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Abstract

Missing data is a ubiquitous problem in evaluating long-term experimental measurements, such as those associated with the
FluxNet project, due to the equipment failures, system maintenance, power-failure, and lightning strikes among other things.
To estimate annual values of net ecosystem carbon exchange (NEE), latent heat flux (LE) and sensible heat flux (H), such
gaps in the measured data must be filled or imputed. So far, no standardized method has been accepted and the imputation
methods used are largely dependent on the researchers’ choice. Here, we used multiple imputation (MI) to gap-fill the missing
data for annual estimations of NEE, LE andH at three flux sites associated with the FluxNet effort. MI is a Monte Carlo
technique in which the missing values are replaced by several simulated values. Each data set imputed is a complete one
where the observed values are the same as those in the original data set; only the missing values are different. Thus, the
normal statistical analysis (e.g. annual total calculation) can be applied to each data set separately. The results of each analysis
can be recombined into one summary. We applied the MI method to eddy covariance measurements collected from Walker
Branch Watershed (WBW) site (a deciduous forest), Duke site (a coniferous forest) and Niwot site (a subalpine forest). Results
showed that annual estimations of NEE, LE andH by MI were comparable to other imputation methods but MI was much
easier to apply because of readily available software and standard algorithms. Besides the normal statistical analyses, MI also
provided confidence intervals for each estimated parameter. This confidence interval is most useful when assessing energy,
water, and carbon balance closures at a given tower site. Significant differences in annual NEE, LE andH were found among
years at the three AmeriFlux sites. NEE at the Niwot Ridge site was lower and LE andH were higher than at the other two
sites. With the available software and realistic gap-filling capability, MI has the potential to become a standardized method to
gap-fill eddy covariance flux data for annual estimations and to improve the analysis of uncertainties associated with annual
estimations of NEE, LE andH from regional and global flux networks.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Net ecosystem carbon exchange (NEE) between the
atmosphere and biosphere is an important component
in global carbon cycling. In order to understand the
temporal and spatial variations of NEE, a worldwide
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network, FluxNet, equipped with eddy covariance flux
towers, is operating to collect NEE, latent heat (LE)
and sensible heat (H) fluxes from more than 140 sites
around the world (Baldocchi et al., 2001). However,
missing or rejected data in these measurements is a
ubiquitous problem due to equipment failures (sys-
tem/sensor breakdown), maintenance and calibration,
spikes in the raw data, and physical and biological
constraints (e.g. storms, hurricanes, and non-optimal
wind directions). For example, about 22% of the to-
tal half-hourly daytime measurements were found to
reflect gaps and rejected data at the Walker Branch
Watershed (WBW) AmeriFlux site (Wilson and
Baldocchi, 2001), and 35% at the Duke site (Katul
et al., 2001), and less than 20% at the Niwot Ridge
site (Monson et al., 2002). In general, about 17–50%
of the observations in NEE are reported as missing or
rejected at FluxNet sites (Falge et al., 2001a).

The gaps in observed data cause at least three prob-
lems: (1) difficulty in annual estimation of NEE, LE
andH; (2) biased relationships between NEE, LE and
H with climatic variables; and (3) low quality data for
modeling validation. As most statistical methods, such
as total calculation and regression analysis, can only
handle complete data sets, observations with missing
data for one or more variables should be ignored in the
analysis (i.e. listwise deletion). Depending on the per-
centage of missing information, analytic power may
be significantly reduced and the results may be biased
(Little and Rubin, 2002; Allison, 2000).

To accurately calculate annual values of NEE and
energy fluxes at FluxNet sites, gap-filling to account
for the missing data is imperative. The commonly
used methods for filling missing data include mean
replacement (i.e. using mean of observed values to
replace missing data), hot or cold dock (i.e. a ran-
domly or systematically chosen value from an indi-
vidual observation that has similar values on other
variables), interpolation and extrapolation (i.e. an es-
timated value from other observations for the same
variable), and regression analysis (i.e. the predicted
value obtained by regressing the missing variable on
other variables). For example,Greco and Baldocchi
(1996) and Jarvis et al. (1997)have used modified
mean replacement method (i.e. values of 15 days to
replace the missing value in diurnal data variation).
The regression analysis method has been widely used
by other researchers (Goulden et al., 1996; Granier

et al., 2000; Pilegaard et al., 2001; Grünwald and
Bernhofer, 2000; Monson et al., 2002; Hui et al.,
2003). The neural networks method has been pro-
posed byAubinet et al. (2000). In a comprehensive
study, Falge et al. (2001a)compared three methods
including mean diurnal variation (similar to mean re-
placement), look-up tables and nonlinear regression
on the annual sum of NEE for 28 data sets from
18 FluxNet sites, and found that the differences in
annual NEE estimation by different gap-filling meth-
ods ranged from−45 to 200 g C m−2 per year. Their
study also emphasized the importance of the method
of standardization during the data post-processing
phase, so comparable data can be obtained to ad-
dress intercomparisons across different ecosystems,
climatic conditions, and multiple years (Falge et al.,
2001a,b).

In this study, we applied a generic multiple impu-
tation (MI) method to the data of eddy covariance
measurements collected from the WBW site (a decid-
uous forest), the Duke Forest site (a coniferous forest)
and the Niwot Ridge site (a coniferous forest). MI is
a Monte Carlo technique in which the missing val-
ues are replaced by several simulated values (Rubin,
1987). Each data set imputed is a complete one where
the observed values are the same as in the original
data set, only the missing values are different. So the
normal statistical analyses (e.g. annual total calcula-
tion, regression analysis) can be applied separately to
each data set. The results of each analysis are then
recombined into one summary. Compared with other
methods, MI produces the mean estimate as well as a
confidence internal of the mean. It has been success-
fully used in the social and behavioral sciences (King
et al., 2001; Schafer and Graham, 2002), medical
studies (Barnard and Meng, 1999), nursing research
(Kneipp and McIntosh, 2001; Patrician, 2002), and
public health research (Zhou et al., 2001). In this
inter-comparison, we first describe the procedure of
MI, then apply it to gap-fill the eddy covariance data
for NEE, LE andH at three sites; we also compare
the results with other methods.

2. Multiple imputation

MI is a general-purpose method for analyzing data
sets with missing observations and is broadly applica-
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ble to a variety of different types of data sets. It was
proposed byRubin (1977)and described in detail by
Rubin (1987)andSchafer (1997). Briefly, three steps
are involved in MI: imputation, analysis, and pooling.
First, sets of plausible values for missing observations
are created that reflect uncertainty about the imputa-
tion model. Each of these sets of plausible values is
used to fill-in the missing values and create a complete
data set. Second, each of these data sets is analyzed
using normal statistical methods. Finally, the results
are combined, which allows the uncertainty regarding
the imputation to be taken into account (Horton and
Lipsitz, 2001).

2.1. Imputation

Let Y be then × p matrix of the complete data in-
cluding p variables (e.g. PAR,TA, TS, . . . , NEE, LE
andH), which is not fully observed, and denote the ob-
served part ofY by Yobs and the missing part byYmis.
Suppose thatY = (Yobs, Ymis) have ap-variate normal
distribution with meanµ = (µ1, µ2, . . . , µp) and co-
variance matrixΣ = (σjp). Imputation simulatesYmis
givenYobs. MI generatesm imputations, typically 3–5,
for a given missing data point. MI data sets are sim-
ulated draws from a Bayesian predictive distribution
of the missing data. To begin the imputation process,
initial estimates of mean vectorµ and covariance ma-
trix Σ are needed which can be obtained by maximum
likelihood estimation.

Maximum likelihood estimates of the mean vector
and covariance matrix can be generated using the ex-
pectation and maximization (EM) algorithm. The EM
algorithm is a technique that finds maximum likeli-
hood estimates in parametric models for incomplete
data (Dempster et al., 1977) and has been widely ap-
plied in genetic researches (e.g.Jiang and Hui, 1995;
Jiang and Zeng, 1997; Hui et al., 1997) and many
other studies (e.g.Dayan and Hinton, 1997; Barnard
and Meng, 1999; Schafer and Graham, 2002; Carsob
et al., 2002). It is an iterative procedure involving the
following steps.

2.1.1. The expectation E-step
Given a set of parameter estimatesθ, such as a mean

vectorµ and covariance matrixΣ for a multivariate
normal distribution, theE-step calculates the condition
expectation of the complete-data log likelihood, which

can be expressed as

ln L(µ,Σ|Yobs) =
g∑

l=1

ln Ll(µ,Σ|Yobs) (1)

whereg is the number of groups with distinct miss-
ing patterns, lnLl(µ,Σ|Yobs) is the observed-data log
likelihood from thelth group, and
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wherenl is the number of observations in thelth group,
yil is a vector of observed values corresponding to ob-
served variables,µl is the corresponding mean vector,
andΣl is the associated covariance matrix.

At the tth iteration of EM, letθ(t) = (µ(t),Σ(t))

denote current estimates of parameters. TheE-step of
the algorithm consists in calculating
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where

y
(t)
ij =

{
yij if yij is observed

E(yij |yobs,i, θ
(t)) if yij is missing

(5)

and

c
(t)

jki =
{

0 if yij oryjk is observed

Cov(yij , yjk|yobs,i, θ
(t)) if yij andyjk are missing

(6)

Missing valuesyij are thus replaced by the conditional
mean ofyij given the set of observed valuesyobs(Little
and Rubin, 2002).
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2.1.2. The maximization M-step
Given a complete-data, theM-step finds the param-

eter estimates to maximize the complete-data log like-
lihood from theE-step. The new estimatesθ(t+1) of
the parameters are:

µ
(t+1)
j = n−1

∑
i=1

y
(t)
ij , j = 1,2, . . . , p (7)

σ
(t+1)
jk =n−1
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[(y(t)
ij − µ

(t+1)
j )(y

(t)
ik − µ

(t+1)
k ) + c

(t)
jki ],

j, k = 1,2, . . . , p (8)

The two steps are iterated until the iterations converge
(i.e. the estimates barely change from one iteration to
the next, e.g. less than a small number, 10−5).

In the next step, a data augmentation algorithm, the
Markov Chain Monte Carlo (MCMC), is used to gen-
erate the imputed data. MCMC uses the initial val-
ues obtained from the EM algorithm and constructs
a Markov chain to simulate draws from the posterior
distribution ofp(Ymis|Yobs). This can be implemented
using the imputation-posterior (IP) algorithm (Schafer,
1997), which is similar to EM. At thetth iteration, the
steps can be defined as follows.

2.1.3. The imputation I-step
With the estimated mean vector and covariance ma-

trix, the I-step simulates the missing values for each
observation independently. That is, draw values for
Y

(t+1)
mis from p(Ymis|Yobs, θ(t)), a conditional distribu-

tion given observed variablesYobs.

2.1.4. The posterior P-step
P-step simulates the posterior mean vector and co-

variance matrix from the complete data set, i.e. draws
θ(t+1) from p(θ|Yobs, Y

(t+1)
mis ). These new estimates are

then used in the nextI-step. The two steps are iterated
long enough for the results to be reliable for a mul-
tiply imputed data set. This creates a Markov chain
({Y(1), θ(1)}, {Y(2), θ(2)}, . . . , {Y(t+1), θ(t+1)}, . . . )
which converges in distribution top(Ymis, θ|Yobs). As-
suming iterates converge to a stationary distribution,
the goal is to simulate an approximately independent
draw of the missing values from this distribution (see
Appendix A for details in computation).

Imputations can be drawn from one Markov chain
or multiple independent chains. Clearlym independent

Markov chains are preferable, but the cost is running
m − 1 additional MCMC simulations using the IP al-
gorithm. The advantage of MCMC method is that it
can handle arbitrary patterns of missing data and the
downsides are: (1) it requires an assumption of mul-
tivariate normality; and (2) it is not readily intuitive
and computationally expensive.

2.2. Analysis

With m imputed complete data sets, any chosen sta-
tistical analysis can be applied to each of them. In this
study, we calculated the annual sum of NEE, LE and
H, and their standard errors.

2.3. Pooling (combining results from multiply
imputed data sets)

With m imputations,m different sets of the point
and variance estimates for a parameterQ (i.e. an-
nual sum here) can be computed (SAS Institute Inc.,
2002; Fichman and Cummings, 2003). No matter
which complete-data analysis is used, the process of
combining results from multiple imputed data sets is
essentially the same. SupposeQ̂i andÛi are the point
and variance estimates from theith imputed data set,
i = 1,2, . . . , m. Then the combined point estimate
for Q from MI is the average of them complete-data
estimates:

Q̄ = 1

m

m∑
i=1

Q̂i (9)

SupposeŪ is the within-imputation variance, which
is the average of them complete-data estimates:

Ū = 1

m

m∑
i=1

Ûi (10)

andB be the between-imputation variance:

B = 1

m − 1

m∑
i=1

(Q̂i − Q̄)2 (11)

Then the variance estimate associated withQ̄ is the
total variance:

T = Ū +
(

1 + 1

m

)
B (12)
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The statistic(Q − Q̄)T−(1/2) is approximately dis-
tributed as t with νm degrees of freedom (Rubin,
1987), whereνm = (m − 1)[1 + (Ū/(1 + m−1)B)]2.
A rough 95% confidence interval can be obtained as
Q̄ ± tνm,0.05

√
T .

3. Site descriptions and data collection

As case studies, we applied MI to gap-fill the eddy
covariance data collected from the Walker Branch Wa-
tershed, the Duke Forest and the Niwot Ridge Amer-
iFlux sites. General information about these sites is
given briefly in the following paragraphs. For detailed
information, seeBaldocchi (1997), Baldocchi and
Wilson (2001), Wilson and Baldocchi (2000, 2001),
Katul et al. (1997, 1999)andMonson et al. (2002).

3.1. Walker Branch Watershed site

This site is located in the US Department of En-
ergy reservation near Oak Ridge, TN (35◦57′30′′N,
84◦17′15′′W). The vegetation is temperate mixed
broad-leaved forest, including species of oak (Quer-
cus spp.), maple (Acer spp.), and tulip poplar (Liri-
odendron tulipifera). The site is in hilly terrain, and
the upwind fetch of the forest extends several kilo-
meters in all directions (Baldocchi et al., 2000).
The forest is about 58 years old. Canopy height is
25–26 m and peak leaf area index is 4.9–6.0 m2 m−2.
Eddy covariance instruments have been operating
continuously since August 1994. Wind speed (WS)
and virtual temperature fluctuations were measured
with a three-dimensional sonic anemometer (model
SWS-211/3K, Applied Technology, Boulder, CO).
Fluctuations in CO2, and H2O concentration were
measured with an open path, infrared absorption
gas analyzer. Temperature (TA) and relative humid-
ity (RH) were measured at 36.9 m with a tempera-
ture/humidity probe (HMP-35 A, Vaisala, Helsinki,
Finland). Photosynthetically active radiation (PAR)
was measured above the canopy with a quantum
sensor (model LI-190S, Li-cor Inc., Lincoln, NE).

3.2. Duke Forest site

This site is located in Orange County, NC, USA
(35◦58′N, 79◦05′W). The site consists of an even-aged

loblolly pine (Pinus taeda) forest. Tree growth in
the plantation is remarkably uniform, with a median
height of 13 m, a mean diameter of about 15 cm
and a peak leaf area index of about 3.5 m2 m−2 (in
1996). Fluxes for CO2, H2O and sensible heat were
measured using a Li-Cor 6262 gas analyzer together
with a CSAT3 (Campbell Scientific) triaxial sonic
anemometer. PAR was measured over the canopy us-
ing Li-190SZ (Li-Cor Ins., Lincoln, NE, USA).TA
and WS were measured using the CSAT3 anemometer
at the canopy top. RH and VPD were measured using
a Vaisala probe positioned at 2/3 the canopy height.
TS was measured via thermistors (Siemens GmbH,
Nuernberg, Germany) at one point at 10–12 cm depth.

3.3. Niwot Ridge site

This site is located at Niwot Ridge, CO, USA
(40◦1′N, 105◦32′W). The site consists of∼97-year-old
second growth subalpine forest, dominated by three
conifers, Engelmann spruce (Picea engelmanni),
lodgepole pine (Pinus contorta), and subalpine fir
(Abies lasiocarpa). Canopy height is 11.4 m and max-
imum LAI is ∼4.2 m2 m−2. WS was measured with
a Campbell Scientific Inc. (model CSAT-3) sonic
anemometer and CO2 concentration was measured
with a Licor Inc. (model 6262) closed-path infrared
analyzer.

Data used in the analysis were mainly downloaded
from the above three sites through links at the FluxNet
website (http://ornl5.ornl.gov/ameriflux/Data/index.
cfm, 10/1/2002). In order to compare with the methods
used byFalge et al. (2001a,b), we also downloaded
gap-filled data byFalge et al. (2001a,b)(http://public.
ornl.gov/fluxnet/gapzips.cfm, 10/1/2002). When data
sets contained both observed and gap-filled data, we
deleted the gap-filled values, and flagged them as
missing values. In total, 7 years of eddy covariance
measurements including NEE, LE,H, PAR, TA, TS,
RH, VPD,Rn, WS andu∗ were obtained for the three
sites. MI was conducted using SAS software (SAS
Institute Inc., 2002). The analysis includes the follow-
ing steps: (1) Using PROC MI to create the multiple
data sets, each data set is a complete one as the miss-
ing values were imputed. Five imputations(m = 5)
were created using multiple chains. We selected an
EM algorithm (maximum number of iterations used
in EM was set to 500) for initial value estimations and

http://ornl5.ornl.gov/ameriflux/Data/index.cfm
http://ornl5.ornl.gov/ameriflux/Data/index.cfm
http://public.ornl.gov/fluxnet/gapzips.cfm
http://public.ornl.gov/fluxnet/gapzips.cfm
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MCMC for data augmentation. The number of burn-in
iterations before the first imputation in each chain
for MCMC method was set to 1000 and the number
of iterations between imputations in a single chain
was set to 500. (2) Using standard procedures, PROC
MEANS and PROC CORR, to calculate mean and
covariance of analyzed variables from these data sets
(Hui and Jiang, 1996); (3) Using PROC MIANALYZE
to combine the results from each data set analyzed in
step 2, and get the means, standard errors and confi-
dence intervals. The running time for each year was
less than 3 min on a Dell Precision Workstation 340.

4. Results

4.1. Gaps in observed NEE, LE, H and climatic
variables

Missing or rejected data in measured NEE, LE and
H ranged from 9 to 60, 6 to 60, 6 to 34, for the Walker
Branch, Duke Forest, and Niwot Ridge sites, respec-
tively, among the studied years (Table 1). Missing in-
formation was 6–17% for NEE, LE andH at the Ni-
wot Ridge site, remarkably less than that at the other
two sites. Compared to ecosystem carbon and energy
fluxes, values of climatic variables were well recorded.
Only Rn andu∗ had more missing data, ranging from
18–42% at the WBW site and 26–51% at the Duke site
(Table 1). A small number of missing climatic variable
values were imputed by the regression method before
MI at the Niwot Ridge site (Monson et al., 2002).

4.2. Annual estimation of NEE, LE and H

Annual NEE estimated by MI at the WBW site
was −842, −923, and −845 g C m−2 per year in

Table 1
Percentages of missing or rejected NEE, LE andH, and climatic variables at WBW, Duke and Niwot sites

Site, year NEE LE H PAR TA TS RH VPD Rn WS u∗

WBW, 1995 46.6 30.5 34.2 0 0.3 1.1 0 0 41.6 4.4 22.7
WBW, 1996 44.1 27.4 29.7 0 0 1.1 0 0 0 3.2 17.6
WBW, 1997 47.3 30.1 33.0 0 0 0.3 0 0 40.8 5.4 20.6
Duke, 1998 59.5 59.5 31.0 0 23.7 10.5 50.7 50.7 51.0 51.0 51.0
Duke, 1999 31.7 30.0 25.6 8.1 2.1 2.1 2.1 2.1 25.8 25.6 36.2
Niwot, 1999 16.9 12.6 12.6 0 0 49.6 0 0 0 0 0
Niwot, 2000 9.4 5.9 6.2 0 0 0 0 0 0 0 0

Table 2
Annual estimations of NEE, LE andH derived from gap-filled
eddy covariance data by multiple imputation (MI) method

Site, year Annual
estimation

Standard error
of annual
estimation

95% confidence
interval

Lower
limit

Upper
limit

NEE (g C m−2 per year)
WBW, 1995 −842 29 −902 −782
WBW, 1996 −923 25 −974 −873
WBW, 1997 −845 28 −900 −790
Duke, 1998 −624 34 −702 −546
Duke, 1999 −744 20 −784 −703
Niwot, 1999 −162 11 −183 −142
Niwot, 2000 −123 9 −142 −105

LE (MJ m−2 per year)
WBW, 1995 1336 19 1297 1374
WBW, 1996 1382 21 1340 1423
WBW, 1997 1538 22 1495 1582
Duke, 1998 1129 24 1075 1183
Duke, 1999 1254 19 1217 1290
Niwot, 1999 1622 16 1590 1653
Niwot, 2000 1685 16 1654 1716

H (MJ m−2 per year)
WBW, 1995 967 21 926 1008
WBW, 1996 878 20 838 918
WBW, 1997 976 22 932 1020
Duke, 1998 745 27 685 806
Duke, 1999 907 20 869 946
Niwot, 1999 1311 35 1242 1380
Niwot, 2000 1320 35 1251 1388

1995, 1996 and 1997, respectively (Table 2). The
95% confidence interval was−902 to−782 g C m−2

per year in 1995,−974 to−873 g C m−2 per year in
1996, and−900 to −790 g C m−2 per year in 1997.
Annual NEE at the Duke site was−624 g C m−2

per year in 1998 and−743 g C m−2 per year in
1999. The corresponding 95% confidence interval
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Fig. 1. Comparison of multiple imputed NEE (mean of five multiple imputed values) and imputed NEE by regression method at WBW site
in 1995 (a), 1996 (b) and 1997 (c), at Duke Forest site in 1998 (d), in 1999 (e), at Niwot Ridge site in 1999 (f) and in 2000 (g). Imputed
NEE by regression method in (a)–(e) are fromFalge et al. (2001a)and in (f) and (g) are fromMonson et al. (2002). (∗∗) Represents
significant atα = 0.01 level.
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Fig. 2. Comparison of multiple imputed LE (mean of five multiple imputed values) and imputed LE by regression method at WBW site
in 1995 (a), 1996 (b) and 1997 (c), at Duke Forest site in 1998 (d), in 1999 (e), at Niwot Ridge site in 1999 (f) and in 2000 (g). Imputed
LE by regression methods in (a)–(e) are fromFalge et al. (2001b)and in (f) and (g) are fromMonson et al. (2002). (∗∗) Represents
significant atα = 0.01 level.
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Fig. 3. Comparison of multiple imputedH (mean of five multiple imputed values) and imputedH by regression method at WBW site in
1995 (a), 1996 (b) and 1997 (c), at Duke Forest site in 1998 (d), in 1999 (e), at Niwot Ridge site in 1999 (f) and in 2000 (g). ImputedH
by regression methods in (a)–(e) are fromFalge et al. (2001b)and in (f) and (g) are fromMonson et al. (2002). (∗∗) Represents significant
at α = 0.01 level.
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was −702 to −546 g C m−2 per year in 1998 and
−784 to −703 g C m−2 per year in 1999. Annual
NEE at the Niwot Ridge site was−162 g C m−2 per
year in 1999 and−123 g C m−2 per year in 2000.
The corresponding 95% confidence interval was
−183 to −142 g C m−2 per year in 1999 and−142
to −105 g C m−2 per year in 2000. The estimations
varied significantly among years at these sites.

Annual LE estimated by MI at the WBW site
was 1336, 1382, and 1538 MJ m−2 per year in 1995,
1996 and 1997, respectively (Table 2). The 95%
confidence interval was 1297–1374 MJ m−2 per year
in 1995, 1340–1423 MJ m−2 per year in 1996, and
1495–1582 MJ m−2 per year in 1997. Annual LE at
the Duke Forest site was 1129 MJ m−2 per year in
1998 and 1254 MJ m−2 per year in 1999. Annual LE
at the Niwot Ridge site was higher than other two
sites, reaching 1622 and 1685 MJ m−2 per year in
1999 and 2000, respectively.

Similar to LE estimations, annualH estimated
by MI ranged from 878 MJ m−2 per year in 1996
to 976 MJ m−2 per year in 1997 at the WBW site
(Table 2). H at the Duke Forest site was close to
that at the WBW site. AnnualH at the Niwot Ridge
site was also higher than that at the other two sites,
reaching 1311 and 1320 MJ m−2 per year in 1999 and
2000, respectively.

4.3. Comparison of multiple imputed NEE, LE and
H with gap-filled values by regression method and
observed values

Missing NEE that imputed by MI was compared
with gap-filled value by the regression method (Falge
et al., 2001a; Monson et al., 2002). In general, there
was a very significant correlation of NEE imputed by
MI and regression method (Fig. 1). For most years,
the determination coefficients were higher than 0.40.
Even stronger correlation relationships were found for
imputed LE by MI and regression method (Fig. 2) as
well as for imputedH (Fig. 3).

NEE imputed by MI was consistent in magni-
tude and seasonality with observed data (figures not
shown). The range of variation of multiple imputed
NEE was similar to the observed values. To character-
ize the nature of multiple imputed data, we displayed
the diurnal change of NEE, LE andH during the
growing season in 1995 at the WBW site (Fig. 4).

Data in other years at the sites showed similar trends.
Estimated NEE, LE andH were consistent with the
observed diurnal patterns, even when most of the data
were missing for a day (e.g. days 197, 198 and 199).
But in winter, while multiple imputedH fit the ob-
served pattern, imputed NEE and LE did not show a
clear diurnal pattern (Fig. 5). The observed NEE and
LE in winter also did not show a clear diurnal pattern.

We also tested the goodness-of-filling of MI by
deleting the observed NEE, LE andH for 2 weeks
either in winter or in summer, then gap-filling these
“missing” data using MI, and comparing the gap-filled
values with observed ones. The goodness-of-filling
was expressed as

R2 =
∑

(Yobs− ȳ)2 −∑
(Yobs− Yimp)

2∑
(Yobs− ȳ)2

where Yimp is gap-filled value by MI. Multiple im-
puted NEE in summer in 2000 at Niwot Ridge site
were similar to the observed data in most of the days
(Fig. 6a). Only in a few days (e.g. day 156), multiple
imputed NEE was smaller in magnitude than observed
NEE. There was also good agreement in gap-filled LE
andH with measurements for these 2 weeks at Niwot
Ridge site (Fig. 6b and c). In the winter time, while
multiple imputedH still followed the observedH well,
NEE and LE were not consistent with observed values.
However, due to the low winter value of NEE and LE
in nature, the slightly mismatch did not have much in-
fluence on the total annual estimation on NEE and LE.

5. Discussion

5.1. Comparison of estimations by MI and other
methods

By using the MI method to gap-fill the missing
eddy covariance data, we estimated annual NEE and
energy fluxes for 7 years at three AmeriFlux sites.
The estimations, in general, were comparable to es-
timations by other gap-filling methods. For example,
Falge et al. (2001a,b)estimated annual NEE using
mean diurnal variation, look-up tables, and nonlinear
regression methods, and total LE andH by mean diur-
nal variation and look-up tables for the same periods
at the WBW and the Duke Forest sites. Their results
showed that annual NEE estimation varied by different



D. Hui et al. / Agricultural and Forest Meteorology 121 (2004) 93–111 103

-50

-40

-30

-20

-10

0

10

20

30

N
E

E
 (

µ
m

o
l C

O
2 

m
-2

 s
-1

)

MI filled

Observed

(a)

-200

-100

0

100

200

300

400

500

600

700

L
E

 (
W

 m
-2

)

(b)

-200
-100

0
100
200
300
400
500
600

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

Day of year

H
 (

W
 m

-2
)

(c)

Fig. 4. Diurnal variation of observed (solid point) and imputed (empty point) of NEE (a), LE (b) andH (c) in the growth season in 1995
at WBW site.

gap-filling methods. Annual NEE in 1998 at the Duke
Forest site ranged from−585 to −555 g C m−2 per
year for u∗-corrected data by different methods and
was−710 g C m−2 per year for notu∗-corrected data
by regression method; our estimates showed annual
NEE to be between−702 and−546 g C m−2 per year
with 95% confidence. AnnualH at the WBW site in
1995 estimated byFalge et al. (2001b)ranged from
954 to 1015 MJ m−2 per year, also mostly overlapped
with our 95% confidence interval estimation. We also
found some inconsistence in the estimations of NEE,
LE and H with other methods. MI estimations of
NEE at the WBW site in 1995 and 1996 were∼30%
higher in magnitude, and LE andH at the Duke For-
est site in 1999 were∼10% lower, in comparison to
the estimations byFalge et al. (2001a,b).

In order to estimate the annual value of NEE, LE
and H, missing data must be gap-filled before fur-
ther analysis can be done. Current methods, such as
mean replacement and regression analysis, work well
under certain conditions. For example, mean diurnal
variation, a mean replacement method, performs well
when the gaps are not large; however, the window
size may vary from site to site, making it difficult
to compare data sets. Regression methods, based on
either linear or nonlinear regression equations, may
work well when predictors are strong, but the absence
of sufficient variability can cause an underestimation
of standard errors (Little and Rubin, 1989). Because
regression methods are only able to produce the mean
flux densities, the ranges of imputed data are smaller
than observed ones. The high degree of scatter found
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Fig. 5. Diurnal variation of observed (solid point) and imputed (empty point) of NEE (a), LE (b) andH (c) in winter in 1995 at WBW site.

in eddy covariance flux data also limits the application
of regression method for data imputation.

Another approach is modeling approach (i.e.
process-based gap-filling method). Theoretically, this
method can be used to impute any missing data. It
may be better than other gap-filling methods at cer-
tain sites (e.g. sites with many and large gaps). But
in practice, that the model should be specifically
configured for each FluxNet site makes it difficult to
apply. That’s one reason why so far, most of the im-
putation methods are empirical statistical methods. In
addition, all these methods require specific computer
programming. There appear to be clear advantages to
the MI process.

Net ecosystem carbon exchange is underestimated
by the eddy covariance approach during stable-night
conditions because of CO2 storage in the layer below

the eddy flux system. To date, no general consensus
has been found for correcting the fluxes, and consid-
erable work in terms of methodology and underlying
theory will be required to address the uncertainties as-
sociated with nighttime fluxes (Falge et al., 2001a). For
the long-term budget, such as the daily and annual esti-
mation of NEE, beneath-canopy CO2 storage can the-
oretically be ignored (Aubinet et al., 2000; Falge et al.,
2001a). However, ifu∗-corrected, the annual NEE es-
timation by the regression method was on average
64 g C m−2 per year less than the notu∗-corrected data,
for the 28 data set analyzed byFalge et al. (2001a).
Data used in this MI exercise were notu∗-corrected.
We may expect that estimated values for NEE will
be lower than reported in this study, ifu∗-corrected
were used. Indeed, when we usedu∗-corrected NEE
data for the Niwot Ridge site, the annual estimation
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Fig. 6. Comparison of gap-filled NEE, LE andH (line) with measurements (solid point) in summer in 2000 at Niwot Ridge site.

of NEE by MI was −94 g C m−2 per year, with a
95% confidence interval of−115 to−73 g C m−2 per
year in 1999, and−51 g C m−2 per year with a 95%
confidence interval of−70 to −32 g C m−2 per year
in 2000. These values are close to the reported val-
ues (80.5 and 57.6 g C m2 per year in 1999 and 2000,
respectively) based onu∗-corrected data byMonson
et al. (2002).

5.2. Seasonal and diurnal change of imputed NEE,
LE and H

While in general MI data provided good estimates
of annual sums and preserved the seasonal pattern of

measurements, we noticed that some of the corrected
data did not closely fit the observed pattern, especially
in winter, when NEE is small in magnitude and the
diurnal pattern is not always clear. This does not pro-
vide a significant source of error for the annual sum
and may be improved by grouping data into those for
the growing season and dormant season, and applying
MI separately.

Preserving the relationships of NEE, LE andH with
climatic variables such as PAR and temperature is
another requirement that is often considered during
gap filling. MI uses a multivariate normal distribution
model and considers other variables, such as climatic
variables, when imputing missing data. The missing
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values for the climatic variables were imputed at the
same time, so MI preserved the responses of NEE to
these climatic variables as a whole. The data set we
used for annual estimation was based on the observed
values in 1 year. To preserve the short-term relation-
ships of NEE, LE andH with climatic variables, we
could apply MI to the short-term data set, for exam-
ple, data collected from each month or grouped by
growing season and dormant season, or separated into
daytime and nighttime data.

5.3. Assumptions and constraints of MI

Like any statistical method, MI has assumptions
(Schafer and Olsen, 1998). Understanding the assump-
tions underlying the MI method helps researchers
evaluate robustness of imputation models and the
appropriateness of interferences (Horton and Lipsitz,
2001). Those assumptions include data are missing
at random (MAR), multivariate normal distributions,
and proper model.

There are two types of randomness in missing data:
MAR and missing completely at random (MCAR).
MCAR assumes that the missing values are a random
subsample of the entire data set. The assumption for
MCAR is much restrictive and often unrealistic. The
MI method does not require MCAR but MAR (Little
and Rubin, 1989). Under the assumption of MAR,
the probabilities of missing data may depend on data
values that are observed but not ones that are missing.
A simple example is that for a bivariate data set with
one variableX that is always observed and a second
variableY that is sometimes missing. Under MAR, the
probability thatY is missing for an observation may
be related to the value ofX but not to the value ofY
itself. This applies that the statistical relationship ofY
andX is on average no different for the observed data
and missing data groups. MAR is the formal assump-
tion that allows us to first estimate the relationships
among variables from the observed data, and then
use these relationships to obtain unbiased predic-
tions of the missing values from the observed values.
However, testing the MAR assumption remains a
major statistical challenge (Schafer and Olsen, 1998;
Allison, 2000; Horton and Lipsitz, 2001). Although
it is difficult to test, we have good reason to assume
the missing data in NEE, LE andH are MAR. The
probability of missing values in NEE, for example,

may be related to lowu∗, but missing NEE values,
may not be related to NEE itself, so the relationships
developed from observed valid data can be applied
to the missing values. Similarly, missing data under
severe weather conditions can be imputed from the re-
lationship indicated from the observed data under the
normal weather conditions. Studies also showed that
the assumption becomes more plausible as more vari-
ables are included in the imputation model (Schafer,
1997; van Buuren et al., 1999). In this study, we
included many climatic variables in the model, so
the assumption is more plausible. When the MAR
assumption is tenable, MI provides less bias than
other methods if the imputation model is correctly
specified.

Second, the model used to generate the imputed
values requires the variables to be multivariate normal
distributed. This assumption is also required by many
other imputation methods (Schafer and Olsen, 1998).
As Schafer and Olsen (1998)pointed out, real data
rarely conform to convenient models such as the mul-
tivariate normal. In most applications of MI, the model
used to generate the imputations will at best be only
approximately true. Indeed, Kolmogorov–Smirnov
normal distribution test showed that observed NEE,
LE and H and climatic variables are seldom truly
normal distributed (results not shown). A number of
simulation studies have demonstrated that MI is robust
to violations of normality of the variables used in the
analysis if the amount of missing information is not
large (Ezzati-Rice et al., 1995; Schafer, 1997; Graham
and Schafer, 1999). We examined the assumption
of multivariate normal distribution by transforming
data from Niwot Ridge site in 2000 and Duke Forest
in 1999 using the Box–Cox transformation method
provided in SAS software. Comparison of the results
of transformed data with non-transformed data indi-
cates the annual estimations only changed slightly.
Annual NEE at Niwot Ridge site in 2000 changed
from −123.2 ± 9.4 to −121.6 ± 9.4 g C m−2 per
year. Annual NEE at Duke Forest in 1999 changed
from 743.6 ± 20.3 to 746.2 ± 19.7 g C m−2 per year.
Similarly, annual values of LE andH were not af-
fected by transformation. Our test confirmed that
MI is robust to some departures to normality. So
we used non-transformed results in this study. The
goodness-of-fit test also showed that MI performed
well on FluxNet data (Figs. 6 and 7).
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Fig. 7. Comparison of gap-filled NEE, LE andH (line) with measurements (solid point) in winter in 2000 at Niwot Ridge site.

Third, the model used for the analysis should match
the model used in imputation and the algorithm used
to generate imputed values should be correct; that is,
it should accommodate the necessary variables and
their associations. In this study, we included most in-
fluencing climatic variables in the imputation process,
so the climatic variables can be included in the model
for further analysis.

5.4. Advantages of MI

MI provides a general-purpose solution to statis-
tical analysis with missing data and provides more

valid estimates of statistical quantities (e.g. means,
standard errors, regression coefficients) than other
current practices (Fichman and Cummings, 2003).
MI combines the well-known statistical advantages
of EM and maximum likelihood with the ability of
hot deck imputation to provide a raw data matrix
to analyze. It also introduces statistical uncertainty
into the model and uses that uncertainty to emulate
the natural variability among observations one en-
counters in a complete database. MI then imputes
actual data values to fill in the incomplete data
points in the data matrix, just as hot deck imputation
does.
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Table 3
Fraction of missing information and efficiency of MI by using five
imputations

Site, year Fraction of missing
information (%)

Efficiency of
MI (%)

NEE LE H NEE LE H

WBW, 1995 53.2 12.2 10.4 90.3 97.6 98.0
WBW, 1996 18.3 12.8 14.7 96.5 97.5 97.1
WBW, 1997 18.7 8.0 14.1 96.4 98.4 97.2
Duke, 1998 76.6 65.1 67.4 86.7 88.5 88.1
Duke, 1999 24.4 1.1 16.8 95.3 97.8 96.7
Niwot, 1999 9.5 2.9 6.0 98.1 99.4 98.8
Niwot, 2000 2.3 3.2 0.8 99.5 99.4 99.8

MI is highly efficient even for small values ofm
(Schafer, 1997). In many applications, just three to
five imputations are sufficient to obtain excellent re-
sults. The relative efficiency of an estimate based on
m imputations is approximately(1+ (γ/m))−1, where
γ is the fraction of missing information for the vari-
able being estimated,γ = (r + 2/(νm + 3))/r + 1,
andr = ((1+m−1)B)/Ū. In this study, the fraction of
missing information for NEE, LE andH ranged from
0.8 to 76.6%. With five imputations, the efficiency of
the estimate ranged from 86.7 to 99.8% (Table 3).

Another advantage of MI is that the results obtained
by individual researchers at different sites or among
different years can be compared. Because repeated
estimations are used, MI produces more reasonable
estimates of standard errors than single imputation
and current methods. This results in valid statistical
inferences that properly reflect the uncertainty due to
missing values. Given these objectives, MI becomes
an attractive procedure for dealing with missing data
issues (Fichman and Cummings, 2003).

Although MI was first proposed more than 20
years ago (Rubin, 1977), the method has remained
largely unknown and unused by non-experts (Schafer
and Olsen, 1998) due to the lack of computational
tools. MI is especially new to ecologists, as there are
few publications that formally address it. As there
are many large-scale and long-term experiments (e.g.
FluxNet, LTER, and FACE) that are operating, and
more and more researchers are synthesizing meta-data
(i.e. data collected from many individual studies in
the literature) (e.g.Curtis, 1996; Wan et al., 2001),
the issue of how to deal with missing observations,
rather than simply deleting them, becomes important.

Before the advent of general purpose packages that
support MI, the process of generatingm imputed data
sets, analyzing the results from each of themdata sets,
and combining the results required specialized pro-
gramming that was difficult to use. Complications in
data handling and analysis have been greatly simpli-
fied by the existence of easy-to-use software packages
such as SAS, SPSS, Norm, and S-plus (Schafer and
Olsen, 1998; Hox, 1999; Horton and Lipsitz, 2001).
With the availability of these techniques and useful
software, MI using MCMC method can become part of
the mainstream research practice of gap-filling miss-
ing data (Fichman and Cummings, 2003).

6. Conclusions

Prior to any analysis, researchers at FluxNet sites
must examine their data sets for the amount and pat-
tern of missing data and determine the best approach
to handle them (Patrician, 2002). MI is one of the
methods that need to be considered. By using MI to
gap-fill the missing or rejected eddy covariance data,
we estimated annual sums of NEE, LE andH and
their confidence intervals based on the data collected
from two coniferous forests and a deciduous forest for
a combined 7 years. Results by MI were comparable
to the estimations by other current methods. NEE, LE
and H imputed by MI were also consistent with the
seasonal and diurnal patterns in observed data. How
to impute the missing data is not a trivial issue. While
there are many other imputation methods available,
we suggest that using MI as a standardized method for
gap-filling eddy covariance measurements would im-
prove the comparability of annual estimations of NEE,
LE andH from regional and global flux networks, and
provide a uniform as well as objective standard for
evaluating uncertainties in annual sums.
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Appendix A. MCMC method for missing data

The Markov Chain Monte Carlo is commonly used
to generate pseudo-random draws from multidimen-
sional and otherwise intractable probability distri-
butions via Markov chains. In Bayesian inference,
information about unknown parameters is expressed
in the form of a posterior probability distribution.
The posterior distribution is computed using Bayes’
theorem

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

MCMC has been applied as a method for exploring
posterior distribution in Bayesian. Through MCMC,
one can simulate the entire joint posterior distribution
of the unknown quantities and obtain simulation-based
estimates of posterior parameters that are of interest.
This appendix mainly followed the notation bySAS
institute (2002)andLittle and Rubin (2002).

When data set contains missing data, the observed-
data posteriorp(θ|Yobs) is intractable and cannot
easily be simulated. But the complete-data posterior
p(θ|Yobs, Ymis) is much easier to simulate onceYobs is
augmented by a simulated value of the missing data
Ymis. Suppose that the data are from multivariate nor-
mal distribution and assume the conventional Jeffery’s
prior distribution for the mean and covariance matrix:

p(µ,Σ) ∝ |Σ|−(K+1)/2

we present an iterative data augmentation algorithm
for generating draws from the posterior distribution of
θ = (µ,Σ):

p(µ,Σ|Yobs) ∝ |Σ|−(K+1)/2L(µ,Σ|Yobs)

A.1. The imputation I-step

Let θ(t) = (µ(t),Σ(t)) andY(t) = (Yobs, Y
(t)
mis) de-

note current draws of the parameters and gap-filled
data matrix at iterationt. The I-step draws values for
the missing data from the conditional distributionYmis
givenYobs with a given parameterθ

Y
(t+1)
mis ∼p(Ymis|Yobs, θ

(t))

Since the observations of the data matrixY are con-
ditionally independent givenθ, this is equivalent to
drawing

y
(t+1)
mis,i ∼p(ymis,i|yobs,i, θ

(t)) (A.1)

independently fori = 1,2, . . . , n. This distribution is
multivariate normal with mean given by the linear re-
gression ofymis,i on yobs,i, evaluated at current draws
θ(t) of the parameters. The regression parameters and
residual covariance matrix of this normal distribution
is obtained computationally by sweeping on the aug-
mented covariance matrix

"∗(t) =
[

−1 µ(t)′

µ(t) "(t)

]

so that the observed variables are swept in and the
missing variables are swept out. The drawy(t+1)

mis,i is
simply obtained by adding to the conditional mean in
theE-step of EM algorithm,Eqs. (3) and (5), a normal
draw with mean 0 and covariance matrixΣ

(t)
mis,i.obs,i.

A.2. The posterior step P-step

TheP-step of data augmentation simulates the pos-
terior population mean of vectorµ and covariance ma-
trix Σ from prior information forµ andΣ, and the
complete data set.P-step draws

θ(t+1)∼p(θ|Y(t+1))

whereY(t+1) = (Yobs, Y
(t+1)
mis ) is the gap-filled data

from theI-step. The draw ofθ(t+1) can be carried out
in two steps:

(Σ(t+1)|Y(t+1))∼W−1(n − 1, (n − 1)S(t+1))

(µ(t+1)|Σ(t+1), Y(t+1))∼N(ȳ(t+1), Σ(t+1)/n)
(A.2)

where (ȳ(t+1), S(t+1)) is the sample mean and co-
variance matrix ofY from the gap-filled dataY(t+1),
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W−1(n − 1, (n − 1)S) denotes the inverted Wishart
distribution withn − 1 degrees of freedom and scale
matrix (n − 1)S. The posteriors distribution ofθ can
be simulated directly usingEqs. (A.1) and (A.2), after
a suitable burn-in period to achieve stationary draws.
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