
Summary Interannual variability (IAV) in net ecosystem
exchange of carbon (NEE) is a critical factor in projections of
future ecosystem changes. However, our understanding of IAV
is limited because of the difficulty in isolating its numerous
causes. We proposed that IAV in NEE is primarily caused by
climatic variability, through its direct effects on photosynthesis
and respiration and through its indirect effects on carbon fluxes
(i.e., the parameters that govern photosynthesis and respira-
tion), hereafter called functional change. We employed a ho-
mogeneity-of-slopes model to identify the functional change
contributing to IAV in NEE and nighttime ecosystem respira-
tion (RE). The model uses multiple regression analysis to relate
NEE and RE with climatic variables for individual years and for
all years. If the use of different slopes for each year signifi-
cantly improves the model fitting compared to the use of one
slope for all years, we consider that functional change exists, at
least on annual time scales. With the functional change de-
tected, we then partition the observed variation in NEE or RE to
four components, namely, the functional change, the direct ef-
fect of interannual climatic variability, the direct effect of sea-
sonal climatic variation, and random error. Application of this
approach to a data set collected at the Duke Forest AmeriFlux
site from August 1997 to December 2001 indicated that func-
tional change, interannual climatic variability, seasonal clima-
tic variation and random error explained 9.9, 8.9, 59.9 and
21.3%, respectively, of the observed variation in NEE and 13.1,
5.0, 38.1 and 43.8%, respectively, of the observed variation in
RE.

Keywords: CO2 flux, ecosystem respiration, eddy-covariance
measurement, homogeneity-of-slopes model.

Introduction

Among the important findings of long-term flux measurement
initiatives under the auspices of FluxNet is the phenomenon of
interannual variability (IAV) in net ecosystem exchange
(NEE) of CO2 (Goulden et al. 1996, Bubier et al. 1998, Chen et
al. 1999, Griffis et al. 2000, Kelly et al. 2000, Baldocchi et al.
2001, Barford et al. 2001, Falge et al. 2001). For example,

NEE determined from eddy-covariance measurements in a 60-
to 80-year-old deciduous forest in the northeastern USA
ranged from 1.2 to 2.5 Mg C ha–1 year–1 during the period
from 1993 to 2000 (Barford et al. 2001). Observed NEE at a
subarctic fen varied from a net source of 76 g CO2 m–2 in 1994
to a net sink of 235 g CO2 m–2 in 1996 (Griffis et al. 2000).
Similarly, large IAV has been observed in grasslands (Flan-
agan et al. 2002), an alpine forest (Monson et al. 2002), and a
boreal aspen forest and a black spruce forest in Canada (Arain
et al. 2002). The IAV in NEE is a ubiquitous phenomenon ob-
served at almost all of the flux sites across the world (Bal-
docchi et al. 2001). Understanding the causes of IAV and
partitioning the variability into its sources are urgently needed
to improve our prediction of global carbon cycling.

Observed IAV in NEE at flux sites has been related to sev-
eral sources, including: (1) changes in climatic variables, e.g.,
temperature, cloud cover, summer drought, winter snow depth
and the time of snowmelt (Goulden et al. 1998, Griffis et al.
2000); (2) changes in physiological and ecological processes
such as growing season length, natural or artificial changes in
stand structure, the timing of leaf emergence, and coupling be-
tween carbon and nutrient cycling with time delay (Goulden et
al. 1996, Chen et al. 1999, Black et al. 2000, Botta et al. 2000,
Griffis et al. 2000); and (3) altered balance between canopy
photosynthesis and ecosystem respiration (Black et al. 2000,
Houghton 2000, Potter et al. 2001, Schimel et al. 2001).
Empirical evidence suggests that climatic variability among
years is among the factors causing IAV in NEE, which is also
strongly influenced by climate-induced changes in ecosystem
physiological parameters. However, it is unclear how much
variability is attributable to external factors (e.g., climatic vari-
ability) and how much to internal factors (photosynthesis and
respiration parameter attributes).

The IAV in NEE has been studied empirically and with sim-
ulation models. Direct measures of IAV in NEE include differ-
ences in mean values, coefficients of variation (Goetz et al.
2000, Houghton 2000, Kelly et al. 2000), range (Savage and
Davidson 2001), and relative changes in yearly means (Bar-
ford et al. 2001). Such measures provide limited insight into
causes of variation. Simulation models have been employed to
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examine various mechanisms causing IAV in NEE (Potter and
Klooster 1998, Goetz et al. 2000, Grant and Nalder 2000, Ito
and Oikawa 2000, Knorr 2000, Griffis and Rouse 2001, Katul
et al. 2001). The Terrestrial Ecosystem Model, for example,
has been applied to the Amazon Basin. It was found that IAV
in NEE was largely controlled by variation in soil water con-
tent and nutrient availability, which were in turn influenced by
yearly changes in precipitation and temperature (Tian et al.
2000). Griffis and Rouse (2001) used an empirical model and
concluded that changes in air temperature and timing of pre-
cipitation events have a strong influence on NEE. Wilson and
Baldocchi (2001) used a biophysical canopy exchange model
to predict IAV in NEE from observed changes in canopy struc-
ture, climate, soil water content and temperature. Overall,
modeling has helped identify major connections between cli-
matic variability, especially extreme climatic events of
drought and disturbances, and IAV in carbon fluxes.

In addition to the modeling studies, Katul et al. (2001) re-
cently analyzed the wavelet spectral properties of three scalar
fluxes (heat, water vapor, and CO2) and demonstrated that sea-
sonal variability contributes substantially to the overall vari-
ance of these three fluxes. Furthermore, their analysis clearly
indicated the need to investigate variability at annual and lon-
ger time scales. The present study was designed to examine
IAV in NEE and ecosystem respiration (RE) using long-term
eddy-covariance measurements at the Duke Forest AmeriFlux
pine site from August 1997 to December 2001.

Here we examine both direct and indirect effects of climatic
variability on IAV in NEE and RE. The ensemble of all indirect
effects of climatic variability on carbon fluxes is referred to
here as the functional change. We used a homogeneity-of-
slopes (HOS) model to detect the functional change of IAV in
NEE and RE. A combination of the separate-slopes model with
a multiple regression model was used to estimate the contribu-
tions of functional change, interannual climatic variability,
seasonal climatic variation and random error to the observed
total variation in NEE and RE. We describe the HOS model, the
method of partitioning observed IAV in NEE and RE into dif-
ferent components, and the overall analytical procedure.

Materials and methods

Site description and data collection

Data were collected from the Duke Free Air CO2 Enrichment
(FACE) experimental site in Orange County, NC (35°58′ N,
79°05′ W). The site is equipped with six FACE rings and one
meteorological tower (Hendrey et al. 1999, Katul et al. 1999).
The site consists of a 32-ha parcel of even-aged loblolly pine
(Pinus taeda L.) forest on a clay loam soil. Tree growth in the
plantation is relatively uniform, with a median height of 13 m,
a mean diameter of ~15 cm and an LAI of ~3.5 (in 1996).

An eddy-covariance system was installed in one ambient
CO2 ring in August 1997 to measure ecosystem CO2 flux (see
Katul et al. 1997, 1999 and Lai et al. 2000 for details). Net eco-
system exchange of CO2 was measured with an LI-6262 gas
analyzer (Li-Cor, Lincoln, NE) until May 2001 and a Li-Cor

LI-7500 thereafter, together with a CSAT3 (Campbell Scien-
tific, Logan, UT) triaxial sonic anemometer. Photosynthetic-
ally active radiation (PAR) was measured at the canopy top
with a Li-Cor LI-190SZ. When a PAR measurement was miss-
ing, we used a regression relationship with net radiation (Rn) to
“gap-fill” the 30-min mean (PAR = 2.4870Rn + 78.7710, r 2 =
0.88, n = 14140). Air temperature (TA) and wind speed (WS)
were measured with the CSAT3 anemometer at the canopy
top. Relative humidity (RH) and vapor pressure deficit (VPD)
were measured with a Vaisala probe positioned at 2/3 canopy
height. Soil temperature (TS) was measured with thermistors
(Siemens GmbH, Nuernberg, Germany) at one point at 10–
12 cm depth in each ring. Soil water content (MS) was mea-
sured with four probes in each of the six plots, integrating the
upper 30-cm soil layer that encompasses the total root volume
at this site (Oren et al. 1998). Leaf area index was measured
monthly from August 1996 to December 2001 by optical tech-
niques (Li-Cor LAI-2000).

About 78,000 observations from half-hourly measurements
were used to compute daily values of NEE, WS, PAR, TA, RH,
VPD, TS and MS. To minimize fluctuations in single-day mea-
surements and to maximize use of observations with partially
missing values, we calculated weekly means of daily values by
summing half-hourly data over the 24-h period and then aver-
aging the daily sums over seven days (Hui et al. 2001, Wilson
and Baldocchi 2001).

Nighttime RE was calculated by averaging nighttime mea-
surements of NEE from 2030 to 0430 h daily. Nighttime TA,
TS, MS and WS were calculated accordingly. Because plant
photosynthesis provides substrate for plant respiration, we cal-
culated daytime ecosystem CO2 exchange (PD) by averaging
measured NEE from 0830 to 1630 h to test if RE was influ-
enced by PD. Because intercepted PAR generally showed a
better fit than PAR, we calculated intercepted PAR (IPAR) as:
IPAR = PAR(1 – e(–LAIk)), where k is canopy light extinction
coefficient, equaling 0.52 for a coniferous forest (Pierce and
Running 1988), and LAI is measured leaf area index, display-
ing a strong seasonal variation ranging from 2.63 in January to
a maximum of 4.67 in July, and less year-to-year variation
(Katul et al. 2001). Daily LAI values were obtained by linear
interpolation of the monthly LAI data.

We excluded observations from the analysis if data with one
or more individual variables were missing or the mean friction
velocity was less then 0.15 m s–1. Data in 1997 started from
August and may not be fully comparable with the other years’
data, but for the maximum use of available information, we in-
cluded these data in the analysis. A total of 197 data points was
used for the analysis of RE and 189 for NEE.

Homogeneity-of-slopes (HOS) model

We used the HOS model to detect the effect of the functional
change on IAV in NEE and RE. The HOS model is a regression
model, but considers the interaction of climatic variable and
year:
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(1)

where i is the ith year equaling 1, 2, …, y (y = 5 in this study); j
is the jth day of a year equaling 1, 2, … , n; k is the kth inde-
pendent variable equaling 1, 2, …, m (m = 7 in this study) for
IPAR, TA, TS, MS, VPD, RH and WS, respectively; Yij is a de-
pendent variable, NEE or RE, observed in the ith year at the jth
day; Xijk is an independent variable measured at the jth day of
the ith year for the kth variable (called climatic variables here-
after); bik is the slope that links the interactive term of year and
kth climatic variable with NEE or RE; and eij is the random er-
ror associated with observed values of Yij.

To examine the existence of the functional change, we tested
the null hypothesis (H0: bik = 0) for all years versus the alterna-
tive hypothesis (H1: bik ≠ 0) for any of the years. The signifi-
cant test was conducted by the F-test, which tests whether
using different slopes of a climatic variable for each year can
significantly improve the fitting of Equation 1 with observa-
tions compared with using only one slope for all years. If H0

cannot be rejected, none of the slopes “significantly” varies
among years. We then assumed that no functional change ex-
ists in the ecosystem processes and Equation 1 was simplified
to a multiple regression model:

Y a b X eij k ijk ij
k

m

= + +
=

∑
1

(2)

If H0 is rejected, the slopes of regression lines to relate NEE or
RE with climatic variables vary among years. The functional
change is therefore detected through these slopes and Equa-
tion 1 was simplified to a separate-slopes model:

′ = + +
=

∑Y a b X eij ik ijk ij
k

m

1

(3)

The difference between the estimations of NEE or RE by Equa-
tions 2 and 3 is caused by the functional change.

Partitioning of observed NEE and RE to climatic variability
versus functional change

When the functional change is detected with the HOS model,
we partition variation of observed NEE or RE values to four
components, namely, the functional change, the direct effects
of interannual climatic variability, the direct effects of sea-
sonal climatic variation, and random error. This idea can be
statistically realized by partitioning the sum of squares (SS) of
the total deviation of all the data points from the mean (SST) as
follows:

SS SS SS SS SST f ic sc e= + + + (4)

where SSf, SSic, SSsc and SSe are the sum of squares of devia-
tion that can be explained by the functional change, inter-
annual climatic variability, seasonal climatic variation, and
random error, respectively. In this study, the SS for the func-

tional change is calculated by:

SSf = ′ −
==
∑∑ ( � � )Y Yij ij
j

n

i

y
2

11

(5)

where �Yij and �′Yij are the estimated NEE or RE from Equations 2
and 3, respectively. The SS for the random error is estimated
by:

SSe = − ′
==
∑∑ ( � )Y Yij ij
j

n

i

y
2

11

(6)

To estimate the other two components, we need to consider
annual cycles of NEE or RE. The comparison of values in a
given year with the values at a similar point in the annual cycle
in other years gives a measure of temporal variability within an
ecosystem (Teal and Howes 1996). To calculate the variation
among years caused solely by the climatic variables, we com-
pared estimations of NEE or RE from a multiple regression
model (Equation 2) at a point in the annual cycle with the esti-
mates from other years. These differences were caused solely
by interannual climatic variability. The differences between
mean values of estimated NEE or RE across all years and the
mean of all the estimated NEE or RE values were caused by
day-to-day changes in climatic variables. Mathematically, we
expand �Yij to linear components as:

� ( ) ( ). .Y Y Y Y Y Yij ij j j= + − + − (7)

whereY is the mean of all the estimated NEE or RE values, and
Y j. is the mean of estimated NEE or RE values from Equation 2
across all the years on the jth day. The terms ( ).Y Yij j− and
( ).Y Yj − represent interannual and seasonal deviations, re-
spectively. Based on the linear components of NEE or RE in
Equation 7, we can estimate SSic and SSsc, respectively, by:

SSic = −
==
∑∑ ( � ).Y Yij j
j

n
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2
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(8)
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==
∑∑ ( ).Y Yj
j

n

i

y
2

11

(9)

Division of SSf, SSic, SSsc and SSe by SST results in the esti-
mated contributions of the four components to observed varia-
tion in NEE or RE.

If the functional change is determined to be not significant
by the HOS model, we partition the variation of observed NEE
or RE values to three components, namely, the direct effects of
interannual climatic variability, seasonal climatic variation
and random error with Equations 6–9.

Analytical procedure

The analysis is divided into four steps.
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Step 1: Simple regression of NEE and RE on climatic vari-
ables We conducted simple regression analysis to examine
whether a linear model can adequately describe variation of
NEE and RE against all the climatic variables. Among all the
pairs of NEE and RE against the climatic variables, only the re-
lationship between RE and temperature was marginally better
described by a nonlinear equation than by a linear equation.
Therefore, we used linear equations for the HOS analysis.

Step 2: Identification of significant climatic variables We
performed a stepwise multiple regression analysis of NEE or
RE with climatic variables for data from all the years. All the
climatic variables that were significantly correlated with NEE
or RE were included in the HOS analysis. The other variables
were excluded from the analysis.

Step 3: Homogeneity-of-slopes analysis of NEE or RE The
HOS model considers year as a category variable that interacts
with the climatic variables, resulting in the total number of
variables equaling twice the number of climatic variables. We
then examined whether all variables in the HOS model were
significantly correlated with NEE or RE. The stepwise proce-
dure was applied iteratively to exclude insignificant variables
until all variables were statistically correlated with NEE or RE

in the final model. If at least one of the slopes bik in Equation 1
was significantly different from zero, we inferred that func-
tional change was statistically significant and climatic variabil-
ity induced indirect effects on IAV in NEE or RE. We then
constructed a separate-slopes model.

Step 4: Partitioning of variation in NEE and RE to climatic
variability versus functional change We used Equation 4 to
partition the total variability in observed NEE or RE into four (if
functional change exists) or three (if no functional change
is detected) components as outlined previously. The statistical
analyses were performed with SAS software (SAS Institute,
Cary, NC).

Results and discussion

Ecosystem respiration, net ecosystem CO2 exchange and
climatic variables

Both observed RE and NEE showed strong seasonal and inter-
annual variations (Figure 1). In each year, RE was low in winter
and spring and gradually increased to maximum values in
summer. Mean RE in 1999 was the lowest among the five years
(Table 1). In 2001, the mean value of RE was 0.119 mg CO2

m–2 s–1, which was 83% higher than in 1999. Daily values of
NEE also displayed clear seasonal variation, being nearly –5 g
CO2 m–2 day–1 in winter and about 25 g CO2 m–2 day–1 in sum-
mer (Figure 1b). Observed NEE also showed considerable
year-to-year variation. Annual means of NEE ranged from
6.70 g CO2 m–2 day–1 in 1997 to 11.14 g CO2 m–2 day–1 in
2001 (Table 2).

Climatic variables such as daily mean IPAR, TA and TS (data
not shown, but similar to TA) showed strong seasonal varia-
tions, whereas WS, VPD and WS displayed weak seasonal
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Figure 1. Nighttime ecosystem respiration (RE) (a) and net ecosystem
exchange of CO2 (NEE) (b) measured in the Duke Forest from August
1997 to December 2001. Dashed line denotes estimates of the multi-
ple regression model: RE = –0.00384 + 0.0055TA + 0.0205WS,
R2 = 0.44; and NEE = –0.8717 + 0.6038IPAR – 2.1305WS –
4.2323VPD, R2 = 0.69. Solid line denotes estimations of the sepa-
rate-slopes model: RE = 0.0181 + 0.0049TA (if year = 1997) +
0.0048TA (if year = 1998) + 0.0038TA (if year = 1999) + 0.0048TA (if
year = 2000) + 0.0076TA (if year = 2001), R2 = 0.56; and NEE =
–1.1096 + 0.5985IPAR – 2.7750WS – 8.0418VPD (if year = 1997) –
3.6212VPD (if year = 1998) – 4.8358VPD (if year = 1999) –
0.4793VPD (if year = 2000) + 2.7973VPD (if year = 2001), R2 = 0.79.

Table 1. Mean values of nighttime RE and the climatic variables (MS =
soil water content; PD = ecosystem CO2 exchange; TA = air tempera-
ture; TS = soil temperature). Data used in 1997 are from August 1997
to December 1997. The mean values were obtained by averaging
half-hourly data from 2030 to 0430 h over 7 days. Sample size is the
number of mean values in one year.

Variable 1997 1998 1999 2000 2001

Sample size (n) 20 39 45 49 44
RE (mg CO2 m–2 s–1) 0.069 0.079 0.065 0.072 0.119
TA (°C) 10.5 12.8 11.9 11.6 13.4
TS (°C) 14.8 14.6 14.4 14.6 15.7
MS (volumes) 0.252 0.262 0.315 0.324 0.277
PD (mg CO2 m–2 s–1) 0.308 0.307 0.317 0.387 0.490
WS (m s–1) 0.949 0.947 0.954 0.815 0.990
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trends but large day-to-day variations (Figure 2). Yearly mean
values of climatic variables differed among the years. For ex-
ample, yearly mean nighttime TA ranged from 10.5 °C in 1999
to 13.4 °C in 2001 (Table 1). Yearly means of daily values in
TA ranged from 17.6 °C in 1998 to 14.2 °C in 1999 (Table 2).

Relationships between nighttime RE and climatic variables

Simple regression analysis was conducted on nighttime RE

with the climatic variables (Figure 3). Among the climatic
variables, TA had the largest influence on RE, and TS also sig-
nificantly influenced RE. Based on mean daily data, the linear
regression equations of RE with temperatures were adequate
because the commonly used exponential equation only
slightly improved the fitting (coefficient of determination r 2

increased from 0.43 to 0.45 and 0.35 to 0.37 for TA and TS, re-
spectively). The linear relationship was also found suitable at a
subarctic fen (Griffis et al. 2000). Soil water content had a
weak negative influence on RE (Figure 3c), PD had a significant
influence on RE (Figure 3d), and WS did not influence RE sig-
nificantly (Figure 3e).

Climatic variables were significantly correlated with each
other. For example, high TA was always correlated with high TS

(rT TA S, = 0.94), low MS (rT MA S, = –0.52), and high PD (rT PA D, =
0.82) in the Duke Forest. To consider the correlations among
climatic variables, we conducted a multiple regression analy-
sis of nighttime RE with WS, TA, TS, MS and PD. A stepwise
method was used to select climatic variables with entry and
elimination probabilities of 0.05. Several iterations of the step-
wise regression analysis yielded the best regression equation,
RE = –0.0038 + 0.02046WS + 0.0055TA, with a coefficient of
determination R2 = 0.44. Path analysis revealed that TA was
more important (path coefficient pTA

= 0.69) than WS (pWS =
0.12).

Although the best regression equation generally fit the mea-
surement data well, a large portion of variation in RE (56%)
could not be explained by these variables (Figure 4a). Eddy-
covariance measurements of nighttime CO2 fluxes are sensi-

tive to the intermittency and spatial variability (within the
footprint) of forest floor fluxes; hence it is not surprising that
the “random noise” is large. Furthermore, the biophysical pro-
cesses regulating ecosystem respiration are complex and may
be plagued by high spatial variability attributed to spatial
(rather than temporal) variability in soil water content and lit-
ter. There is a need to identify ecological mechanisms underly-
ing the variability in RE and NEE, as well as to improve
nighttime measurement accuracy of the eddy-covariance flux
technique (Lee 1997).

Interannual variability and seasonal variation of nighttime
RE

Multiple regression analysis showed that WS and TA signifi-
cantly influenced nighttime RE. We applied an HOS model to
detect if the slopes of WS and TA varied among years. We
found that the interaction between TA and year was significant.
After considering this interaction, the effect of WS on RE be-
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Table 2. Mean values of NEE and climatic variables (IPAR = inter-
cepted photosynthetically active radiation; MS = soil water content;
RH = relative humidity; TA = air temperature; TS = soil temperature;
VPD = vapor pressure deficit; and WS = wind speed) in each year.
Data used in 1997 are from August 1997 to December 1997. Sample
size is the number of mean values (i.e., daily values averaged over one
week) in one year.

Variable 1997 1998 1999 2000 2001

Sample size (n) 20 27 48 50 44
NEE (g CO2 m–2 day–1) 6.70 8.96 7.54 10.10 11.13
IPAR (mol m–2 day–1) 25.44 26.55 24.82 23.72 24.13
TA (°C) 16.8 17.6 14.2 14.3 16.3
TS (°C) 15.2 16.4 13.9 14.4 15.5
MS (volumes) 0.248 0.226 0.321 0.319 0.276
VPD (kPa) 0.551 0.720 0.591 0.478 0.544
RH 0.769 0.737 0.710 0.754 0.751
WS (m s–1) 1.15 1.17 1.18 0.99 1.31

Figure 2. Change in climatic variables in the Duke Forest from August
1997 to December 2001. Abbreviations: IPAR = intercepted photo-
synthetically active radiation; MS = soil water content; TA = air tem-
perature; VPD = vapor pressure deficit; and WS = wind speed.
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came insignificant and was excluded from the model. The final
HOS model included TA and its interaction with year (Table 3)
and indicated that the functional relationship of RE with tem-
perature varied among years. Because IAV in RE was partially
caused by the functional change in ecosystem processes, we
fitted the data using a separate-slopes model (Equation 3). As a
result, the estimation of RE was markedly improved (Figures
1a and 4a), with R2 increasing from 0.44 to 0.56.

The detected functional change that contributed to IAV in RE

is consistent with results from other studies. For example,
long-term exposure of ecosystems to different temperature re-
gimes usually results in adjustments in temperature sensitivity
of soil respiration (e.g., Kirschbaum 1995, Luo et al. 2001).
The adjustments in temperature sensitivity of ecosystem respi-
ration may be related to changes in substrate quantity and
quality, microbial community structure, and plant productivity
(Luo et al. 2001). Savage and Davidson (2001) also found that
parameter values of a regression model linking soil respiration
with soil temperature varied among years in upland sites at the
Harvard Forest, MA. They concluded that temperature func-

tions predicted seasonal variation in soil respiration well and
suggested that interactive effects of temperature with precipi-
tation and soil water content may complicate our understand-
ing of interannual variability in soil respiration. Nonetheless,
our statistical analysis attributed the observed total variation
in RE to four components: 13.1% caused by functional change,
5.0% by interannual climatic variability, 38.1% by seasonal
climatic variation and 43.8% by random error.

Relationships between NEE and climatic variables

The NEE of a forest ecosystem varies with environmental
driving forces, such as radiation, temperature, and their effects
on ecological processes (Melillo et al. 1993, Peng et al. 1995,
Baldocchi and Meyers 1998). In this study, NEE was linearly
correlated with daily total IPAR (Figure 5a). Nonlinear rela-
tionships of ecosystem CO2 flux with light are often observed
in half-hourly measurements (Clark et al. 1999, Luo et al.
2000, Chen et al. 2002). When daily totals are calculated, how-
ever, linear functions are usually adequate to correlate NEE
with IPAR (Leuning et al. 1995). Ruimy et al. (1995) compiled
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Figure 3. Relationships be-
tween nighttime RE and the
climatic variables (MS = soil
water content; PD = ecosystem
CO2 exchange; TA = air tem-
perature; TS = soil tempera-
ture; and WS = wind speed).
Double asterisks denote signif-
icance at the 0.01 level.
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published data on daily integrated canopy CO2 flux in relation
to daily radiation and concluded that the relationship is ap-
proximately linear for all vegetation types and under all envi-
ronmental conditions.

The NEE was linearly correlated with TA and TS based on
daily values (Figures 5b and 5c), whereas VPD, MS, RH and
WS showed weak linear correlations with NEE (Figures 5d–
5g). Similar to IPAR, the nonlinear relationships of ecosystem
photosynthesis and VPD, MS, RH and TA appear for half-
hourly data, but linear equations describe the relationships

well for the daily data. The positive effect of VPD on NEE and
the negative effect of MS on NEE could not be easily ex-
plained. Because VPD was high in summer and low in winter,
and MS was high in winter and low in summer in the Duke For-
est, the observed relationships may reflect correlations and in-
teractions among climatic variables themselves.

We found significant correlations between mean daily TA

and TS (r = 0.93), between IPAR and TA (r = 0.83), and be-
tween IPAR and TS (r = 0.78). The IPAR had a relatively small
negative influence on MS (r = –0.44), and MS showed negative
correlations with all other climatic variables, and strongly cor-
related with TS (r = –0.54), VPD (r = –0.53), and TA (r =
–0.52). Wind speed was weakly correlated with RH, TS and TA.
The interactions among climatic variables necessitated multi-
ple regression analysis.

The multiple regression analysis of NEE against climatic
variables showed that IPAR, VPD and WS significantly influ-
enced NEE: NEE = –0.8717 + 0.6038IPAR – 4.2323VPD –
2.1305WS, R2 = 0.69. Path analysis indicated that IPAR is the
most important factor (path coefficient p = 0.93). Both WS and
VPD had a small negative influence on NEE (p = –0.11 and
–0.18 for WS and VPD, respectively) compared with IPAR.
Similar results were obtained for Douglas-fir stands based on
eddy-covariance measurements (Chen et al. 2002), with NEE
strongly correlated with PAR and VPD. This relationship was
also found at the leaf level, with photosynthesis usually re-
sponding negatively to increasing VPD (Day 2000). However,
Morecroft and Roberts (1999) found no relationship between
photosynthesis and VPD mainly because stimulation of photo-
synthesis by high PAR overcompensated for the reduction by
VPD. Myers et al. (1999) reported that TA is a primary influ-
ence on the photosynthetic responses of loblolly pine trees in
the Duke FACE experiment. We found no significant effect of
TA or TS on NEE. This may be associated with the significant
correlation of IPAR and TA and TS. In the Duke Forest, NEE
was also not limited by soil water availability, except during
severe drought periods.

Interannual variability and seasonal change of NEE

The HOS analysis indicated that the effect of VPD on NEE
varied among years, whereas the effects of IPAR and WS on
NEE did not change among years (Table 4, Figure 1b). Be-
cause functional change was detected in NEE, we constructed
a separate-slopes model. Compared with the multiple regres-
sion model, the separate-slopes model improved the NEE esti-
mation substantially, with R2 increasing from 0.69 with the
multiple regression model to 0.79 with the separate-slopes
model (Figure 4b). The separate-slopes model accounted for
9.9% more variation in observed NEE than the multiple re-
gression model, which is attributed to the functional change.
The other 90.1% variation in observed NEE was partitioned to
interannual climatic variability (8.9%), seasonal climatic vari-
ation (59.9%), and random error (21.3%). The partitioning of
variation indicated that the functional change accounts for
more IAV in NEE than the year-to-year changes in climatic
variability. Braswell et al. (1997) also suggested greater indi-
rect effects than direct effects of climatic variability on NEE
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Figure 4. Comparison of model estimations and measurements of
nighttime ecosystem respiration (RE) (a) and net ecosystem exchange
of carbon (NEE) (b). Symbols: � = values estimated by the multiple
regression model; and � = values estimated by the separate-slopes
model.

Table 3. An ANOVA of a homogeneity-of-slopes model of ecosystem
respiration (RE). Double asterisks denote significant differences
among variables at the 0.01 level.

Source df SS MS F

Homogeneity-of-slopes model 5 0.3217 0.0643 48.98**

TA 1 0.2463 0.2463 187.53**

TA × Year 4 0.0754 0.0188 14.35**

Error 191 0.2509 0.0013
Total 196 0.5726
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based on the finding of substantial lagged responses of NDVI
and growth rate to atmospheric CO2 concentration and temper-
ature. When both the direct effect of climatic variability and
the functional change on NEE exist, short-term observations
often cannot provide enough information to establish reliable
predictive relationships with climatic variables. Thus, inter-
pretation of IAV in RE and NEE that is mainly caused by func-
tional change requires long-term measurements.

Conclusions and implications

We proposed a framework for detecting and partitioning IAV
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Figure 5. Relationships be-
tween net ecosystem CO2 ex-
change (NEE) and the climatic
variables IPAR (intercepted
photosynthetically active radi-
ation), MS (soil water content),
RH (relative humidity), TA (air
temperature), TS (soil tempera-
ture), VPD (vapor pressure
deficit) and WS (wind speed).
Double asterisks denote signif-
icance at the 0.01 level.

Table 4. An ANOVA of a homogeneity-of-slopes model of NEE
and climatic variables. Double asterisks denote significant differences
among variables at the 0.01 level.

Source df SS MS F

Homogeneity-of-slopes model 7 6353.69 907.70 95.32**

WS 1 136.18 136.18 14.30**

IPAR 1 5306.35 5306.35 557.24**

VPD 1 114.33 114.33 12.01**

VPD × Year 4 796.83 199.21 20.92**

Error 181 1723.57 9.52
Total 188 8077.25
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in NEE using multi-year eddy flux measurements collected at
the Duke pine forest. We used an HOS model to detect the
functional change in ecosystem processes that contributed
considerably to IAV in NEE and RE. With a combination of the
separate-slopes model and the multiple regression model, we
partitioned IAV in NEE and RE into four components, namely,
functional change, climatic variability among years, seasonal
variation and random error. We found that 13.1% of variation
in observed RE was explained by functional change, 5.0% by
interannual climatic variability, and nearly 38.1% by seasonal
variation in climatic variables. Nearly 10% of the variation in
observed NEE was explained by functional change, 8.9% by
interannual climatic variability, and 59.9% by seasonal varia-
tion in climatic variables.

To our knowledge, this is the first report of the use of statisti-
cal analysis to separate the different sources of interannual
variability. We demonstrated that it is feasible to partition the
variation in ecosystem carbon fluxes into direct effects of sea-
sonal and interannual climatic variability, and indirect effects
or functional change. Although our linear model may not be
directly applicable to other conditions, the principle can be ap-
plied in similar studies.

Understanding the causes and degree of IAV in ecosystem
carbon fluxes is important for both development of ecological
theories and projections of future ecosystem changes. If IAV is
not significant, as is the case for productivity of frequently
flooded salt-marsh areas (Teal and Howes 1996), measure-
ments made in any single year can be applied to other years
with suitable precautions to account for seasonal cycles. If
IAV in NEE exists and is caused purely by direct effects of cli-
matic variability, we cannot extrapolate measurements from
one year to another year. However, the relationship, either lin-
ear as demonstrated in this study, or some nonlinear form de-
rived from short-term measurements, can be used to project
long-term changes as long as we have realistic future climate
scenarios. If the climate-induced functional change in ecosys-
tem processes contributes significantly to IAV in ecosystem
carbon fluxes, long-term observations are required to develop
a sound understanding of the relationships between NEE and
climatic variables before we can reasonably predict ecosystem
carbon fluxes. Under this circumstance, current ecological
models often successfully simulate NEE in some years but fail
in others (e.g., Griffis and Rouse 2001). Statistical models that
consider only the correlation of NEE with climatic variables
are also unable to reproduce realistic interannual variation, be-
cause of their inability to capture functional change (Goward
and Prince 1995, Goetz et al. 2000). Process-based models are
useful for predicting IAV in NEE only if the functional change
caused by the indirect effect of climatic variables is appropri-
ately incorporated into the model (Goetz et al. 2000, Knorr
2000). The broader implication of this study is that the next
generation of mechanistic models must be able to deal with
functional change if progress is to be made on estimating car-
bon cycling at annual and longer time scales.
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