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Abstract

Biogeochemical models have been developed to account for more and more processes, making their complex struc-

tures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model

into traceable components based on mutually independent properties of modeled biogeochemical processes. The

framework traces modeled ecosystem carbon storage capacity (Xss) to (i) a product of net primary productivity (NPP)

and ecosystem residence time (τE). The latter τE can be further traced to (ii) baseline carbon residence times (τ′E),
which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars

(ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the

Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in

modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990,

modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, lead-

ing to a relatively high carbon storage capacity (31.5 kg cm�2). Deciduous needle leaf forest had the longest residence

time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm�2). The longest τE in deciduous nee-

dle leaf forest was ascribed to its longest τ′E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorpora-

tion of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., �12.1% in shrub

land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ′E (e.g., �26.7% in C3

grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our

framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable

components for all terrestrial carbon cycle models. Nevertheless, more research is needed to develop tools to decom-

pose NPP and transient dynamics of the modeled carbon cycle into traceable components for structural analysis of

land models.
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Introduction

To simulate ecological responses to global change as

realistically as possible, land models have incorporated

more and more relevant processes in the past decades.

For example, the number of key state variables in the

Terrestrial Ecosystem Model (TEM) was only five in its

first version (Raich et al., 1991), and has increased to

more than 20 in its successor model – Dynamic Land

Ecosystem Model (DLEM) (Tian et al., 2012). The Com-

munity Land Model (CLM) has recently incorporated

the carbon–nitrogen cycle, transient land-cover change,

and wood harvest, among many other processes, into its

latest version (Oleson et al., 2010; Lawrence et al., 2011).

Themore processes a landmodel incorporates to realisti-

cally simulate real-world phenomena, the more difficult

it becomes to understand or evaluate complex behaviors

of the land model. As a result, uncertainty in predictions

among models cannot be easily diagnosed and attrib-

uted to its sources (Chatfield, 1995; Friedlingstein et al.,

2006; Luo et al., 2009). For example, simulated land car-

bon uptake in response to doubled CO2 concentration in

the atmosphere varied from 100 to 800 GtC among 11

coupled climate–carbon cycle models (Friedlingstein

et al., 2006). Simulated annual net primary productivity

(NPP) ranged from 39.9 Pg C yr�1 by the HYBRIDmodel

to 80.5 Pg C yr�1 by the Terrestrial Uptake and Release

of Carbon (TURC) model among 17 models (Cramer

et al., 1999). Although the ensemble averages of simula-

tions from multimodels intercomparisons generally fit

data better than individual models (Hanson et al., 2004;

Dirmeyer et al., 2006; Johns et al., 2011), there is no effec-

tive approach to help identify sources of uncertainties

amongmodels.

Efforts have been made to understand the complexity

of ecosystem models for model evaluation and
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intercomparison. For example, Wang et al. (2011a) has

developed a hierarchical framework that segregates eco-

system models into three functionally cascaded compo-

nents, which are as follows: (i) how climate drivers and

vegetation leaf area influence NPP, (ii) how NPP alloca-

tion and plant carbon turnover rates together determine

biomass growth, and (iii) how soil carbon balance is

determined by the carbon input from litter fall and

carbon loss via heterotrophic respiration. By examining

the three components sequentially, that framework is

useful for diagnosing and assessing uncertainties of

simulated carbon fluxes and storage among different

models. However, the framework cannot trace the

uncertainties amongmodels to their origins in a rigorous

way. For example, differences in heterotrophic respira-

tion among models could result from the differences in

sizes or turnover rates of various carbon pools. The

framework byWang et al. (2011a) could not differentiate

them. Other intercomparison studies have made

attempts to explain uncertainties among models, but

mostly in descriptive rather than analytic ways.

The terrestrial carbon cycle can be decomposed into a

few traceable components according to its fundamental

properties. Carbon from the atmosphere enters ecosys-

tems via photosynthesis. Once the carbon is assimi-

lated, it is partitioned into various plant pools and

transferred to litter and soil pools. Carbon is eventually

released back to the atmosphere via respiration. All the

carbon cycle processes after photosynthesis can be sum-

marized by ecosystem carbon residence time, which

measures an averaged duration of carbon atoms from

the entrance via photosynthesis to the exit via respira-

tion from various pools of the ecosystem (Thompson

et al., 1996; Luo et al., 2003). As the carbon cycle contin-

uously goes on, the steady-state carbon storage of a

terrestrial ecosystem is jointly determined by the eco-

system carbon influx and residence time (Luo et al.,

2003). Indeed, the capacity of an ecosystem to store

carbon can be given as the product of carbon influx

(e.g., NPP) and residence time (τE) of the ecosystem

(Taylor & Lloyd, 1992; Thompson et al., 1996; Thomp-

son & Randerson, 1999).

Carbon residence time (τE), however, has been much

less studied than NPP, largely because residence time

involves multiple processes mainly related to carbon

transfer among pools and carbon release from each

pool via decomposition and respiration. Decomposition

of carbon compounds is determined by physical and

chemical properties of carbon substrates and influenced

by temperature and moisture. For instance, litter

lignin fractions and carbon-to-nitrogen ratios are very

important in influencing decomposition rates of plant

detritus (Melillo et al., 1982; Davidson & Janssens,

2006). Soil texture, such as clay content, and physical

and biochemical protection considerably regulate

decomposition of soil organic carbon (Trumbore et al.,

1996). Hence, litter chemical composition and soil prop-

erties together determine the maximum potential of the

carbon release rate from an ecosystem via decomposi-

tion at optimal temperature and moisture conditions.

The maximum potential is inversely related to baseline

residence time of carbon in the ecosystem (τ′E).
The potential decomposition rate is usually modified

by external climate factors, such as temperature and

precipitation (Burke et al., 2003), so that the ecosystem

(or actual) carbon residence time (τE) is always longer

than its baseline value (τ′E). The idea with the potential

decomposition rate modified by environmental condi-

tions has been incorporated into most biogeochemical

models to simulate the carbon cycle in the terrestrial

ecosystems. For example, the maximum decomposition

rates of soil organic carbon are functions of soil texture

in most terrestrial biogeochemical models, e.g., the

CENTURY (Parton et al., 1987) and CASA (Randerson

et al., 1997) model. Temperature effect on decomposi-

tion rates is expressed by a function of air temperature

in both CENTURY (Parton et al., 1987) and Roth-C

model (Coleman & Jenkinson, 1999). In short, the eco-

system carbon residence time (τE) in almost all land

models is determined by and thus can be decomposed

to the product of baseline carbon residence time (τ′E)
and an environmental scalar, which links external

climate factors such as precipitation and air tempera-

ture to carbon processes.

Here, we introduce a framework to decompose a

complex land model into traceable components. Specifi-

cally, the framework traces modeled ecosystem carbon

storage capacity (Xss) to (i) a product of NPP and

ecosystem residence time (τE). The latter τE can be

further traced to (ii) baseline carbon residence times

(τE), which are usually preset in a model according to

vegetation characteristics and soil types, (iii) environ-

mental scalars (ξ) including temperature and water sca-

lars, and ultimately to (iv) the external climate forcings.

In this study, we applied the framework to the Austra-

lian Community Atmosphere Biosphere Land

Exchange (CABLE) model to analyze how carbon stor-

age capacities of contrasting terrestrial biomes are dif-

ferently determined by the four traceable components

in both carbon-only and carbon–nitrogen coupled sim-

ulations. We also discussed the uncertainty of this

framework, and at last illustrated potential applications

of the framework to various model evaluations and

improvements. Note that this is the first part of our

work to develop a traceability framework for structural

analysis of land models. Beyond this study, we intend

to develop methods to decompose modeled carbon

influx (e.g., NPP and gross primary production – GPP)
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and transient dynamics of the terrestrial carbon cycle

into a few traceable components so that modeled

responses of the terrestrial carbon cycle to climate

change and disturbances can be better understood.

Materials and methods

The general matrix model of the terrestrial carbon cycle

The framework for decomposing modeled terrestrial carbon

storage capacity into a few traceable components in this study

is built upon biogeochemical principles of the terrestrial

carbon cycle. The terrestrial carbon cycle can be characterized

by several properties (Luo & Weng, 2011), including (i) the

carbon cycle in a terrestrial ecosystem is usually initiated with

plant photosynthesis; (ii) the photosynthetic carbon is first

partitioned into various plant pools (i.e., leaf, root, and woody

biomass) and then allocated to litter and soil pools after the

plant parts die; (iii) the carbon transfers are dominated by the

donor pools; and (iv) decomposition of litter and soil carbon

can be described by first-order decay functions. These proper-

ties of the terrestrial carbon cycle can be mathematically repre-

sented by a matrix model (Luo et al., 2003) as:

dXðtÞ
dt

¼ BUðtÞ � AnCXðtÞ ð1Þ
,
where X(t) = (X1(t), X2(t),…, X9(t))

T is a 9 9 1 vector describ-

ing nine carbon pool sizes in leaf, root, wood, metabolic litter,

structural litter, coarse wood debris (CWD), fast, slow, and

passive soil organic carbon, respectively, in the CABLE model

(Wang et al., 2011b). B = (b1, b2, b3, 0, …, 0)T represents the

partitioning coefficients of the photosynthetically fixed carbon

into different plant pools. U is the input of fixed carbon via

plant photosynthesis. C is a 9 9 9 diagonal matrix with diago-

nal entries given by vector c = (c1, c2, …, c9)
T, components cj

(j = 1, 2, …,9) quantify the fraction of carbon left from pool Xj

(j = 1, 2, …,9) after each time step. ξ is a 9 9 9 diagonal matrix

with diagonal entries given by vector ξ′ = (ξ′1, ξ′1, …, ξ′9)
T

(see supplementary materials), components ξ′j (j = 1, 2, …,9)

quantify the environmental scalar on carbon decay rate of pool

Xj (j = 1, 2, …,9) at each time step. A denotes the carbon

transfer matrix among pools as:

A ¼

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

�a41 �a42 0 1 0 0 0 0 0
�a51 �a52 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 �a74 �a75 �a76 1 0 0
0 0 0 0 �a85 �a86 �a87 1 0
0 0 0 0 0 0 �a97 �a98 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

,
where aij represents the fraction of carbon transfer from pool

j to i. In general, Eqn (1) can adequately summarize carbon

cycle processes in most land models (Parton et al., 1987; Sitch

et al., 2003; Wang et al., 2010). For example, modeled carbon

loss processes such as litter decomposition and soil heterotro-

phic respiration can be obtained from their associated compo-

nents in X, A, B, C, and ξ.

All the parameters (i.e., B, ξ, A, and C) in Eqn (1) are either

preset or modeled independently from each other in almost

all land models. This mutually independent property of mod-

eled carbon cycle enables us to develop an analytic framework

for decomposing modeled carbon storage capacity into trace-

able components as described below.

The framework for decomposing modeled carbon storage
capacity into traceable components

The carbon storage capacity of an ecosystem equals the sum of

carbon in all the pools at steady state. The steady-state values

of all carbon pools (Xss) can be obtained by letting Eqn (1)

equal zero (Luo et al. 2001, Xia et al., 2012) and rearranging it

as:

Xss ¼ ðAnCÞ�1BUss ¼ ðnCÞ�1A�1BUss ¼ n�1C�1A�1BUss

¼ n�1stEUss ¼ sEUss ð2Þ
,
where Xss is a vector including steady states of all carbon

pools, and total ecosystem carbon storage capacity can be

summed from all components of Xss. Uss is the ecosystem car-

bon influx at steady state. τ′E is the baseline carbon residence

time and is determined by partitioning (B vector) and transfer

(A and C matrices) coefficients in Eqn (2) as:

stE ¼ C�1A�1B ð3Þ
The ecosystem carbon residence time (τE) in Eqn (2) is τ′E

modified by the environmental scalar (ξ) as:

sE ¼ n�1stE ð4Þ
,
where ξ is the environmental scalar and usually consists of

temperature (ξτ) and water (ξw) scalars (Burke et al., 2003). For
litter and soil carbon pools, ξ usually is calculated from ξτ and
water ξw as:

n ¼ nT nW ð5Þ
Our traceability framework is based on Eqns (2)–(5) that

decompose the carbon storage capacity of an ecosystem into

four traceable components (Fig. 1). First, the carbon storage

capacity (Xss) of a terrestrial ecosystem is the product of the

Fig. 1 Schematic diagram of the framework introduced in this

study. Xss, ecosystem carbon storage capacity; τE, ecosystem

carbon residence time; τ′E, baseline carbon residence time; ξ,

environmental scalar; ξT, temperature scalar; ξW, water scalar.
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ecosystem carbon residence time (τE) and the steady-state eco-

system carbon influx (Uss) Eqn (2). According to Eqn (4), τE is

the baseline carbon residence time (τ′E; component 2) as modi-

fied by the environmental scalar (ξ; component 3). The baseline

residence time τ′E is determined by carbon partitioning coeffi-

cients of NPP (B vector) and transfer coefficients between car-

bon pools [A and C matrices; Eqn (3)]. ξ can be further divided

into temperature (ξτ) and water (ξw) components [Eqn (5)].

The last component is external environmental climate forcings

(surface air temperature and precipitation), which drive the

carbon cycle in all terrestrial ecosystem models.

In Equation (2), parameters ξ, A, C, and B usually vary with

time, given Uss during a period, in most models. Thus, we

need approximations, e.g., using temporal means in this study

(see details in Text S3), to represent these time-varying

variables in the framework.

Error in the analytical approximation

In Equation (1), environmental scalars (ξ), partitioning coeffi-

cients of NPP (B vector), and carbon decay rates (C matrix)

usually vary with time in some models. In the CABLE model,

time-varying variables include ξ, B, and leaf decay rate in the

C matrix. In this study, we used the yearly means to approxi-

mate these time-varying variables (Text S4). The approxima-

tions yield errors when they are used to estimate the

ecosystem carbon storage capacity. Mathematically, the error

is determined by the amplitudes of periodical oscillations of ξ
and B (Text S3). The larger the amplitude is, the greater the

approximation errors in estimating the ecosystem carbon stor-

age capacity. In this study, we calculated the error of our

framework by using the following Eqn:

Errorð%Þ ¼ ðX̂tot � XtotÞ
Xtot

� 100 ð6Þ

,
where X̂tot is the estimated ecosystem carbon storage capacity

from our framework by using the approximate ξ and B. Xtot is

the total ecosystem carbon pool size obtained by model simu-

lations at steady state.

The Community Atmosphere–Biosphere–Land Exchange
(CABLE) model

Currently, biogeochemistry in most global land models are

constructed on the pool–flux structure, which can be summa-

rized into the general matrix model in this study. Here,

we applied our framework to the Community Atmosphere–

Biosphere–Land Exchange (CABLE) model, which is one of

the land surface models that are used for simulating global

biophysical processes and climate. The biogeochemical cycle

of the CABLE model contains coupled carbon, nitrogen, and

phosphorus cycles (Wang et al., 2010). In this study, we first

activated the carbon cycle to introduce the framework, and

then used the carbon–nitrogen coupled model to examine the

impacts of carbon–nitrogen coupling on the carbon cycle.

There are nine carbon pools in the CABLE model, includ-

ing three plant pools (leaf, root, and wood), three litter pools

(metabolic and structural litter as well as CWD), and three

soil pools (microbial biomass, slow and passive soil organic

matter). Ecosystem carbon influx (i.e., NPP) is calculated as

the difference between gross primary productivity (GPP) and

autotrophic respiration. By spinning up the model to steady

states (Xia et al., 2012), we obtained the steady states of NPP

(Uss) and carbon storage capacity (Xss; component 1). In the

second component of the framework, the carbon transfer

coefficients (A matrix) are determined by lignin/nitrogen

ratio from plant to litter pools, lignin fraction from litter to

soil pools, and soil texture among soil pools (Text S1). The

lignin fraction is fixed according to vegetation types and soil

texture is spatially fixed in the CABLE model. In the B vector,

the carbon partitioning coefficients of the photosynthetically

fixed carbon into plant pools are determined by availabilities

of light, water, and nitrogen (Text S1). In the C matrix, the

potential decay rates of different carbon pools are first preset

and vary with vegetation types, and then modified by lignin

fraction and soil texture, respectively (Text. S1). The environ-

mental scalar (ξ) regulates the leaf carbon turnover rates by

cold and drought stresses on leaf senescence rate, and litter/

soil carbon turnover rates via limitations of soil temperature

and moisture (component 3; see details in Text S2). The vege-

tation types for each 1º91º grid cell in the model were

derived from the 0.5º9 0.5 IGBP classification (Loveland

et al., 2000). The daily meteorological forcings (surface air

temperature, soil temperature, and moisture; component 4)

were used to integrate the full model with a time step of 1

day. As the main purpose of this study is to introduce a

traceability framework but not obtain best estimates for all

components in our framework, the meteorological forcings of

1990 were used to run the global version of the CABLE model

to steady states. Managed ecosystems such as cropland were

not included in this study as land-use changes are not simu-

lated in this version of the CABLE model.

Procedure of analysis

To obtain the modeled carbon storage capacity, we spun up

the CABLE model to steady state using the semianalytical

solution (SAS) method developed by Xia et al. (2012). Once the

model is spun up to steady state, elements of A, C, B, and ξ
from all time steps in the last recycle of climate forcings (as

Figure S1-S3) were stored in files to calculate averages of A, C,

B, and ξ over the time span as their approximations in Eqns

(1–5) (Text S4). Note that the study by Xia et al. (2012)

described in detail organization of carbon pools and fluxes

into matrices A and C, vector B (as in Text S1), and the

environmental scalar (ξ; as in Text S2). The obtained averages

of A, C, and B were used to calculate the baseline values of

ecosystem carbon residence times (τ′E) by Eqn (3). The τ′E
(component 2 in Fig. 1) was multiplied by averaged ξ (compo-

nent 3 in Fig. 1) to calculated ecosystem carbon residence time

(τE) by Eqn (4). The ecosystem carbon storage capacity (Xss)

was calculated as the product of yearly NPP (i.e., Uss) and τE
[Eqn (2); component 1 in Fig. 1]. Air temperature and precipi-

tation were directly obtained from the external climate

forcings (component 4 in Fig. 1). The details of the procedures

in this study can be found on this webpage: http://ecola-

b.ou.edu/AnaTool/modelstructure.html.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 2104–2116
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Results

Ecosystem carbon storage capacity as determined by
ecosystem residence time and NPP

According to Eqn (2), the ecosystem residence time (τE)
and carbon influx (i.e., NPP; Uss) together determine

the carbon storage capacity (Xss) of an ecosystem. Ever-

green needle leaf forest had the largest total ecosystem

carbon storage capacity (34.1 kg cm�2) among the

nine biomes, resulting from its mediate NPP

(0.39 kg cm�2 yr�1) and relatively long τE (86.4 years)

(Fig. 2). Modeled evergreen broadleaf forest had the

highest NPP (1.2 kg cm�2) and a moderate τE
(26.3 years), leading to a relatively high ecosystem car-

bon storage capacity (31.5 kg cm�2). Deciduous needle

leaf forest had the longest τE (163.3 years) and a low

NPP (0.1 kg cm�2 yr�1), resulting in a moderate eco-

system carbon storage capacity (18.3 kg cm�2). Barren/

sparse vegetation had the lowest ecosystem carbon

storage capacity (1.3 kg cm�2) among all the biomes as

a result of its smallest NPP (0.1 kg cm�2 yr�1) and

shortest τE (20.4 years). Although tundra had a long τE
(141.2 years), its ecosystem carbon storage capacity

(8.7 kg cm�2) is small because of the low NPP

(0.1 kg cm�2 yr�1).

Baseline carbon residence time

The ecosystem carbon residence time is determined by

baseline carbon residence time (τ′E) and the environ-

mental scalar Eqn (4). Differences in τ′E among biomes

(Figs. 3a and 4) are determined by the potential

decomposition rates of carbon pools (C matrix), coeffi-

cients of partitioning NPP to plant pools (B vector), and

carbon transfer coefficients between pools (A matrix)

[Eqn (3)]. For example, needle leaf deciduous forests

had the longest τ′E (an average of 55.7 years) of the nine

biomes because they partitioned the largest fraction of

NPP into woody biomass (45.0%) (Text S4). The matri-

ces of A and C as well as the B vector are determined

by soil texture (Fig. 3b) and vegetation lignin fraction

(Fig. 3c), both of which are preset in the model (Text

S1). In this study, the total fraction of clay and silt was

relatively large in forests (0.55 0.67) and similar in

shrub land (0.47), tundra (0.52), and barren/sparse veg-

etation (0.47). C3 grassland (0.61) had a larger total frac-

tion of clay and silt than C4 grassland (0.50) (Fig. 3b).

Plant lignin fraction was largest in evergreen needle

leaf forest (0.30), but smallest in barren/sparse vegeta-

tion (0.23). It was set as 0.27 in other forests and shrub

land, and 0.20 in grassland and tundra (Fig. 3c).

Climate forcings and environmental scalars

Climate forcings that drive themodel are different among

biomes. For example, C4 grassland (25.8 � 0.1 °C,
1018.6 � 15.5 mm) had higher temperature and more

precipitation than C3 grassland (13.5 � 0.2 °C,
874.2 � 12.8 mm) (Table 1, Fig. 5a). Temperature and

water availability limit decomposition rates of litter and

soil organic carbon and, as a consequence, elongate resi-

dence times of various carbon pools. This concept is usu-

ally represented by an environmental scalar (ξ) in most

biogeochemical models to convert baseline carbon resi-

dence time (τ′E) into the actual ecosystem value (τE)

(a) (b)

Fig. 2 Determining of the ecosystem carbon storage capacity by carbon (C) influx (i.e., NPP) and ecosystem residence time (τE) in vari-

ous biomes. Values of all grid cells are plotted in panel (a). In panel (b), the hyperbolic curves represent constant values (shown across

the curves) of ecosystem carbon storage capacity. ENF – Evergreen needle leaf forest, EBF – Evergreen broadleaf forest, DNF – Decidu-

ous needle leaf forest, DBF – Deciduous broadleaf forest, Shrub – Shrub land, C3G – C3 grassland, C4G – C4 grassland, and Barren –

barren/sparse vegetation.

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 2104–2116
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[Eqn (3); Text S2] in each grid. In the CABLE model, for

example, the smallest average value of ξ in tundra (0.13)

caused the mean carbon residence time to be larger by

9.5-fold from its baseline value (Fig. 4). After the modifi-

cation by ξ, the order of τE among biomes was different

from that of τ′E, with deciduous needle leaf forest (163.3

years) > tundra (141.2 years) > evergreen needle leaf

forest (86.4 years) > shrub land (52.6 years) > decidu-

ous broadleaf forest (33.3 years) > C3 grassland

(26.6 years) > evergreen broadleaf forest (26.3 years)

> barren/sparse vegetation (20.4 years) > C4 grassland

(17.5 years).

In the CABLE model, the environmental scalar ξ
influences the carbon transfer among pools in two ways

(see the details in Text S2). First, when air temperature

(cold stress) or water availability (drought stress) was

too low, an additional fraction of leaf carbon is trans-

ferred to litter pools (from 0.87% in evergreen broadleaf

forest to 16.1% in deciduous broadleaf forest; Text S4).

Second, decomposition rates of litter and soil organic

carbon pools all were modified by temperature (ξT) and
water (ξW) scalars in the same way in the CABLE model

(Text S2). In this study, the global mean values of ξT and
ξW were 0.39 and 0.74, respectively. ξT was small in tun-

dra (0.13), deciduous needle leaf forest (0.15), and ever-

green needle leaf forests (0.23); moderate in barren/

sparse vegetation (0.40), C3 grassland (0.44), deciduous

broadleaf forest (0.47); and relatively large in shrub land

(0.61), evergreen broadleaf forest (0.62), and C4 grass-

land (0.82) (Fig. 5 and 6). In contrast to the large varia-

tion in ξT among biomes, ξW was distributed in a

narrow range from 0.65 in evergreen broadleaf forest to

0.87 in deciduous needle leaf forest (Figs. 5, 6 and S1).

0.
0

0.
1

0.
2

0.
3

0.
0

0.
4

0.
6

1.
0

0.
2

0.
8

0
20

30
50

10
40

(a)

(b) Soil texture

τE'

(c) Plant lignin fraction

Fig. 3 Global distributions of (a) ecosystem carbon baseline

residence time (τ′E; year), (b) total fractions of clay and silt in

the soil, and (c) mean plant lignin fraction. Note that we calcu-

late the mean plant lignin fraction from leaf, root, and woody

biomass without considering differences in carbon allocation

pattern among grids.

Fig. 4 Dependence of ecosystem C residence time (τE) on its

baseline (τ′E) and the environmental scalar (ξ) in various

biomes. See abbreviations of biomes as Fig. 2.

Table 1 Mean annual temperature (MAT) and precipitation

(MAP) in the nine biomes in 1990. The mean (SD) values were

obtained from different grid cells with same biome type.

Biome MAT MAP

Evergreen Needle leaf Forest

(ENF)

2.5 (6.2) 1005.3

(687.2)

Evergreen Broadleaf Forest (EBF) 23.9 (4.7) 2049.4

(652.2)

Deciduous Needle leaf Forest

(DNF)

�7.0 (1.4) 372.4 (103.3)

Deciduous Broadleaf Forest (DBF) 16.9 (8.0) 1397.4

(531.5)

Shrub land (Shrub) 21.7 (4.2) 467.9 (203.0)

C3 grassland (C3G) 13.5 (7.4) 874.2 (444.7)

C4 grassland (C4G) 25.8 (2.2) 1018.6

(491.7)

Tundra �8.0 (5.2) 598.6 (544.3)

Barren/sparse vegetation (Barren) 7.9 (17.5) 219.8 (230.7)
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Approximation errors of the framework

Although our results showed a good agreement

between analyzed and modeled ecosystem carbon stor-

age capacity in all biomes (Fig. 7), there are some inevi-

table approximation errors in applying our framework

from the temporal variations in environmental scalars

(ξ), partitioning coefficients of NPP into plant pools (B

vector), and fraction of carbon left from the leaf pool

(c1). Among the nine biomes, the largest error occurred

in deciduous needle leaf forest (7.14%) and tundra

(5.11%). It was attributed to the large temporal fluctua-

tions of partitioning coefficients of NPP into plant pools

(B vector; Fig. S2) and leaf turnover rates (c1; Fig. S3).

The error was much lower in other biomes (from -0.57%

in evergreen broadleaf forest to 2.06% in deciduous

broadleaf forest) because of small or no temporal varia-

tions in B, c1, and ξ (Figs. S1–S3). In general, the

approximation errors for the ecosystem carbon storage

capacity resulted mainly from two sources: (1) using

ð�nT � �nWÞ�1 � s0e as an approximation for n�1
T � n�1

W � s0e, and
(2) approximating n�1

T � n�1
W by n�1

T � n�1
W . To evaluate the

first source of approximation errors, we compared val-

ues of ð�nT � �nW Þ�1 � s0e with values of n�1
T � n�1

W � s0e for each
carbon pool and biome. The approximation errors were

relatively large for litter and soil pools, especially in

deciduous needle leaf forest (from 5.96 to 35.69%; Fig.

S4). Such a large uncertainty resulted from the great

temporal variations of n�1
T , n�1

W , and s0e in this biome (Fig.

S5). To evaluate the second source of approximation

errors, we calculated the differences between �nT � �nW
and nT � nW for all grids. The result showed that the

approximation errors were minor globally (Fig. S6). The

two sources of approximation errors may vary with

models so that the above uncertainty analyses should be

performed before applying our framework to a model.

(a) (b)

(c)

Fig. 5 Distribution of major biomes in relation to (a) annual temperature and precipitation and (b) water (ξW) and temperature (ξT)

limitations on litter and soil organic carbon decomposition rates. (c) Frequency distributions of environmental scalars (ξ) on litter/soil

decay rates in various biomes. The blank squares are averages of ξ, and the bars cover the range from the minimum to maximum ξ in a

biome. See abbreviations of biomes as Fig. 2.
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Although the above temporal variations are funda-

mental properties of terrestrial ecosystems and are the

drivers for the seasonality of the modeled carbon cycle,

the approximation error generated by using our frame-

work to decompose the modeled ecosystem carbon

storage capacity is relatively small.

Nitrogen constraints of ecosystem carbon storage capacity

In the CABLE model, NPP and baseline carbon resi-

dence time (τE) and therefore carbon storage capacity

all decreased in all biomes when the nitrogen cycle was

coupled with the carbon cycle (Fig. 8b). As the environ-

mental scalars on litter and soil carbon turnover rates

are not related with nitrogen processes (Text S1), the

incorporation of nitrogen processes affects τE only via

its influences on τ′E. The nitrogen-induced reduction in

the ecosystem carbon storage capacity mainly resulted

from decreased NPP in forests and shrub land and

shortened τ′E in other biomes (Fig. 8). For example, the

large nitrogen-induced reduction in the ecosystem

carbon storage capacity of C3 (�34.5%) and C4 (�23.5%)

grassland resulted from the relatively large changes in

τ′E (�26.7% and �17.5%, respectively) with relatively

small decreases in NPP (�3.0% and �5.2%, respec-

tively). The incorporation of nitrogen processes had

small impacts on forest carbon storage capacity

(from �1.5% to �9.6%) because of its small impacts on

the forest τ′E (from �0.1% to �2.3%) and NPP

(from �1.5% to �5.5%) (Fig. 8b). According to Eqn (3),
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nitrogen regulates τ′E via affecting A, B, and C. As the

incorporation of the nitrogen cycle only slightly influ-

enced the B vector in nonforest biomes (Text S4 and S5),

its impacts on τ′E mainly stem from its influences on the

A and C matrices in this study. The incorporation of the

nitrogen cycle leads to more leaf and root carbon trans-

fers to the short-lived litter pool (metabolic litter; Text S4

and S5), and thus to a negative nitrogen effect on τ′E in all

biomes. The potential decomposition rates of soil organic

carbon in the C matrix were increased by the nitrogen

incorporation more in nonwoody than woody biomes

(Text S4 and S5), leading to a larger nitrogen impact on

τ′E in nonwoody thanwoody biomes (Fig. 8b).

Discussions

Traceability of differences in ecosystem carbon storage
capacity among biomes

Although many previous modeling studies have

reported great geographic variations in the simulated

ecosystem carbon storage across the globe (Cao &

Woodward, 1998; Ogle et al., 2010), there is no analytic

approach to mechanistically explain such spatial heter-

ogeneities. The framework introduced in this study

(Fig. 1) can trace the modeled ecosystem carbon storage

capacity into four components and thus help our

understanding of its differences among biomes in a

mechanistic way. In the CABLE model, for example, C3

grassland had a larger carbon storage capacity than C4

grassland, resulting from the longer ecosystem carbon

residence time (τE) in C3 than C4 grassland, even

though NPP was higher in C4 than C3 grassland

(Fig. 2). C3 grassland had a longer τE than C4 grassland

because of its smaller environmental scalar (ξ; Fig. 4-6)
even if the baseline carbon residence time (τ′E) was

shorter in C3 than C4 grassland (Fig. 3 and 4). The dif-

ference in the environmental scalar (ξ) between C3 and

C4 grassland was determined by temperature (ξT) but
not water (ξW) (Figs. 5 and 6). The smaller temperature

scalar (ξT) in C3 than C4 grassland (Figs. 5b and 6) is

due to the fact that C3 grassland is located in colder

areas than C4 grassland (Table 1, Fig. S4a). In this way,

we traced the different carbon storage capacity between

C3 and C4 grassland to temperature scalars and envi-

ronmental forcings. Such an analysis can be easily

applied to other biomes. Thus, the framework offers a

mechanistic approach to explain the geographic varia-

tions in modeled carbon storage capacity.

The framework that can mathematically decompose

the modeled carbon storage capacity into a few trace-

able components (Equations (2)–(5) and Text S3) is

based on the fact that those components of the carbon

cycle are simulated in the CABLE model as well as

many other models in a mutually independent manner.

For example, carbon influx (e.g., NPP) is simulated

independently from carbon residence time, and envi-

ronmental scalars (either the temperature or water

scalar) are modeled independently from carbon trans-

fer and partitioning coefficients or environmental forc-

ings [Eqns (1)–(5) and Text S1–S5]. Thus, the

framework of traceability can mechanistically attribute

differences in modeled carbon cycle to variations in

model structural components, which, to the best of our

knowledge, has not been developed in the literature.

The framework developed by Wang et al. (2011a)

attempted to explain differences in the modeled plant

biomass by its components but could not explain them

in mechanistic ways as our framework does. Neverthe-

less, our framework can generate small errors due to

asynchrony of seasonal variations in those traceable

components [Eqn (S7) and Figs S2–S4].
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Effects of incorporating the nitrogen cycle into land
models

Biogeochemical models have incorporated many

relevant processes, such as the nitrogen cycle and

dynamic vegetation, in the past decades in an attempt

to simulate carbon–climate feedback as realistically as

possible. Adding a new module to a land model usu-

ally triggers various impacts on existing carbon cycle

processes. Such impacts have been described, but, to

our knowledge, never rigorously evaluated. This study

uses this traceability framework to assess the impacts

of these added nitrogen processes on carbon storage

capacity (Fig. 8). Incorporating the nitrogen cycle into

the CABLE model reduces ecosystem carbon storage

capacity in all biomes in comparison with that in the

carbon-only model (Fig. 8a). In the nonforest biomes,

for example, the addition of nitrogen processes resulted

in the reduction in ecosystem carbon storage capacity

mainly by decreasing NPP in shrub land and via short-

ened τ′E in other nonwoody biomes (Fig. 8b). The

larger nitrogen-induced reductions in τ′E in those non-

woody biomes can be ascribed to more carbon transfers

from plant pools to short-lived litter pools (metabolic

litter pool; Text S4 and S5), and larger preset decompo-

sition rates of soil organic carbon (C matrix) in the cou-

pled nitrogen–carbon model than the carbon-only

model (Text S4 and S5). In this way, our traceability

framework can help examine how the incorporation of

the nitrogen cycle altered the carbon cycle of different

biomes and evaluate their relative importance in deter-

mining the carbon storage capacity.

The nitrogen cycle has been incorporated into several

global land models, such as the Princeton-Geophysical

Fluid Dynamic Laboratory (GFDL) LM3V (Gerber et al.,

2010), CLM-CN (Oleson et al., 2010), and O-CN models

(Zaehle et al., 2010), and the CABLE model (Wang et al.,

2010). Each model represents carbon–nitrogen coupling

in different ways. For example, the nitrogen demand of

plant growth is differently represented in these models

although all the models simulate nitrogen limitation of

plant growth when nitrogen availability cannot meet

plant nitrogen demand. The nitrogen demand equals

the nitrogen requirement to sustain the current growth

rate in the O-CN model (Zaehle et al., 2010); the maxi-

mal nitrogen requirement (as a product of maximal

nitrogen:carbon ratio and NPP allocated to each plant

pool) minus the plant resorbed nitrogen in the CABLE

model (Wang et al., 2010) and a fraction of the total

annual nitrogen demand for the previous year in the

CLM-CN model (Oleson et al., 2010). The different rep-

resentations of nitrogen demand will induce different

impacts on NPP in these models. Moreover, the incor-

poration of the nitrogen cycle can differently affect the

baseline carbon residence time (τ′E) in these models.

For example, the carbon transfer coefficients (A matrix)

are constant in the CLM-CN model (Oleson et al., 2010),

but vary with the nitrogen availability in other models.

When the nitrogen cycle is incorporated, more plant

carbon transfers to a short-lived litter pool in the O-CN

(Zaehle et al., 2010) and CABLE (Wang et al., 2010)

models whereas less litter carbon transfers to the recal-

citrant soil carbon pool in the LM3V model (Gerber

et al., 2010). Our traceability framework can help

evaluate the relative importance of those different

carbon–nitrogen coupling methods in influencing car-

bon storage capacities among models.

Potential applications of the framework for model
evaluation and improvement

Most biogeochemical models, e.g., CENTURY (Parton

et al., 1987), RothC (Coleman & Jenkinson, 1999), LPJ

(Sitch et al., 2003), and Biome-BGC (Potter et al., 1993),

share a similar structure for the carbon cycle with the

CABLE model. Thus, our framework not only can be

used to compare carbon storage capacity among biomes

as is done in this study but also facilitate model inter-

comparison, benchmark analysis, and data assimila-

tion.

Model intercomparison. Most of the model intercompari-

son studies have found that the ensemble means of

multiple model simulations fit observations best,

although variations among models are substantial,

leading to great uncertainties in model predictions

(e.g., Hanson et al., 2004). For example, Friedlingstein

et al. (2006) have compared climate–carbon cycle feed-

backs among 11 coupled climate–carbon cycle models,

and found a large range of climate impacts on the land

carbon storage. However, there is no effective approach

to trace such uncertainties to their sources. Our frame-

work has the potential to explain model variations in a

very simple way with a few traceable components. If all

the information of NPP, A, C, B and ξ [Eqn (1)] at

steady states is collected from different models in the

form of Text S1–S5, we can easily apply this traceability

framework to trace the model uncertainties to their

sources.

Benchmarking complex land models. Multiple observa-

tions are used as benchmarks to evaluate performances

of complex land models (Luo et al., 2012). Many statisti-

cal approaches, such as normalized mean absolute

error, the reduced v2 statistic, and Taylor skill (Schwalm

et al., 2010), have been developed to measure the mis-

matches of modeled carbon processes with multiple

observations. Besides the statistical approaches, the
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Carbon-LAnd Model Intercomparison Project

(C-LAMP) (Randerson et al., 2009) has developed a

scoring system for evaluating climate–carbon models by

using nine different metrics. However, most of those

approaches treated all metrics as equally important and

ignore the relative contributions of different metrics to

model performance. Our framework can evaluate the

relative importance of various processes (or model

components) in influencing carbon storage capacity.

The relative importance of various model components

as in Eqns (2)–(5) and Fig. 1 of this study can be used as

metrics for the carbon cycle to design weighting factors

for each of the processes (Luo et al., 2012). Thus, the

traceability framework described in this study could

make the benchmarking analysis more objective.

Data assimilation. Recently data assimilation has been

used to improve models and reduce uncertainties of

their predictions by systematically combining observa-

tions with the models (Luo & Weng, 2011; Weng & Luo,

2011; Zobitz et al., 2011). It can quantitatively project

the misfit between model and observations instead of

judging model performance by several given criteria.

However, a data assimilation system cannot include all

parameters and state variables because of some practi-

cal reasons, such as data availability and computational

requirements. As a consequence, presently data assimi-

lation techniques are usually implemented into a site-

level model for improving a few target variables, e.g.,

ecosystem CO2 exchange (Xu et al., 2006; Zhou et al.,

2010; Zobitz et al., 2011), but are difficult to implement

to improve the comprehensive carbon cycle of a global-

scale land model. Our framework can help isolate major

sources of model uncertainties in the four traceable

components (Fig. 1), and thus identify those compo-

nents with the largest contribution to the disagreement

between the model and observations. Then we can

focus our data assimilation on reducing uncertainties of

these components by collecting relevant data sets and

understanding uncertainties in associated parameters

and state variables. In this way, our framework can

compartmentalize the applications of data assimilation

techniques to those more uncertain model components.

Future research needs on traceability of the terrestrial
carbon cycle

Future research is needed to further develop this trace-

ability framework for the structural analysis of land

models. First, the framework presented in this study

does not decompose NPP into its traceable components

(Fig. 1) partly because many data sets are available

from observations for benchmarking modeled NPP

(Luo et al., 2012). However, NPP has been modeled in

various ways by different models, and a large uncer-

tainty of modeled NPP simulation still exists (Schaefer

et al., 2012). Thus, decomposing modeled NPP into a

few traceable components will be helpful for evaluating

and improving land models in the future. Second, as

the framework presented in this study is based on the

assumption of steady state (dXðtÞdt ¼ 0; Equation 1), it can-

not directly assess the uncertainty of model simulations

for transient dynamics of the terrestrial carbon cycle in

response to climate change (Rogelj et al., 2012) and dis-

turbances (Prentice et al., 2011). It is crucial to further

develop the traceability framework to decompose the

transient carbon cycle into a few traceable components.

As the framework separates the relative contributions

of NPP and carbon residence time to ecosystem carbon

storage, it can improve not only model evaluations but

also model usability and interpretation. For example,

we can assess relative costs and trade-off strategies of

carbon sequestration pathways to increase carbon stor-

age through either longer carbon residence times or

higher NPP, and find the best pathways to enhance car-

bon sequestration in different regions. In addition, the

framework can help us figure out how various pro-

cesses influence the ecosystem carbon storage capacity

through changes in NPP and carbon residence times.

For example, changes in nitrogen availability (e.g.,

nitrogen deposition and fertilization) mainly impact the

ecosystem carbon storage capacity through NPP in

woody biomes (forests and shrub land), but through

carbon residence times in other biomes (Fig. 8). Thus,

although the framework cannot evaluate the transient

terrestrial carbon cycle response to external climate

change and disturbances, it can help us better under-

stand the response mechanisms of the terrestrial carbon

storage capacity to future environmental changes.

To fully understand their performance in a transpar-

ent way, it is imperative to decompose complex land

models into traceable components. In this study, we

decomposed a global land model of coupled carbon–
nitrogen cycles into four traceable components. Specifi-

cally, we can trace the modeled ecosystem carbon

storage capacity (Xss) to (i) a product of net primary

productivity (NPP) and the ecosystem carbon residence

time (τE), the latter τE is further traced to (ii) the base-

line carbon residence times (τ′E) which are preset in a

model, (iii) environmental scalars (ξ), and (iv) environ-

mental forcings. The traceability framework has been

successfully applied to the CABLE model to help us

understand the modeled carbon storage capacity as

varying among biomes and as affected by nitrogen pro-

cesses. For example, C3 grassland had a larger carbon

storage capacity than C4 grassland, resulting from the

longer carbon residence time (τE) in C3 than C4 grass-

land because the C3 grassland is located in colder areas
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and thus has a smaller temperature scalar than C4

grassland. Incorporating the nitrogen cycle into the

CABLE model reduces ecosystem carbon storage capac-

ity in woody biomes mainly by decreasing NPP and via

shortening τ′E in nonwoody biomes. The traceable com-

ponents were mathematically defined from the first-

order, ordinary differential matrix equation [Eqn (1)]

developed by Luo et al. (2003). The matrix equation

becomes decomposable into traceable components

because those components are simulated in a mutually

independent manner [Eqns (2)–(5)]. Small errors in the

traceability framework (Fig. 7) arise from asynchrony

of seasonal variations in those components [Eqns (S1)–
(S11) and Figs. S2–S4].
The matrix equation [Eqn (1)] adequately describes

almost all of the observed carbon processes, such as lit-

ter decomposition and soil C dynamics in the real

world. These carbon processes have been represented

in almost all ecosystem biogeochemical models, and

integrated into Earth system models (Luo & Weng,

2011). As a consequence, our traceability framework

should be universally applicable to almost all land

models to mechanistically explain structural differences

in the modeled carbon cycle. Thus, this framework not

only can help understand variations in the modeled

ecosystem carbon storage capacity among biomes and

as affected by nitrogen processes, but also facilitate

model intercomparisons and model–data comparisons

to improve model performances through benchmark

analyses and data assimilation.
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