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Abstract

The value of different types of data in the estimation of different carbon transfer

parameters is investigated. A carbon accounting model is used with different observa-

tion operators to generate data. The effectiveness of the inversion is assessed by observ-

ing relative errors of estimators and likelihood ratios. It is demonstrated that for an

observation operator that relative errors vary widely with the sample test problems.

An effective strategy to test types of data is to test the effectiveness of corresponding

observation operators on an ensemble of sample problems for which parameters are

selected from the space of admissible parameters. The selection is carried out under

the assumption that the test parameters themselves are random variables uniformly dis-

tributed over the space of admissible parameters.
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1. Introduction

We consider an initial value problem modeling the sequestration and trans-

fer of carbon (C) among various pools in a forest ecosystem. The model is de-

rived from conservation considerations as C passes among 7 pools: nonwoody

biomass, woody biomass, metabolic litter, structural litter, microbes, slow or-
ganic matter (SOM), and passive SOM. The solution of the model equations is

a time-dependent vector with seven components expressing the quantity of C in

a particular pool as a function of time. We refer to this vector as the state of the

system. The vector of initial pool sizes, system C influx function, the functions

describing of moisture and temperature effect, and C transfer coefficients are

parameters needed to formulate the model. In a paper by Luo et al. [1] the

development of this model is described and used with an output-least-squares

estimation procedure to invert six data sets related to forest C processes in
order to estimate transfer coefficients. In the present work we also consider

only the transfer coefficients as parameters to be estimated with the other

parameters being regarded as given and certain. The consideration of the con-

sequences of their uncertainty is a topic of future studies. The inversion exercise

then seeks to determine a set of transfer coefficients that may be considered as

scaling multipliers within the model equation. In White and Luo [4] a similar 12

pool model is used to analyze data to estimate C transfer coefficients. In the

present paper, however, we use the 7-pool model as in Luo et al. [1] since it cap-
tures the salient features for our studies. However, we still use the finite differ-

ence approximations developed in White and Luo [4] to determine numerical

solutions of the initial value problems. Both of the above papers use available

data and the underlying C sequestration model on which to base the estimation

routines.

Instead of using an available data set and obtaining the estimators based on

that data, we are interested in this work in studying information on the identity

of transfer coefficients contained by various types of data. It is useful in this
regard to take the probabilistic point of view of inversion of Tarantola [3].

From this view, a priori estimates on parameters belonging to an admissible

set are expressed as a uniform distribution defined on the set of admissible

parameters. The information contained in different data sets may be deduced

by comparing the a posteriori distribution obtained by including the data with

the a priori distribution. It is then possible to deduce information such as like-

lihood intervals and estimators of the parameters, for example, from the result-

ing probability density function (pdf). In this context the inversion procedure
coincides with the Bayesian paradigm, Tarantola [3].

The consideration of the information contained in various data sets is moti-

vated by sampling issues in C research. Quantification of C sequestration in

terrestrial ecosystems involves uncertainties from several sources. For example,

we are usually limited to measurement of a set or a subset of C processes. It is,
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therefore, critical to know which set or subset of measurements would provide

estimates of C sinks with the least uncertainty. Second, ecosystem C processes

involve complex sets of changes in pools sizes and fluxes with heterogeneous

turnover rates. Carbon turnover in the foliage pool, for example, is much faster

than that in recalcitrant soil organic matter. It is essential to understand dura-

tions of experimental measurements that are required to constrain parameter
estimation of C transfer coefficients from different pools. The third sampling

issue is related to the discrepancy between desirable parameters for model pre-

diction and measurable processes in experiments. Many of the parameters in C

models are not necessarily measurable. How to constrain those desirable, but

not measurable, parameters is another great challenge in C research. We use

this modeling approach to address these issues.

From the perspective taken here, data is associated with certain observa-

tional mappings that take the system state to a data space where measurements
are made. Our interest is to use the model to investigate the information asso-

ciated with these mappings. Our approach is to use the model to generate data

by specifying a vector of parameters consisting of C transfer coefficients. By

solving the model equations we obtain the associated state. Data is then con-

structed by applying the observational operator to this state. Using data de-

rived in this manner, we then generate a joint pdf on the set of admissible

parameters. This pdf contains a priori information on the parameters as well

as the information from the data. From this pdf we calculate marginal pdfs,
likelihood intervals, and estimators. We may then compare estimators based

on our procedure with the generating parameter.

The particular types of data that we consider result from the application of

different observation operators. In this regard, various measurements are made

on the forest ecosystem. These data observers are detailed in Luo et al. [1] and

we include them in a discussion in the Section 3. We analyze the information

contained from those observations based on an observation time interval of

a fixed length.
While considering data from a single generating parameter vector of C

transfer coefficients is useful to assess different data types, it is of interest to

associate a measure with the observation operator itself not depending on a

particular generating parameter. We show that results can vary greatly depend-

ing on the choice of generating parameter vector. In fact we demonstrate that,

for a given observation operator, there are generating coefficients for which a

particular transfer parameter may be recovered very well while there may be

other generating coefficients that those parameters are not well recovered. In
other words the ability of a given observation operator to recover the coeffi-

cients depends on the generating coefficient. It would be useful to compare

observation operators while removing dependence on a particular generating

parameter vector. Thus, in order to assess the effectiveness of a given observa-

tion operator, it is desirable to consider a property dependent on the entire
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sample space and not on a particular generating coefficient. Hence, in order to

focus on the information resulting from a particular observation operator, we

introduce an ensemble of transfer coefficients with which to compare relative

error of recovered parameters.

The organization of this paper is as follows. In Section 2 we describe the

underlying initial value problem that serves as the C sequestration model as
well as its approximation. We discuss in Section 3 the observational operators

and the formulation of probability density functions. In Section 4 we consider

an example by specifying initial conditions, C influx functions, the parameter

vector c0 of transfer coefficients used to generate data, as well as the parameter

bounds used in formulating the parameter admissible set. We then present re-

sults for various estimators for comparison with the generating parameter.

These results are obtained using all available data. Different observational

operators are then considered. Since we have constructed the example it is pos-
sible to calculate relative error between estimators and the generating coeffi-

cients. The selection of c0 in this example is random, and it should be noted

that in fact the actual results are not particularly good. This motivates the ques-

tion of whether such is the case in general or whether the selected c0 is simply a

bad choice. In Section 4 we demonstrate that, for a given observation operator,

it is possible to choose c0 so that relative error of the estimator for a particular

component is small. This means that to determine a measure for the efficiency of

a given operator to recover data it is necessary to consider an ensemble com-
posed of a collection of c0 parameters. Our approach is to construct an ensemble

viewing the generating c0 itself as a random variable that is uniformly distrib-

uted over the set of admissible transfer coefficient vectors. We then determine

expected errors that are obtained by integrating over the test c0 coefficients.

We obtain expected relative errors for mean estimators and likelihood intervals.

Finally, in Section 5, we discuss conclusions based on our results.
2. Underlying system and approximation

In this section we present the underlying model and the finite difference

approximations that are used for its numerical approximation. In subsequent

applications the numerical model will be used to generate what we take to

be the ‘‘true’’ state. The underlying model is a system of 7 differential equations

with initial conditions given by

d=dt xðtÞ ¼ nðtÞACxðtÞ þ buðtÞ; xð0Þ ¼ x0: ð1Þ

The matrix C is a diagonal matrix whose diagonal entries consist of the com-

ponents of the vector c

C ¼ diagðcÞ:
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The vector c constitutes the parameter vector and is a vector in R7 giving the

transfer coefficients among carbon pools. Here x(t) is a column 7-vector giving

carbon pool sizes as a function of time. The 7 · 7 matrix A gives interaction

weights among pools. The scalar-valued function n(t) takes into account mois-

ture and temperature effects. The function u(t) is a real-valued C influx function

while b is a column 7-vector determining the specific pools directly effected by
the input functions. The system Eq. (1) is derived based on the analysis of car-

bon transfer see Luo et al. [1].

To study the problem, a finite difference approximation of the initial value

problem (1) is introduced in White and Luo [4]. Thus, we consider the follow-

ing system of difference equations. Setting

xj ¼ xðcÞðtjÞ; nj ¼ nðtjÞ and uj ¼ uðtjÞ

the difference approximation to Eq. (1) that we use is given by

ðxjþ1 � xjÞ=Dt ¼ ACðnjþ1xjþ1 þ njxjÞ=2þ bðujþ1 þ ujÞ=2:

Combining the terms we find that

½I � Dtnjþ1AC=2�xjþ1 ¼ ½I þ DtnjAC=2�xj þ Dtbðujþ1 þ ujÞ=2;

for j = 0,1, . . .,NT � 1. Set

Bj ¼ I � DtnjAC=2;

B0
j ¼ I þ DtnjAC=2

and

fj ¼ Dtbðujþ1 þ ujÞ=2:

It follows that the system of difference equations is

B1x1 ¼ B0
0x0 þ f0;

B2x2 ¼ B0
1x1 þ f1;

. . .

BNTxNT ¼ B0
NT�1xNT�1 þ fNT�1:

ð2Þ

Define the column vectors of length 7(NT)

X ¼
x1:

..

.

xNT

0
BB@

1
CCA;
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F ¼
f0

..

.

fNT�1

0
BB@

1
CCA

and

F0 ¼

B0x0

0

..

.

0

0
BBBB@

1
CCCCA

and the 7(NT) · 7(NT) matrix

BðcÞ ¼

B1 0 . . . 0

�B0
1 B2 0 . . . . . . 0

0 . . . . . . . . . . . . 0

0 . . . �B0
NT�1 BNT

0
BBBBB@

1
CCCCCA
:

The approximating system is then given by

BðcÞXðcÞ ¼ Fþ F0: ð3Þ
Thus, given a transfer coefficient c, the matrix B(c) is defined. Assuming invert-

ibility of B(c), we may solve the above equation for X(c). The mapping

c ! X(c) is defined from the prescribed set of admissible transfer coefficients
Qad to the state vector X(c).
3. Data observation operators and probability density functions

In this section we describe the measurement models used to construct data.

These operators map the model state obtained in the previous section to

observable quantities corresponding to data. We assume that a vector of trans-
fer coefficients c is specified and that the column m-vector xj(c) gives the state

associated with c at time tj. Observation operators are generally of the form

/ðcÞ ¼ Ucþ /;

where U is an 7 · 7 matrix and / is a column 7-vector. A measurement at tj
takes the form

zjðcÞ ¼ uðcÞTxjðcÞ þ fj;

where fj is a term independent of the pool-size vector. We consider the follow-
ing data sets and their observation operators.
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Soil respiration

U ¼ diagð½0; 0; 0:55; 0:45; 0:7; 0:55; 0:55�Þ
and

u ¼ 0;

with the observation given by

zjðcÞ ¼ cTUxjðcÞ þ 0:25ð1� b1 � b2Þuj;
where b1 and b2 are the first two components of the vector b and

fj = 0.25(1 � b1 � b2)uj.

Woody biomass

U ¼ 0

and

/ ¼ ½0; 1; 0; 0; 0; 0; 0�T;
with the observation given by

zjðcÞ ¼ /TxjðcÞ:
Litterfall

U ¼ diagð½1; 0; 0; 0; 0; 0; 0�Þ
and

/ ¼ 0;

with the observation given by

zjðcÞ ¼ cTUxjðcÞ:
Foliage biomass

U ¼ 0

and

/ ¼ ½0:75; 0; 0; 0; 0; 0; 0�T;
with the observation given by

zjðcÞ ¼ /TxjðcÞ:
To compare data we define a fit-to-data functional as follows. For the kth data

set above, let

JkðcÞ ¼ ek
XNTk
i¼1

/ðcÞTxjðcÞ þ fjz
k
i

h i2
;



426 L.W. White, Y. Luo / Appl. Math. Comput. 167 (2005) 419–434
where

ek ¼ 1= ðNTk � 1ÞvarðzkÞ
� �

:

For each k the fit-to-data functional Jk(c) gives an expression of the

squared error between the data vector zk and the corresponding output asso-

ciated with a given transfer coefficient c; fUkðcÞxiðcÞgNTki¼1 . For our purposes

NTk = NT corresponds to the number of time steps used in solving the initial

value problem above. If observations occur at other times, then NTk repre-

sents the number of observations at those times. The fit-to-data functional

is given by

JðcÞ ¼ 1=5
X5

k¼1

JkðcÞ:

Instead of considering a minimization problem, as done in Luo et al. [1], to find

that coefficient vector from among an admissible set minimizing the fit-to-data
functional, we take a probabilistic view. Towards this end, we introduce the

function

fmðcÞ ¼ K expð�JðcÞ=2Þ;

where the constant K is a normalization constant such that the integral of fm(c)

over the sample space Q is one. The function fm(c) is a pdf that carries the

information from the measurements and the model equation. A priori bounds
on parameters are incorporated into the probabilistic formulation by assuming

the components of the parameter vector are independent random variables.

Thus, the information on bounds is specified and the a priori joint pdf on

Qad � Q is obtained as the product of uniform distributions defined on the

intervals constituting the bounds on each parameter. The set of admissible

parameters Qad is defined as a Cartesian product of the constituent bounding

intervals. We designate this pdf by fa(c). The information from the model/data

and the prior bounds is combined as a conjunction of information as in Taran-
tola [3] to obtain a pdf f(c) as

f ðcÞ ¼ fmðcÞfaðcÞ:

From this joint probability density function we obtain the following:

(1) Quantification of system information based on the model, prior informa-

tion, and data.
(2) Marginal distributions for individual parameters,

fiðciÞ ¼
Z
Q0i

f ðcÞdc0i;
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for the marginal pdf where integration is with respect to all parameters

except ci and Q 0i designates the parameter space excluding the ci variable.

The marginal cumulative distribution is given by

F iðsÞ ¼
Z
P iðsÞ

f ðcÞdc;

where

P iðsÞ ¼ fc : ci 6 sg:
(3) Mean and maximum likelihood estimators are given by

cimean ¼
Z
Q
cif ðcÞdc

cimax ¼ maxffiðciÞ : ci 2 Qig:

(4) Likelihood intervals and bounds are determined as follows. Let ci and ci
be defined by

F iðciÞ ¼ 0:95 and F iðciÞ ¼ 0:05;
as left and right endpoints of a 90% likelihood interval [ci; ci].
Fig. 1. Temperature time series and approximation.
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4. Formulation of test problems

In this section we formulate a specific test problem in which time is meas-

ured in months. The coefficient function n(t) is included to model seasonal envi-

ronmental fluctuations in moisture and temperature. The function n(t) is taken
to be a product of the form

nðtÞ ¼ TempðtÞMoisðtÞ:
In Figs. 1 and 2 are presented the observed time series for Temp(t) and

Mois(t) with trend functions Tp(t) and Ms(t) given by

T pðtÞ ¼ 15þ 14 sinð2pð30t þ 266Þ=365Þ
and

M sðtÞ ¼ 0:27þ 0:14 sinð2pð30t þ 46Þ=365Þ:
For the model in this work we use the trend functions to express n(t). Thus, we
consider

nðtÞ ¼ T pðtÞM sðtÞ
and leave the inclusion of the uncertainty n(t) due to the noise in the temper-

ature and moisture measurements for a later analysis. We consider the C flux
input as expressed by the trend function

uðtÞ ¼ 6þ 5 sinð2pð30t þ 269Þ=365Þ:
The time series of influx measurements is given in Fig. 3.
Fig. 2. Moisture time series and approximation.



Fig. 3. CO2 influx function.
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To pose our sample problem, we define the following matrices and vectors

A ¼

�1 0 0 0 0 0 0

0 �1 0 0 0 0 0

0:7123 0 �1 0 0 0 0

0:2877 1 0 �1 0 0 0

0 0 0:45 0:275 �1 0:42 0:45

0 0 0 0:275 0:296 �1 0

0 0 0 0 0:004 0:03 �1

0
BBBBBBBBB@

1
CCCCCCCCCA
;

b ¼ ½0:25; 0:3; 0; 0; 0; 0; 0�T

and

x0 ¼ ½469; 4100; 64; 694; 123; 1385; 923�T;
as the vector of initial pool sizes. To formulate the set of admissible parameters,

we specify the following bounds on the components of the parameter vector c.

5:24� 10�3
6 c1 6 5:91� 10�3;

1:63� 10�3
6 c2 6 8:30� 10�3;

1:63� 10�1
6 c3 6 8:28� 10�1;

1:63� 10�3
6 c4 6 8:30� 10�2;

8:14� 10�2
6 c5 6 2:59� 10�1;

1:63� 10�3
6 c6 6 8:30� 10�3;

4:07� 10�5
6 c7 6 2:77� 10�4:
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The admissible set Qad is obtained as the Cartesian product of the intervals

above. A vector of transfer coefficients is randomly chosen

c0 ¼ ½5:28� 10�2; 3:0� 10�3; 6:44� 10�1; 2:53� 10�2;

2:56� 10�1; 2:69� 10�3; 9:29� 10�5�T:

The vector c0 is used to generate a system state. The system is solved numeri-
cally using the algorithm of the previous section with time step sizes of 1

month. We then use the observation operators specified in the previous section

to operate on that state in order to generate data. These data are used to con-

struct a joint probability density function as was outlined above.

The appropriate integrals are numerically calculated to obtain the marginal

cumulative distribution functions and pdfs. A critical step in this program in-

volves sampling the space of admissible parameters. Integration is approxi-

mated by using a formula such as

Z
Qs

f ðcÞdc ¼ 1=N
XN
i¼1

vQiðiÞf ðciÞDc;

see Niederreiter [2]. The number N corresponds to the number of samples ci

generated in the simulations from the parameter space. The quantity Dc repre-
sents the differences in the parameter bounds, and vQi(i) is a characteristic func-

tion that is one if ci 2 Qs and zero otherwise. The set Qs designates the suitable

parameter set for the particular computation.
To compare different observation operators, we next compare data in two

ways for the case in which data is observed over 120 months. We present com-

parison using calculated relative error. Since we have constructed an example,

we know the solution. Thus, we can calculate a relative error between the esti-

mated coefficients and the model coefficients as a comparison of different data

sets. For the ith coefficient, we calculate

Relative error ðiÞ ¼ jcesti � coij=coi:

The number of sample simulations N effects the accuracy of integrations, see

Niederreiter [2]. We tried varying N from 50 to 2000 samples chosen as equi-

distributed sequences within Qad. We noted that the relative errors for maxi-

mum likelihood estimators are more sensitive to the number of samples while

the relative errors for mean estimators are stable. The relative errors for mean

estimators of c0 using 50 sample simulations are given by

0:35; 0:65; 0:15; 0:94; 0:34; 0:54 and 0:77

and remain stable independent of the number of simulations. The relative

errors of c1, c3, and c5 are smaller than the other four coefficients, reflecting

the fact that those C pools turn over much faster than the other pools.
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Ecologically, c1–c7 represent C transfer coefficients from seven plant and soil

pools. Specifically c1 and c2 describe litter fall from nonwoody and woody

plant biomass, respectively. Coefficients c3 and c4 quantify decomposition of

labile and structural component, respectively, of litter. Coefficient c5 represents

the turnover rate of microbial biomass while c6 and c7 are decomposition of

soil organic matter in slow and passive pools, respectively. The seven transfer
coefficients differ by a few degrees of magnitude Luo et al. [1]. The larger a

coefficient is, the faster the pool that the coefficient represents turns over and

reaches equilibrium. Since C transfers from woody plant biomass (c2), struc-

tural litter pool (c4), slow and passive soil organic matter pools (c6 and c7) is

slow, the turnover rates of C in those pools ranges from tens to thousands

of years. It usually requires long-term data sets to constrain the estimates of

those coefficients.

In reality, plant C pools and fluxes are relatively easily measured in compar-
ison to soil processes. Those data sets provide little constraint on below ground

C transfer. Thus, the relative error of the coefficients c3 is also high even though

the turnover rate of C in that pool is fast.

We give estimated coefficients where data from all data sets are used over

120 months of data and 500 sample simulations are used to evaluate the inte-

grals. In Fig. 4, the solid curve gives model coefficient parameters that are used

to generate data. The dotted curve gives maximum likelihood estimators and

the dashed curve is obtained as the mean estimator. Although the transfer coef-
ficients themselves differ by a few magnitudes, the estimators reasonably match

with the test values. In Table 1 is portrayed the relative errors for this example

using individual data sets. It can be seen, while the relative errors are by no

means small, that some data are better than others for different coefficients.

An issue of interest is how dependent are the results on the choice of the

example. The results so far are obtained for a randomly chosen, but physically

reasonable, c0. It is of interest to consider the effect of changing the value of the

generating c0. In Table 2 we see that for any particular measurement operator
there are values of c0 for which the relative error of the mean estimator is less

than 13%. It follows that to determine an indicator of the effectiveness of a

particular data type toward estimating a coefficient, we should consider an

ensemble of c0 vectors. Towards this end, we generate an ensemble as an

equi-distributed sequence from the admissible parameter set and view c0 as a

random variable that is uniformly distributed over the admissible set of para-

meters Qad. The relative error is then viewed as a random variable defined on

Qad. Our results indicate, for example, that data of woody biomass itself led to
40% of samples in the modeling study that have relative errors for c2 less than

13%. Similarly, data of soil carbon help reduce relative errors for c4 and c6, see

Table 2.

In Table 3 we present the mean relative error with respect to the choice of

the example. That is, the relative error itself is considered a random variable



Fig. 4. Comparison of generating model coefficient and estimated coefficients.

Table 1

Relative error from mean estimator coefficients

c1 c2 c3 c4 c5 c6 c7

Soil respiration 0.36 0.65 0.20 1.07 0.30 0.88 0.79

Woody biomass 0.35 0.59 0.21 1.02 0.33 0.90 0.78

Foliage biomass 0.28 0.71 0.20 1.02 0.33 0.90 0.78

Litterfall 0.28 0.71 0.20 1.02 0.33 0.90 0.78

Soil carbon 0.36 0.65 0.19 0.91 0.30 0.32 0.74

Table 2

Fraction of samples with relative error less than 0.13

c1 c2 c3 c4 c5 c6 c7

Soil respiration 0.30 0.28 0.27 0.33 0.29 0.25 0.28

Woody biomass 0.32 0.40 0.24 0.25 0.24 0.25 0.25

Foliage biomass 0.27 0.22 0.23 0.23 0.25 0.23 0.26

Litterfall 0.27 0.23 0.24 0.24 0.26 0.25 0.26

Soil carbon 0.25 0.24 0.30 0.54 0.28 0.58 0.21
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of the c0 and its mean is calculated. From the results in Table 3 we deduce that

foliage biomass and litter fall data are effective for the estimation of c1, woody

biomass is effective data for c2, and soil carbon is effective data for c2, c4, c6.

While the modeling results are consistent with our intuition, they also illustrate

limitations of individual data sets in constraining parameter estimation for



Table 3

Mean relative error

c1 c2 c3 c4 c5 c6 c7

Soil respiration 0.6797 0.4462 0.4756 0.4564 0.3194 0.4846 0.5784

Woody biomass 0.7300 0.2616 0.4895 0.4932 0.3478 0.4894 0.5765

Foliage biomass 0.5077 0.4850 0.4900 0.4941 0.3475 0.4899 0.5779

Litterfall 0.5077 0.4850 0.4900 0.4941 0.3475 0.4899 0.5779

Soil carbon 0.7133 0.3442 0.4886 0.2379 0.3440 0.1514 0.5750

Table 4

90% likelihood ratio

c1 c2 c3 c4 c5 c6 c7

Soil respiration 0.9963 0.9925 0.9894 0.9686 0.9682 0.9970 0.9986

Woody biomass 0.9986 0.8840 1.000 0.9998 0.9996 0.9975 0.9984

Foliage biomass 0.9098 1.000 1.000 0.9987 0.9988 0.9995 1.000

Litterfall 0.9098 1.000 1.000 0.9987 0.9988 0.9995 1.000

Soil carbon 0.9962 0.9073 0.9947 0.7695 0.9894 0.5573 0.9942
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coefficients that are not directly related to the measurements. All data seem to

contain the same quantity of information for c3, c5, and c7.

As a second indicator, we consider likelihood bounds for 90% likelihood

intervals. Upper and lower bounds are calculated as c0 is varied. Means over

the ensemble of these bounds are then calculated. As an indicator of the in-

crease of information resulting from the introduction of data, we calculate

the ratio of the length of the 90% likelihood interval determined in the presence

of a given data type divided by the length of the 90% likelihood interval with-
out the data. These results are presented in Table 4.

From this table we see that the likelihood is reduced for c1 by foliage bio-

mass and litter fall data. Woody biomass is useful in estimating c2. Also, soil

carbon data are effective in reducing the likelihood interval for c2, c4 and c6.

We note that c3, c5, and c7 likelihood intervals are not reduced by any data sets.

Correlations between the mean values of the relative error and the mean values

of the 90% likelihood ratio are

c1 ¼ 0:99; c2 ¼ 0:98; c3 ¼ 0:91; c4 ¼ 1:0; c5 ¼ 0:98;

c6 ¼ 1:0; c7 ¼ 1:0:
5. Conclusions

In this paper we have discussed the initial value problem and its approxima-

tion modeling the distribution of carbon among 7 pools. It is of interest to
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estimate the coefficients describing the transfer among these pools from data

obtained from measurements on various attributes of the system. In particular,

5 different types of observations are considered. A sample problem is consid-

ered in which data is generated from a randomly chosen c0. From that data

a vector of transfer coefficients is estimated and a relative error is calculated.

Results are given for mean estimators. It is shown that the relative error is
dependent on the choice of c0. Thus, in order to determine an indicator of

the information obtained from a given type of data, we view the generating val-

ues of c0 as uniformly distributed random variables as well as the relative error

and likelihood intervals obtained from the data. We also use the ratio of the

lengths of the 90% likelihood intervals for a posteriori distributions and a pri-

ori distributions as an indicator of the information obtained from the introduc-

tion of different data. We find that foliage biomass and litter fall are effective

data for obtaining information for c1, woody biomass is effective for estimation
of c2, while soil carbon is effective for obtaining information c2, c4 and c6. The

data presented does not seem to be effective in determining coefficients c3, c5,

and c7 due to the discrepancy between measurable processes in experiment

and desirable parameter (e.g., c3) in the model and a mismatch between

short-term data availability and long-term processes (e.g., c7). Results from this

analysis call for more evaluation of effectiveness of experimental measurements

on constraints of model parameter estimation.
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