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Abstract

FACE data is used with a compartmental carbon forest model to obtain information

in the form of cumulative distributions and estimates of carbon transfer parameters in

the face of uncertainties in initial conditions, flux inputs, and environmental observa-

tions. An assessment of the data is conducted to determine its effectiveness in inversion.

Predictions are made of future carbon pools sizes based on the joint probability density

function obtain from the data and trends of environmental functions. Uncertainty is

carried forward into future predictions of pool sizes.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction and objectives

In this paper we use a carbon sequestration model and relevant data sets to

estimate transfer coefficients between carbon pools and to make predictions of

the size of future carbon pools. A system of initial value problems based on the

linear compartmental carbon sequestration concept [2] serves as the underlying

set of admissible models. The solution (state) of the resulting initial value
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problem is a vector the ith component of which expresses the quantity of car-

bon residing in the ith carbon pool at a given time. A sample (or parameter)

space is defined with respect to the set of parameters in admissible models that

reflect those quantities of interest (the transfer coefficients) and uncertainties

the initial conditions and flux terms as indicated by cumulative distribution

functions. In addition the model also contains terms such as environmental
conditions that are available as time series measurements. These time series

give rise to possible uncertainties due to errors in measurements and noise.

Our objective is to use the data from observations to obtain information on

the parameters of interest, to assess the value of information from the data,

and to predict future carbon pool sizes in the face of uncertainties.

To carryout the above program, various data are compared with model out-

puts of the corresponding attributes of the system that are formulated in terms

of model parameters and states. The data are thus associated with mappings of
the parameter and state vectors. These mapping are regarded as part of the

model as well. Because initial value problems are not exact and the data mea-

surements themselves contain errors, the variance terms between forward

model outputs and observed data are included in the collection of parameters

for which there is uncertainty. A sample space is defined that consists of vectors

whose components are transfer coefficients, initial conditions, flux terms, and

variance weights.

A joint probability density function (pdf) is constructed on the sample
space. This pdf conceptually represents our knowledge (or uncertainty) of

the system given the data and the model. The joint pdf is used to determine

marginal cumulative distribution functions (cdfs) for transfer coefficients.

Hence, the uncertainty in the initial conditions and flux terms is marginalized.

The effectiveness of the data can also be assessed by comparing the ratio be-

tween likelihood intervals in which the length of a 95% likelihood parameter

interval obtained from the pdf constrained by observations and that of the a

priori pdf in which only a priori parameter bounds are imposed. The joint
pdf is also used to calculate functions of the parameters. For example, we make

predictions of future pool sizes based on the model and data. In this work we

use data from 5 years of observations to make predictions of likely pools sizes 5

years after observation period. We also compare the predictions with those be

obtained based on only a priori information unconstrained by data as a further

indicator of the information added from observations.

In Section 2 the mathematical model and its approximation are discussed.

Also, the time series of the temperature and moisture environmental effects
as well as the carbon flux are introduced. The trend functions used in future

predictions and the cdfs of the deviations from those trends are indicated. After

introducing the data and the observational operators in Section 3 the func-

tional form of the joint probability density function is obtained. The use of

the joint pdf to invert the observed data to obtain distribution and likelihood
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intervals of parameters and random variables is discussed. We also assess the

effectiveness of data in the estimation of various parameters. In Section 4 we

discuss sampling and the dependence of results on the number of simulations

used in evaluating the joint pdf as well as reporting results based on the data

sets we use.
2. Underlying system and approximation

In this section we present the underlying model and the finite difference

approximations used for its numerical approximation. In the subsequent appli-

cation, the numerical model will be used to generate synthetic state vectors.

The state, x(t), is a vector-valued function of time each component of which

gives the quantity of carbon in a particular pool. In this work the compartmen-
tal model yields a state vector, x(t), consisting of seven components corre-

sponding to the carbon pools: nonwoody biomass, woody biomass,

metabolic litter, structural litter, microbes, slow organic matter (SOM), and

passive SOM. Synthetic data are obtained from the state by means of observa-

tion operators that enable us to compare the synthetic data with measurement

from real observations.

The underlying model is a system of seven differential equations with initial

conditions given by

d

dt
xðtÞ ¼ nðtÞACxðtÞ þ buðtÞ; ð1Þ
xð0Þ ¼ x0:

The matrix C is a 7·7 diagonal matrix whose entries consist of the components
of the vector c

C ¼ diagðcÞ:
The vector c represents fractions of C left in their own pools after each time
step. The 7·7 matrix A gives interaction weights among the various pools with
A ¼

�1 0 0 0 0 0 0

0 �1 0 0 0 0 0

0:712 0 �1 0 0 0 0

0:288 1 0 �1 0 0 0

0 0 0:45 0:275 �1 0:42 0:45

0 0 0 0:275 0:296 �1 0

0 0 0 0 0:004 0:03 �1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:
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The nonzero elements in the matrix A are coefficients that partition exit carbon

into other pools (see [2] for a detailed explanation). The column vector b has
partitioning coefficients of carbon influx function u(t) into different plant pools.

The scalar environmental function n(t) takes into account dependence of car-
bon fluxes on temperature and moisture related functions s(t) and l(t) and is
expressed as the product

nðtÞ ¼ sðtÞ lðtÞ:
The solution vector x(t) is a column 7-vector giving carbon pool sizes as a func-
tion of time.

The system (1) is derived from ecological observation of ecosystem carbon

processes see [2]. Carbon inputs into the system through photosynthesis as rep-

resented by u(t), is partitioned into different plant parts as represented by the
vector b, and then transferred among pools, x(t), as described by AC. From
the perspective of this work we consider the vectors c, b, and x0 to be param-
eters of the problem. Actually the vector c is of primary importance for our
estimations here. Nevertheless the vectors b and x0 may not be well known,
and we wish to include this uncertainty in our considerations. We thus define

the vector q=(c,b,x0). When the parameter vector q is specified, the associated
state function at time x(q)(t) may be determined.
The real-valued functions u(t), s(t), and l(t) are functions obtained through

observation of time series over a given time period (5 years). As such, there ap-

pears to be considerable noise in the functions. For inversion of the data we use

these functions directly. However, for prediction we use approximating trend

functions that may be extrapolated into the future (say an additional 5 years).

To include the uncertainty of the measurements of C flux, temperature, and

moisture, deviations from the trends during the observational interval are used

to generate deviations from the trends in the future. In Figs. 1–3 are the graphs

to show variations in temperature, moisture and flux for a 5-year periods. Also,
are included trend curves that are smooth approximations of the respective

time series. The deviations of the time series from the trends are expressed in

terms of the cumulative density functions obtained from the histograms of

the deviations over the 5-year period. These are presented in Figs. 4 and 5. Ex-

plicit descriptions of the trend functions will be given in the case study in Sec-

tion 4.

To study the problem, a finite difference approximation of the initial value

problem (1) is introduced in [6]. Thus, we consider the following system of dif-
ference equations. Setting

xj ¼ xðqÞðtjÞ; nj ¼ nðtjÞ and uj ¼ uðtjÞ

the difference approximation to (1) that we use is given by

ðxjþ1 � xjÞ=Dt ¼ ACðnjþ1xjþ1 þ njxjÞ=2þ bðujþ1 þ ujÞ=2:



Fig. 1. Comparison of temperature time series with trend in degrees Centigrade.

Fig. 2. Comparison of moisture time series with trend in volumetric moisture content.
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Combining terms we find that

½I � Dtnjþ1AC=2�xjþ1 ¼ ½I þ DtnjAC=2�xj þ Dtbðujþ1 þ ujÞ=2

for j=0,1,. . .,NT�1. Set
Bj ¼ I � DtnjAC=2;



Fig. 4. CDF of the deviation from of the environmental time-series from trend over a 5-year

Fig. 3. Comparison of CO2 influx function with trend in gC/(m
2day).
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B0
j ¼ I þ DtnjAC=2

and

fj ¼ Dtbðujþ1 þ ujÞ=2:

record.



Fig. 5. CDF of the deviation of the flux time series from trend over a 5-year record.
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It follows that the system of difference equations is

B1x1 ¼ B0
0x0 þ f0;

B2x2 ¼ B0
1x1 þ f1;

. . .

BNTxNT ¼ B0
NT�1xNT�1 þ fNT�1:

ð2Þ

Define the column vectors of length 7(NT)

X ¼

x1

	
	
	

xNT

0
BBBBBB@

1
CCCCCCA
;

F ¼

f0

	
	
	

fNT�1

0
BBBBBB@

1
CCCCCCA
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and

F0 ¼

B0x1
0

	
	
	
0

0
BBBBBBBB@

1
CCCCCCCCA
;

and the 7(NT)·7(NT) matrix

BðcÞ ¼

B1 0 	 	 	 0

�B0
1 B2 0 	 	 	 0

0 	 	 	 	 	 	 	 	 	 0

0 	 	 	 	 	 	 �B0
NT�1 BNT

0
BBB@

1
CCCA:

The approximating system is given by

BðcÞXðqÞ ¼ FðbÞ þ F0ðx0Þ: ð3Þ

Thus, given a transfer coefficient c, the matrix B(x(t)) is defined. Assuming in-
vertibility of B(c), we may solve the above equation for X(q). The mapping
qfiX(q) is defined from the prescribed set of admissible transfer coefficients

Qad to the state vector X(q).

The actual solution of the difference equations (2) is, of course, carried out

iteratively [4]. The closed form (3) is useful in analysis of the system, for exam-

ple in stability studies in which the derivative of the state with respect to the
parameters (c, b, x0) is needed, but will be studied in subsequent work.
3. Data observation operators and probability density functions

In this section we describe the measurement models. These operators map

the model state obtained in the previous section to observable attributes to

be compared with observed data. We assume that a parameter vector q is spec-
ified and that the column 7-vector xj (q) gives the state associated with q at time
tj. Observation operators are generally of the form

uðqÞðtÞ ¼ UðtÞcþ /ðtÞ;
where for each t, U(t) is a 7·7 matrix and /(t) is a column 7-vector. A synthetic
measurement at tj takes the form

zjðqÞ ¼ uðqÞðtjÞTxjðqÞ:
We consider the following observation operators to be compared with data.
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Soil respiration

U ¼ nðtÞdiagð½0:25; 0:25; 0:55; 0:45; 0:7; 0:55; 0:55�Þ
and

/ ¼ 0

with the observation given by

zjðqÞ ¼ cTUðtjÞxjðqÞ:

Woody biomass

U ¼ 0
and

/ ¼ ½0; 1; 0; 0; 0; 0; 0�T

with the observation given by

zjðqÞ ¼ /TxjðqÞ:

Litterfall

UðtÞ ¼ nðtÞdiagð½0:75; 0:75; 0; 0; 0; 0; 0�Þ
and

/ ¼ 0

with the observation given by

zjðqÞ ¼ cTUðtjÞxjðqÞ:

Foliage biomass

U ¼ 0
and

/ ¼ ½0:75; 0; 0; 0; 0; 0; 0�T

with the observation given by

zjðcÞ ¼ /TxjðqÞ:

Mineral carbon

U ¼ 0
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and

/ ¼ ½0; 0; 0; 0; 1; 1; 1�T

with the observation given by

zjðcÞ ¼ /TxjðqÞ:

Forest floor carbon

U ¼ 0
and

/ ¼ ½0; 0; 0:75; 0:75; 0; 0; 0�T

with the observation given by

zjðcÞ ¼ /TxjðqÞ:
To compare data we define a fit-to-data functional as follows. For the kth data

set above, let

JkðqÞ ¼ ek
XNTk
i¼1

½uðcÞTxjðqÞ � �zki �
2
;

where

ek ¼ 1=ððNTk � 1ÞvarðzkÞÞ:
For each k the fit-to-data functional Jk(q) gives an expression of the squared

error between the data vector zk and the corresponding output associated with

a given parameter vector q, {uk (c) xi (q)
NTk

i=1}. Observations occur at NTk

times for a given data set. The fit-to-data functional is given by

JðqÞ ¼
X6
k¼1

hkJ kðqÞ:

Instead of considering a minimization problem, as done in [2], to find that coef-

ficient vector minimizing the fit-to-data function over an admissible set, we

take a probabilistic view. Thus, we consider the set of admissible parameters

as elements in a sample space Q consisting of the vector p=(q,h) where h is
the vector of coefficients hk, k=1,. . .,6 in the fit-to-data functional above. From
this perspective, we view the weight (or in fact the variance) as part of the

model Burnham and Anderson [1]. Thus, the vector of parameters consist of
the transfer coefficients, the flux vector, and the vector of initial conditions,

q=(c,b,x0) as well as the vector of weights h.
We introduce the joint probability density function (pdf)

f ðpÞ ¼ K expð�JðpÞ=2Þ;
where the constant K is a normalization constant such that the integral of f (p)

over the subset of admissible parameters Qad of the sample space Q is one. The
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function f(p) is a pdf that carries the information from measurements, the

model equation, and a priori bounds in the parameters as well as uncertainties

in the data. Without the data the joint pdf f(p) may be regarded as the uniform

distribution defined over Qad. The data and the model define correlations

among the parameters through the error expression in the fit-to-data and joint

probability density functions. This constitutes a conjunction of information as
discussed in [5] to obtain joint pdf f(p).

From the joint probability density function f(p) we obtain the following.

(1) Quantification of system information based on the model, prior informa-

tion, and data.

(2) Marginal distributions for individual parameters,

f iðpiÞ ¼
Z
Q0i

f ðpÞdp0i

for the marginal pdf where integration is with respect to all parameters ex-

cept pi and Q
0

i designates the parameter space excluding the pi variable.

The marginal cumulative distribution is given by

F iðsÞ ¼
Z
P iðsÞ

f ðpÞdp;

where

P iðsÞ ¼ fp : pi 6 sg:
(3) Mean and maximum likelihood estimators are given by

pimean ¼
Z
Q
pif ðpÞdp;

pi max ¼ maxff iðpiÞ : pi 2 Qig:

(4) Likelihood intervals and bounds are determined as follows. Let pi and pi be

defined by

F iðpiÞ ¼ 0:975 and F iðpiÞ ¼ 0:025

as left and right endpoints of a 95% likelihood interval [pi, pi].

We can use the information contained in the joint pdf obtained above to make

predictions of likely future C pool sizes. If c: QadfiR is a reasonable (measur-

able) real-valued function of the parameters p, the cumulative distribution

function is defined by

F cðsÞ ¼ ProbQadðs; cÞ;
where

Qadðs; hÞ ¼ fp 2 Qad : cðpÞ6 sg:
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Thus, Fh(s) is calculated by

F cðsÞ ¼
Z
Qadðs;cÞ

f ðpÞdp:

Setting c above to xi(T,p), the size of the ith pool at a future time T, then the
cumulative distribution of xi is obtained by computation of the integral for

each value of s

F xiðsÞ ¼
Z
Qadðs;xiÞ

xiðT ; pÞf ðpÞdp:
4. A case study using FACE data

In this section we specify a case study using FACE data. The sample space

consists of a bounded set in R21 in which the parameters are 21-tuples of the
7-vector of transfer coefficients c, the 7-vector of initial conditions x0, the 2-vec-

tor of fluxes b, and the weights h on the variances of the error between the sim-
ulated model output and the observations. The vector of weights h are all
bounded between 0 and 2 and the terms multiply the inverse of the variances

of the data.

Soil respiration=1.401

Woody biomass=283,000

Litter fall=1150

Foliage biomass=2570

Forest floor carbon=8710
Mineral carbon=36,200

The bounds of admissible transfer coefficients, initial conditions, and flux

terms are given in Tables 1–3.
Table 1

Bounds on admissible transfer coefficients

Transfer coefficient Minimum bound (1/day) Maximum bound (1/day)

c1 8.82·10�5 3.9·10�3

c2 2.74·10�5 5.48·10�4

c3 2.7395·10�3 5.468·10�2

c4 2.74·10�4 5.48·10�3

c5 1.37·10�3 1.7068·10�2

c6 2.74·10�5 5.48·10�4

c7 6.85·10�7 1.826·10�5



Table 2

Bounds on admissible initial conditions

Initial condition Minimum bound (g/m2) Maximum bound (g/m2)

x1 4.22·102 5.159·102

x2 3.69·103 4.51·103

x3 5.76·101 7.04·101

x4 6.246·102 7.5634·102

x5 1.107·102 1.353·102

x6 1.2465·103 1.235·103

x7 8.307·102 1.0153·103

Table 3

Bounds on admissible flux terms

Flux Minimum bound Maximum bound

bo1 0.225 0.275

bo2 0.27 0.33

Fig. 6. Comparison of cdfs for c1 for different numbers of simulations.
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To calculate the integrals indicated above requires multiple simulations see

[3]. In Fig. 6 is portrayed the curves for different numbers of simulations for the

marginal cumulative distributions for the transfer coefficient c1. Based on the

computational experience indicated in Fig. 6 we use 10,000 simulations for

in the present study. Moreover, for our computations, we use directly the time



Fig. 7. (a) Marginal cdfs for c1–c4 with data (solid) compared with uniform cdfs (dashed). (b)

Marginal cdfs for c5–c7 with data (solid) compared with uniform cdfs (dashed).

796 L.W. White et al. / Appl. Math. Comput. 163 (2005) 783–800



Table 4

Ratios of (a posteriori)/(a priori) 95% likelihood intervals for transfer coefficients with 5 years of

data and predicted pools sizes after 10 years

Pool number c (1/day) x (g/m2)

1 0.704 0.228

2 0.914 0.974

3 1.000 1.000

4 0.955 0.694

5 0.997 0.908

6 0.974 0.826

7 0.988 0.991

Table 5

Comparison of data types that reduce likelihood ratio to less than 0.8 for observed data and

numerical data

Data type Transfer coefficient with

data with ratio<0.8

Transfer coefficient with

numerical data ratio<0.8

Soil carbon c2, c4 c2, c4, c6
a

Foliage biomass c1 c1
Litter fall – –

Woody biomass c2 c2
Soil respiration – –

a c6 numerical examples used longer observational time periods.
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series for temperature, moisture and flux as indicated in Figs. 1–3. Also, we use

time step sizes of dt=1 day and use data over 5-year-period.

In Fig. 7a and b are plotted the a posteriori marginal cdfs based on data

along with the a priori cdfs obtained from uniform distributions over the
parameter interval. As a measure of the information added to the inversion

based on the data, we calculated the ratio of the length of the 95% likelihood

interval using the a posteriori marginal distributions constrained by data di-

vided by the length of the 95% likelihood interval using the a priori uniform

distributions based on the parameter bounds indicated in Tables 1–3. This is

presented in the second column of Table 4. We note that the 95% likelihood

interval is substantially reduced for the c1 transfer coefficient. The likelihood

interval is also reduced for c2 and c4, although not as dramatically as c1. For
the transfer coefficients c3, c5, and c7 there is very little information supplied

from the data beyond that of the a priori uniform distribution.

The results portrayed in Fig. 7a and b as well as those indicated in Table 4

are obtained using all data sets. It is an interesting issue to determine the effects

of different data sets on the different transfer coefficients. In Table 5 we portray

in the second column which coefficients are impacted by which types of data. In

the third column are results from [7] from numerical test. These coincide quite



Fig. 8. (a) Cdf of predicted carbon pools x1–x4 after 10 years using data (solid) and uniform

(dashed) in probability. (b) Cdf of predicted carbon pools x5–x7 after 10 years using data (solid)

and uniform (dashed) in probability.
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well with the results from real data used in this paper. We see that soil carbon,

foliage biomass, and wood biomass are very important for estimation of c1, c2
and c4. It appears that litter fall and soil respiration data are of little value.

Another way of measuring the value of data on the inversion process is to

observe the spread of the predicted carbon pool sizes under a joint pdf that

is obtained under the constraint of data with that obtained with only the a pri-
ori parameter bounds. Thus, for predictions to 5 years past the data period, we

use the joint a posteriori pdf obtained based on the 5-year data above. It is nec-

essary to extrapolate the temperature, moisture, and flux to the future in order

to solve the initial value problem over the extended period. We used trends of

the temperature, moisture, and flux time series obtained as a least squares fit to

the time series given in Figs. 1–3. We determine

Temperature : sðtÞ ¼ 14:7651þ 14 sinð2pðt þ 266Þ=365Þ;

Moisture : lðtÞ ¼ 0:27þ 0:14 sinð2pðt þ 46=365ÞÞ;
and

Flux : uðtÞ ¼ 6þ 5 sinð2pðt þ 269Þ=365Þ:
To model uncertainty, we accumulate the deviation of the time series in Figs.

1–3 from these trends. Based on the resulting deviations we construct cdfs of the

environmental function, i.e. the product of temperature and moisture and the

flux, see Figs. 4 and 5. As the trend values are extrapolated to obtain future val-

ues of environmental and flux values, deviations are randomly generated to per-

turb the trends in an effort to capture future uncertainty. The value of the state

vector at the time 10 years is obtained by solving the initial value problem over
the time period of 10 years. Time steps of length 30 days are used in order to

expedite the solution. The pool size vector obtained at T=10 years is considered

to be a random vector defined over the sample space of the parameters.

In Fig. 8a and b are portrayed the cdfs of the predicted pool sizes of different

carbon pools. These are compared with the predicted pool sizes using the a pri-

ori uniform distributions for parameters before constraining with data. In

Table 4 is presented in column 3 the reduction in the length of the 95% likeli-

hood interval of the predicted pool sizes with respect to that obtained with only
the a priori uniform distribution on the parameter sample space. We note that

prediction ranges are narrowed for pools 1, 4, 5, and 6.
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