
juðtÞj 6 K
for all t 2 [0,T]. Also, denote by �c the bound on the parameters c 2 Qad so that
jcj 6 �c
for all c 2 Qad.
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Fig. 3. Carbon flux time series with approximation.
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Given the approximations of the temperature, moisture, and flux time series, the continuous behavior of
solutions of the model equation with respect to perturbation of problem parameters such as n, u, xo, Ao, c,
and b is critical. Standard estimates may be applied using classical Gronwall arguments [4]. For example, con-
sider the initial value problem
d

dt
xðtÞ ¼ AðtÞxðtÞ þ BðtÞ;

xð0Þ ¼ xo;
in which the entries of the matrix A(t) and the vector B(t) are continuous real-valued functions defined on
[0,T]. Let a and b be positive real numbers such that
kAðtÞk 6 a
and
kBðtÞk 6 b
for all t 2 [0,T]. where the vector norm is the Euclidean norm on R7 and the matrix norm is the Frobenius
norm [13]. It follows that for all t 2 [0,T] that:
kxðtÞk 6 kxokeat þ b
a
ðeat � 1Þ
and
d

dt
xðtÞ

���� ���� 6 eatðakxok þ bÞ.
Set q = (A,B,xo) and denote dependence of x on q by x(q). Taking the variations q 0 to consist of perturbations
of A and B by continuous functions A 0 and B 0 and of the vector x0o, differentiability of the function q # x(q)
follows from results in [3] and the Fréchet derivative satisfies:
d

dt
½DxðqÞq0�ðtÞ ¼ AðtÞ½DxðqÞq0�ðtÞ þ A0ðtÞxðqÞðtÞ þ B0ðtÞ;

½DxðqÞq0�ð0Þ ¼ x0o.
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It follows then that:
kxðqþ q0ÞðtÞ � xðqÞðtÞk 6 K0kq0k
and
d

dt
xðqþ q0ÞðtÞ � d

dt
xðqÞðtÞ

���� ���� 6 K1kq0k;
where the constants K0 and K1 are independent of q 2 Q, where Q is a set of parameters that are bounded in
the suitable spaces.

Remark 2.1. Initially, for the system (2.1) and (2.2), we are interested only in perturbations with respect to the
parameter c with bo and x0 constant. However, the above indicates that these results are stable with respect to
changes in bo and x0 and n and u.

The bound for the solution x(t) is given by
jxðcÞðtÞj 6 jx0j þ
jbj
jAoj�c

� �
ejAo j�cT � jbjjAoj�c

. ð2:16Þ
Remark 2.2. From the previous discussion, the Fréchet differentiability of the solution of (2.1) and (2.2) with
respect to c, b, and x0, follows from classical results, see [3]. Fréchet differentiability with respect to the
functions n and u also are immediate. However, because of the Lipschitz continuity of n with respect to bm,
only Lipschitz continuity of the solution with respect to bm holds. The Fréchet derivative of the stat x with
respect to c satisfies the equation
d

dt
½DxðcÞ� ¼ nðtÞAofC½DxðcÞ� þ diagðxðcÞÞg. ð2:17Þ
Remark 2.3. The differentiability with respect to the above parameters along with the Lipschitz continuity of
M with respect to bm implies the continuous dependence of the solution x with respect to ŝ, bm, and u as well as
c, x0, and b.

A simple Euler’s method is used for approximation. The difference equations are obtained with h = T/N as
xjþ1 � xj

h
¼ AoCnjxj þ buj
with iteration
xjþ1 ¼ ½I þ hAoCnj�xj þ hbuj ð2:18Þ
for j = 0,1, . . . ,N � 1.

Remark 2.4. Under assumptions of continuity for the functions n and u, classical approximation results [14]
show that solutions of the difference approximations converge to the solution of the initial value problem
(2.1)–(2.5) uniformly with respect to parameters in Qad. The global convergence rate is of order O(h) because
the environmental function t # n(t) is only Lipschitz continuous and not differentiable. However, because of
the form of M and the moisture function t # m(t), higher order results hold for time subintervals.

Remark 2.5. From the above, the differentiability of (2.7) is straight forward. For example, the derivative
with respect to c is given by
½Dcx�jþ1 ¼ ½I þ hA0C�½Dcx�j þ hA0 diagðxjÞ.
We refer to [17–19] for other formulas and adjoint equations expressing the derivatives.



L. White et al. / Applied Mathematics and Computation 181 (2006) 864–879 871
3. The NEE observation operator and data

NEE measurements indicate the change in the total carbon of the system per unit time. From these
measurements we wish to obtain information of the transfer coefficients c. Accordingly, setting
/ ¼ 1 1 1 1 1 1 1½ ��;

where the superscript * denotes vector transpose, the observational model for NEE is given by
NðcÞðtÞ ¼ d

dt
/�xðcÞðtÞ.
In terms of the system (2.1)–(2.5) it is convenient to express the NEE operator as
NðcÞðtÞ ¼ /�½nðtÞAoCxðcÞðtÞ þ buðtÞ�.

A similar formula holds for the finite difference approximation
NðcÞi ¼ /�½niAoCxðcÞi þ bui�.

To obtain a measure of the sensitivity of NEE to perturbations of the parameter c, we consider the deriv-

ative of c # N(c)(t) expressed by the row vector
DcNðcÞðtÞ ¼ nðtÞ/�Ao½CDcxðcÞðtÞ þ diagðxðcÞðtÞÞ�

with the corresponding expression for the discrete case
DcNðcÞi ¼ ni/
�A0½CDcxðcÞi þ diagðxðcÞiÞ�.
Since
Nðco þ c0ÞðtÞ � NðcoÞðtÞ � ½DcNðcoÞðtÞ�c0;

it follows that:
V ðc; c0ÞðtÞ ¼ jNðco þ c0ÞðtÞ � NðcoÞðtÞj2 � c0
�½DcNðcoÞðtÞ��½DcNðcoÞðtÞ�c0
with the obvious corresponding discrete expression. In Fig. 4, the graphs of the mapping t # V(c,c 0)(t) are
represented for the case in which c 0 = cmax with T = 1830. Taking the L2(0,T) norm of V(c,c 0) of each of
the partial derivatives yields the vector,
Global sensitivity ¼ ½0:78; 0:30; 0:06; 0:39; 0:27; 0:12; 0:0039�.

This indicates that NEE is sensitive to perturbations in the parameters c1, c4, c2, c5, c6, c3, and c7 in that order.
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Fig. 4. Comparison of NEE operator sensitivies.
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The NEE data that we use is portrayed in Fig. 5. It is notable that daily data is available over a 4 year
period with the exception of a couple of gaps.

4. The joint probability density function, marginalization, reduction of likelihood intervals

We introduce the fit-to-data functional in the continuous case as the usual quadratic criterion
JðcÞ ¼ 1

2

Z T

0

½NðcÞðtÞ � N oðtÞ�2dt ð4:1Þ
to measure the distance NEE output associated with a transfer coefficient vector c is from data No(t). In our
application since there are gaps in the data we introduce the discrete functional, again using J(c),
JðcÞ ¼ 1

2

XNobs

i¼1

ðNðcÞji
� NoiÞ

2. ð4:2Þ
The sum is over those times tji
at which measurements are available. Thus, the fit-to-data functional is defined

over the set of admissible parameters Qad described in (2.3)–(2.7) and assigns an error between a simulated
NEE function NðcÞji

associated with a parameter c and the observed data values fN oi : i ¼ 1; . . . ;N obsig. At
this point it is assumed that xpert = 0 and bpert = 0. We introduce a probability density function (pdf) by intro-
ducing the function
f ðcÞ ¼ bC exp½�JðcÞ�. ð4:3Þ

Using this approach we may introduce probabilistic notions to interpret results in addition to the minimi-

zation approach used in least squares estimation [17–19]. Hence, the parameter space Qad is a sample space
over which f is defined. The constant bC is a normalization constant used to scale the pdf to unity over
Qad. By integrating f over subsets of Qad we obtain the probability that parameters belong to those subsets
given the data. We also think of functions of the sample parameters as random variables defined over Qad.
The pdf contains all the information in the problem from the data, the model, and the a priori constraints.
Our objective is to assess the information added to our knowledge based on the data. In this work we consider
how likelihood intervals of parameters are reduced by comparing the corresponding marginalized a posteriori
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pdfs with the a priori pdfs. These comparisons yield information on how our knowledge of the value of the
parameters has increased by including data.

Our second measure is to consider the pool size distributions predicted based on a posteriori distribution
joint pdf as compared with the predictions without the benefit of the data based on the a priori information.
Since NEE data is available for approximately four years and the approximating time series for temperature,
moisture, and CO2 flux is over five years (in fact can be extended indefinitely using the functional forms), we
also make predictions of future NEE values.

Having formed the joint pdf f defined on Qad, the task remains to extract information contained in the joint
pdf concerning the parameters. In this work we use randomly generated simulations and compare the associ-
ated NEE with the data. Since we are interested in the comparison with a priori distributions without the ben-
efit of the data, we retain all simulated values. Thus, we do not use Markov Chain Monte Carlo (MCMC)
methods [12] to capture those parameters of most significance.

In Fig. 6 is portrayed the marginalized cdfs for c1, c2, c4, and c5 and in Fig. 7 for c3, c6, and c7. The 20–80
likelihood ratios determined from marginal cumulative distributions with the benefit of data and without are
the following for c1–c7:
Likelihood ratio ð20; 80Þ ¼ ½0:5; 0:96; 0:8; 0:65; 0:72; 0:93; 1:0�.

Note that the likelihood is substantially reduced for the coefficients c1, c4, c5, andc3. In this study, there very
little gained in the estimation of c2, c6, and c7. The correlation coefficient between the likelihood ratio (20,80)
and the global sensitivity is �0.83. This indicates a strong negative correlation between the likelihood ratios
and the sensitivity coefficients calculated previously.

Fig. 8 portrays the cdfs for predicted pool sizes for x1, x2, x3, and x4 and Fig. 9 portrays x5, x6, and x7. We
note that there are reductions in spread for x1, x3, and x4. For x6 and x7 the intervals are shifted while the
additional data does not effect x2 and x5.

The above results assume a fixed known value for the flux distribution vector, b, and the initial condition
vector, x0. The stability results in Section 2 indicate the differentiability of solutions of the model equations
and of the NEE operator with respect to b and x0. As an experiment we allowed errors in b and x0 by adjusting
bpert and xpert in setting bounds on b and x0. Results for c1 and x1 are portrayed in Figs. 10 and 11. These
figures indicate again that results are stable with respect to perturbations. However, as to be expected, results
vary substantially as the magnitude of the perturbations is allowed to increase.
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Fig. 6. Marginal cumulative distribution functions for c1, c2, c4, and c5 in 1/days .
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5. Information content and dependence on observation interval length

In the previous section, an entire data set of NEE observations is used. In this section, we investigate the
dependence of results on observation interval length, T. It is convenient to introduce the notion of Shannon’s
relative information content. Denote the a priori distribution by c # p(c). For the purposes of this work we
take p to be uniform distribution defined over Qad. It is again assumed that b and x0 are known exactly. The
information content [15] of the a posteriori joint distribution c # f(c) relative to the uniform distribution is
given by
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I ¼
Z

Qad

f ðcÞ log
f ðcÞ
pðcÞ

� �
dc. ð5:1Þ
Since we are interested in relative values and the distribution c # p(c) is a constant over Qad, we consider
I ¼
Z

Qad

f ðcÞ logðf ðcÞÞdc. ð5:2Þ
Recall that
Jðc; T Þ ¼ 1

2

Z T

0

ðNðcÞðtÞ � N oðtÞÞ2dt; ð5:3Þ
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Fig. 11. Comparison of x1 marginal cdfs with errors in bo and x0 in g/cm2.
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where No is a time dependent function of observed values and where we include dependence of the fit-to-data
functional on the length of the observation interval T. The joint pdf is defined as
f ðc; T Þ ¼ KðT Þ exp½�Jðc; T Þ� ð5:4Þ

with
KðT Þ ¼
Z

Qad

exp½�Jðc; T Þ�dc

( )�1

. ð5:5Þ
It is clear that relative information content depends on T, and we indicate this dependence by
IðT Þ ¼
Z

Qad

f ðc; T Þ logðf ðc; T ÞÞdc.
The differentiability is clear, and the derivative with respect to T may be calculated. We begin by noting that
o

oT
Jðc; T Þ ¼ 1

2
½NðcÞðT Þ � NoðT Þ�2: ð5:6Þ
It easily follows that:
d

dT
KðT Þ ¼ 1

2
KðT Þ2

Z
Qad

exp½�Jðc; T Þ�½NðcÞðT Þ � N oðT Þ�2dc
so that
d

dT
KðT Þ ¼ 1

2
KðT Þ

Z
Qad

f ðc; T Þ½NðcÞðT Þ � NoðT Þ�2dc: ð5:7Þ
Set
V ðT Þ ¼
Z

Qad

f ðc; T Þ½NðcÞðT Þ � NoðT Þ�2dc
so that
d

dT
KðT Þ ¼ 1

2
KðT ÞV ðT Þ. ð5:8Þ
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Continuing, we find
o

oT
f ðc; T Þ ¼ f ðc; T ÞfV ðT Þ � ½NðcÞðT Þ � N oðT Þ�2g. ð5:9Þ
Finally, differentiating I(T) and using Eqs. (5.3)–(5.9), we have
d

dT
IðT Þ ¼

Z
Qad

f1þ log½f ðc; T Þ�gf ðc; T ÞfV ðT Þ � ½NðcÞðT Þ � NoðT Þ�2gdc:
Noting that
Z
Qad

f ðc; T ÞfV ðT Þ � ½NðcÞðT Þ � NoðT Þ�2gdc ¼ 0;
we then obtain
d

dT
IðT Þ ¼ V ðT ÞIðT Þ �

Z
Qad

f ðc; T Þ log½f ðc; T Þ�½NðcÞðT Þ � N oðT Þ�2 dc ð5:10Þ
establishing an expression for the derivative of the information content.
In Fig. 12, the solid curve indicates the computed relative information content as a function of the percent-

age of the data set that is used. Under the assumption that as T increases the variance of the error decreases to
zero, we consider the differential equation with p > 1
d

dT
IðT Þ ¼ aT�pðIðT Þ � bÞ; ð5:11Þ
where a and b are positive constants. The solution of this equation is given by
IðT Þ ¼ bþ Const exp �a
T p�1

p � 1

� �
. ð5:12Þ
The dashed curve in Fig. 12 is a solution of the differential equation (5.12) with parameters
a ¼ 5; b ¼ 0:35; p ¼ 1:295; and Const ¼ 1.
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Fig. 12. Comparison of observed and modelled relative information content.
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The relative information content increases monotonically as an increasing percentage of the data set used. This
is to be expected. However, the rate of increase appears to diminish. One would expect that, with the presence
of noise in the measurements, information would not increase indefinitely.

Finally, we consider the information per unit time as an indicator of the information per unit cost. Thus,
function I(T)/T gives the information per unit time and may be considered as a measure of information effi-
ciency. Of course, any function of cost could be used. The division by T is only used as an illustration. Fig. 13
indicates a maximum relatively early in the observation period with decreasing data efficiency after as time
evolves. Certainly, data over longer periods is useful, however the relative increase is most dramatic at earlier
times when there is little information.

6. Conclusions

We have provided a formulation for the estimation of transfer parameters in a carbon sequestration model
using NEE data. The underlying compartmental model is introduced as an initial value problem with approx-
imations to the environmental and flux terms. Stability of system solutions with respect to perturbations of
those terms is demonstrated along basic approximation, differentiability and convergence results. Introducing
the NEE observational mapping taking system states to the corresponding NEE values, sensitivity indicators
are obtained for the NEE observational mapping with respect to transfer parameters from differentiability
properties. It is observed that the model-based NEE mapping is globally sensitive to transfer coefficients asso-
ciated with nonwoody biomass, structural litter, woody biomass, microbes, slow organic matter, metabolic
litter, and passive organic matter in decreasing order. Using randomly generated parameter values along with
the NEE data, marginal pdfs are obtained for individual transfer parameters. The resulting likelihood interval
ratios are strongly negatively correlated with sensitivity coefficients and indicate reductions in nonwoody bio-
mass, structural litter, microbes, metabolic litter, slow organic matter, woody biomass, and passive organic
matter from largest reduction to smallest. Also, cumulative distributions of predicted carbon pool sizes indi-
cate reduced uncertainty with the inclusion of NEE data. In particular, the likelihood intervals are reduced for
predicted nonwoody biomass, metabolic litter, and structural litter pools using NEE data. Finally, we consider
the dependence of relative information content on the length of the observational interval. The derivative of
information content with respect to the observational interval length is obtained. Under the assumption that
variance of the error goes to zero as T�p with p > 1 where T denotes the length of the observation time inter-
val, we obtain good fit with observed results. Numerical results indicate increasing information with increasing
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time; however, at a decreasing rate. Moreover, the efficiency of the data has a maximum. A combination of
these results could be utilized in considering the length of the observation time interval.
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