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ABSTRACT

Carbon (C) residence time is one of the key factors that determine the capacity of ecosystem C storage.

However, its uncertainties have not been well quantified, especially at regional scales. Assessing uncertainties

of C residence time is thus crucial for an improved understanding of terrestrial C sequestration. In this study,

the Bayesian inversion and Markov Chain Monte Carlo (MCMC) technique were applied to a regional

terrestrial ecosystem (TECO-R) model to quantify C residence times and net primary productivity (NPP)-

driven ecosystem C uptake and assess their uncertainties in the conterminous USA. The uncertainty was

represented by coefficient of variation (CV). The 13 spatially distributed data sets of C pools and fluxes have

been used to constrain TECO-R model for each biome (totally eight biomes). Our results showed that

estimated ecosystem C residence times ranged from 16.691.8 (cropland) to 85.9915.3 yr (evergreen needleleaf

forest) with an average of 56.898.8 yr in the conterminous USA. The ecosystem C residence times and their

CV were spatially heterogeneous and varied with vegetation types and climate conditions. Large uncertainties

appeared in the southern and eastern USA. Driven by NPP changes from 1982 to 1998, terrestrial ecosystems

in the conterminous USA would absorb 0.2090.06 Pg C yr�1. Their spatial pattern was closely related to the

greenness map in the summer with larger uptake in central and southeast regions. The lack of data or timescale

mismatching between the available data and the estimated parameters lead to uncertainties in the estimated

C residence times, which together with initial NPP resulted in the uncertainties in the estimated NPP-driven

C uptake. The Bayesian approach with MCMC inversion provides an effective tool to estimate spatially

distributed C residence time and assess their uncertainties in the conterminous USA.

Keywords: carbon residence time, carbon uptake, conterminous USA, inverse analysis, MCMC, terrestrial

carbon cycle, uncertainties

1. Introduction

The rising atmospheric CO2 concentration and the resultant

climate change may alter carbon (C) cycles of terrestrial

ecosystems (IPCC, 2007), which may, in turn, amplify or

dampen climate change (i.e., positive or negative C-climate

feedback) (Friedlingstein et al., 2006; Luo, 2007; Heimann

and Reichstein, 2008). To better understand responses of

terrestrial ecosystems to climate change, it becomes essential

to quantify ecosystem C uptake. The C-uptake capacity in

plant and soil pools is largely determined by both C

residence time and net primary productivity (NPP) changes

(Luo et al., 2003). The spatial patterns of NPP changes were

relatively well qualified by using ecosystem production

models with remote sensing techniques in North America

(Hicke et al., 2002). The former, C residence time, is the

length of time that a carbon atom can stay in a reservoir

from the entrance to the exit (Barrett, 2002; Luo et al.,

2003). Several methods have been used to estimate the C

residence time, such as C balance method via calculating
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ratios of C pools divided by fluxes (Vogt et al., 1996), time

series decomposition experiments (Powers et al., 2009), C

isotope tracing (Gaudinski et al., 2001) and inverse analysis

(Barrett, 2002; Luo et al., 2003; Xu et al., 2006). However,

uncertainties in estimated C residence time have not been

well quantified. If the issue of uncertainty is not adequately

addressed, C sink potentials cannot be fully understood and

policies to mitigate climate change based on the current

understanding of terrestrial C sequestration will fall short in

meeting targets of the Kyoto protocol. Therefore, quantify-

ing uncertainties of C residence times, especially at regional

scales, is crucial for an improved understanding of terres-

trial C uptake (Randerson et al., 1999; Barrett, 2002).

Most of the uncertainties studies have been conducted by

sensitivity analysis with a local design via changing one

parameter at a time while keeping the other parameters

constant (Kremer, 1983; Knorr, 2000; El Maayar et al.,

2002; Larocque et al., 2008) or using minimum and

maximum values from the literature (Hallgren and Pitman,

2000; Zaehle et al., 2005) in ecological modelling. Although

these approaches can identify uncertainty of a single

parameter (Kleijnen, 1998), they neglect possible interac-

tions between parameters and can not specify the confi-

dence intervals for parameter distributions, which are very

important in complex ecosystem models (Saltelli et al.,

2000). Highly correlated parameter sets and large confi-

dence intervals for parameter estimates would tend to

indicate equifinality (i.e., the optimal parameter set is not

uniquely defined) (Beven, 2006), and may increase the

uncertainties in model prediction as a result of high

variation in parameterisation (Schulz and Beven, 2003). In

addition, non-linearity of ecosystem models may introduce

considerable errors in the flux and pool estimates (Raupach

et al., 2005; Zhou et al., 2008).

Only a few studies have so far assessed stochasticity and

uncertainties of C residence time with inverse analysis

(Wang et al., 2001; Xu et al., 2006; Larocque et al., 2008).

For example, Xu et al. (2006) found that only three or four

of seven parameters were well constrained by six ecological

data sets collected from the Duke Free-Air CO2 Enrich-

ment (FACE) experiment while the other parameters were

unconstrained with large uncertainties. The uncertainties in

estimated parameters were propagated to model projec-

tions of C sink sizes. On regional and global scales,

uncertainties have usually been analysed by inversion of

measured atmospheric CO2 concentration in conjunction

with atmospheric transport models (Kaminski et al., 2002;

Rayner et al., 2005; Prihodko et al., 2008). The atmospheric

inversion can estimate regional C source/sink but cannot

resolve the spatial distribution of terrestrial C sink. This

is mainly due to the lack of information to enable an

orthogonal decomposition of the different types of C

source/sink and the uneven distribution of the measure-

ments for atmospheric transport models (Wang et al., 2001;

Wang and Barrett, 2003; Ahmadov et al., 2009; Pillai et al.,

2010, 2011). Inclusion of multiple sources of information

has the potential to improve parameter constraint and

reduce uncertainties (Barrett, 2002; Wang and Barrett,

2003; Xu et al., 2006).

Among various inverse techniques, Bayesian inversion

may be currently the most common approach to parame-

ter estimation and uncertainties analysis (Enting, 2002;

Larocque et al., 2008). It combines information from prior

knowledge, model structure and data to allow the simul-

taneous determination of all parameters. The Markov

chain-based Bayesian method can not only better account

for non-linearity in the model and correlations among

parameters, but also provide more robust estimates of

uncertainties in parameters and model predictions by

generating a probability distribution (Braswell et al.,

2005; Xu et al., 2006; Prihodko et al., 2008). The Bayesian

paradigm starts with prior probability distributions of

parameters and then assimilates measurements into

models to generate posteriori probability density functions

(PDFs) of model parameters and forecasted state variables

(Braswell et al., 2005; Knorr and Kattge, 2005; Xu et al.,

2006). PDFs may contain information on key uncertain

properties of climate change simulations (mainly CO2

concentration and temperature, Murphy et al., 2004) and

ecosystem responses to elevated CO2 (Xu et al., 2006).

A cumulative distribution function (CDF) has also been

presented to assess the uncertainties of dangerous anthro-

pogenic interference in model predictions of future climate

change (Mastrandrea and Schneider, 2004). On regional

and global scales, the Bayesian method, to our knowledge,

has not been used for uncertainty analysis with multiple

ecological data sets, although it has been applied to

constrain parameters and for uncertainties analysis in

biosphere models against atmospheric CO2 concentration

data (Kaminski et al., 2002; Rayner et al., 2005; Prihodko

et al., 2008).

The objectives of this study were to quantify C residence

time and NPP-driven ecosystem C uptake, and their

uncertainties in the conterminous USA. We first applied

the Bayesian probability inversion and Markov Chain

Monte Carlo (MCMC) technique to a terrestrial ecosystem

regional (TECO-R) model. The 13 spatially distributed

observational data sets of C pools and fluxes have been

used to constrain TECO-R model for each biome (totally

eight biomes) to generate posterior PDFs of 22 parameters.

C residence times of ecosystem and each pool were

estimated from these parameters for each of the eight

biomes. Second, standard deviation (SD) and coefficient of

variation (CV�SD/mean) of all estimated parameters and

C residence times were calculated from posterior PDFs to

represent their uncertainties. Finally, the propagation of
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parameter uncertainties to modelled ecosystem C uptake

was assessed.

2. Materials and methods

2.1. Model description

In this study, a TECO-R model was developed by combin-

ing the Carnegie-Ames-Stanford-Approach (CASA) model

(Potter et al., 1993; Field et al., 1995) with the Vegetation-

And-Soil-carbon-Transfer (VAST) model (Barrett, 2002) to

estimate the spatial patterns of C residence times and their

uncertainties as measured by SD and coefficient of variation

(CV�SD/mean) in the conterminous USA. The details of

the TECO-R model are described in Zhou and Luo (2008).

Here we provide only a brief overview.

In the TECO-R model, NPP was estimated by the CASA

algorithms from satellite observation and ground measure-

ments as below (Potter et al., 1993).

NPP ¼ fAPAR � PAR � e� � Te �We (1)

where fAPAR is a fraction of photosynthetically active

radiation (PAR) that is absorbed by vegetation and

determined by using a linear relationship between fAPAR

and satellite-data derived normalised difference vegetation

index (NDVI, Potter et al., 1993). Solar radiation is

converted to PAR by multiplying 0.5. o* is maximum

potential light-use efficiency, and To and Wo are tempera-

ture and moisture scalars, respectively (see Supplementary

material). The estimated NPP is allocated to plant tissues of

leaves, stems and roots. Dead leaf, stem and root materials

are transferred to respective litter compartments. Part of the

litter C is respired and the remainder is converted into soil

organic matter (SOM) pools. The relationships of C transfer

among pools were simulated by the VAST algorithms. The

first-order ordinary differential equations were applied to

model C dynamics in the litter and soil organic C (SOC)

pools (see Supplementary material, Barrett, 2002; Zhou and

Luo, 2008). The model consists of two aboveground

biomass pools, two litter pools, three root biomass pools

and three soil C pools. Root biomass and soil C pools were

divided into three soil layers (0�20, 20�50 and 50�100 cm)

as in Barrett (2002) and Zhou and Luo (2008), instead of

compartmentalised SOC according to decomposition rates

as in most of the models (e.g., CENTURY, Parton et al.,

1987; TECO, Luo et al., 2003). In this way, a one-to-one

relationship was ensured between model state variables

(especially for root biomass and SOC) and the respective

observations obtained from the literature, which do not

need extra mapping function as in Luo et al. (2003). We

assumed that impacts of disturbances on C residence time

were reflected by remote sensing data in NDVI. A schematic

diagram of the TECO-R model is shown in Fig. 1.

The C residence times in litter and SOC pools

sF ; sC ; sS1
; sS2

and sS3

� �
vary largely with both climatic

and biotic factors (Schimel et al., 1994). To specify the

biotic effects on the C residence times, eight vegetation

types (ENF, evergreen needleleaf forest; DBF, deciduous

broadleaf forest; MF, mixed forest; W, woodland; WG,

wooded grassland; S, shrubland; G, grassland; and C,

cropland) were set up in the conterminous USA based

on the 1-km land cover classification by Hansen et al.

(2000), and then the TECO-R model was used to estimate

the parameters for each biome, separately. To specify

the effects caused by spatial heterogeneity of climatic

factors, temperature (To) and moisture (Wo) scalars

were used to correct the site-specific C residence times

sF ; sC ; sS1
; sS2

and sS3

� �
: The corrected residence times

were called moisture and temperature corrected C resi-

dence times s�F ; s�C ; s�S1
; s�S2

and s�S3

� �
as follows:

s�k ¼ sk � ðWs � TsÞ; k ¼ F ; C; S1; S2; S3 (2)

The moisture scalar was estimated by monthly precipi-

tation, potential evapotranspiration and soil moisture

(Randerson et al., 1999). The temperature scalar was

obtained directly from temperature data, as shown in

the CENTURY soil-carbon model (see Supplementary

material, Parton et al., 1987).

The estimated parameters by MCMC technique in this

study included the maximum potential light-use efficiency

(o*), C allocation coefficients among pools and C residence

times in individual plant and soil pools, totalling 22

parameters for each of the eight biomes (see Table 1 for

the definition of all 22 parameters). Uncertainties of

individual parameters and ecosystem C residence times

were represented by SD and CV from Metropolis�Hastings

(M�H) simulation (see Appendix S1 in Supplementary

material). Ecosystem C residence times (tE) and their SD

were aggregated from the allocation of coefficients and

C residence time in the individual plant and soil pools

over the conterminous USA using the following formula

(Barrett, 2002):

sE ¼ aLðsL þ sF Þ þ gaW sF þ aW ðsW þ sCÞ
þ aR½1R1

ðsR1
þ sS1

Þ þ 1R2
ðsR2
þ sS2

Þ þ 1R3
ðsR3
þ sS3

Þ�
þ F1sS1

þ F2hS1
sS2
þ F3hS2

sS3

(3)

where

F1 ¼ hF ðaL þ gaW Þ þ hCaW

F2 ¼ aR1R1
þ F1

F3 ¼ aR1R2
þ hS1

F2

(4)

Ecosystem C uptake in the conterminous USA was esti-

mated in forward modelling by using maximum likelihood
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estimates (MLEs) of parameters and mean changes in

NPP from 1982 to 1998 as a C input by Hicke et al.

(2002). Propagation of parameter uncertainties to modelled

ecosystem C uptake was assessed through simulating C

uptake for all 40 000 samples of C residence times and

allocation coefficients from MCMC simulation and then

calculating SDs and CVs in the conterminous USA.

2.2. Data sources

In this study, 13 observed data sets were used for the

parameter estimation, including three NPP data sets (NPP

in leaves, stems and roots), five biomass data sets (one for

leaves, one for stems and three for roots in three soil

layers; 0�20, 20�50 and 50�100 cm), two litter mass data

set (fine and coarse litter mass) and three SOC data sets in

the three soil layers (0�20, 20�50 and 50�100 cm) for each

biome if any. Compared to the study by Zhou and Luo

(2008), we added coarse litter and more fine litter data

points. There were a total of 7828 observed data points,

which contained 175 data points for litter (vs. seven data

points in Zhou and Luo, 2008), 468 data points for NPP,

316 data points for biomass and 6869 data points for

SOC. Spatial distribution and the detailed information of

data points and their sources were documented in

Appendix S2 in Supplementary material. Auxiliary data

used in this study included: (1) the AVHRR-NDVI

continental subsets of 8 km spatial resolution from 1982

to 1999 available from the Data and Information Services

Center of Goddard Earth Science; (2) annual solar

radiation produced by the NASA/Global Energy and

Water Cycle Experiment with one-by-one degree spatial

resolution; (3) monthly precipitation and temperature

data sets with 4 km spatial resolution offered by the

Spatial Climate Analysis Service; (4) soil texture data

from State Soil Geographic Database (STATSGO) com-

piled by USDA Natural Resources Conservation Service;

and (5) 1-km spatial resolution land cover data, contain-

ing eight vegetation types in the conterminous USA,

derived from AVHRR using a decision tree classifier

(Hansen et al., 2000). All those auxiliary data sets were

resampled by ERDAS software with cubic convolution

Fig. 1. Schematic diagram of the regional terrestrial ecosystem (TECO-R) model for inversion analysis of carbon residence time. NPP,

which is modelled by maximum light-use efficiency (o*) (CASA model), is allocated to plant tissues (leaf qL, stem qW and root qRj
) based on

allocation coefficients (aL, aW, aR). Plant tissues enter into fine litter (qF), coarse litter (qC) and soil organic carbon pools (qS) through

litterfall. Decomposed litter releases part of the carbon to the atmosphere, and the rest transfers into the soil (uC, uF). Through mechanical

breakdown, part of the coarse litter becomes fine litter (h). To reflect the differences in soil profile, roots and soil organic carbon pools are

divided into three layers (0�20, 20�50 and 50�100 cm). Each pool has an associated carbon residence time, tk (k�1, 2, 3).

4 X. ZHOU ET AL.

http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0


methods to a common projection (Lat�Long Projection)

and spatial resolution (0.048) (Smith and Brown, 1997).

2.3. Parameter estimation and uncertainties analysis

In the study, a Bayesian probabilistic inversion approach

was employed in the TECO-R model to estimate C

allocation coefficients and C residence times for each

biome (a total of eight sets of parameters). A detailed

description of the Bayes’ theorem was given by Xu et al.

(2006) and McCarthy (2007). Below is a brief overview.

In the context of this study, we applied Bayes’ theorem

to the C cycling. Specifically, the posterior PDF p(cjZ) of
C allocation coefficients and C residence times can be

obtained from prior knowledge of parameters represented

by a prior PDF p(c) and information contained in 13 data

sets represented by a likelihood function p(Zjc). To specify

the biotic influences, Bayes’ theorem was applied for each

of the eight biomes (ENF, DBF, MF, W, WG, S, G and C).

Given one biome, we first specified the prior PDF p(c) by

giving a set of limiting intervals for all parameters with

uniform distribution (Table 1), and then constructed the

likelihood function p(Zjc) on the basis of the assump-

tion that errors in the observed data followed Gaussian

distributions. Parameter ranges were determined through a

combination of literature values, knowledge of the system

and prior information from Zhou and Luo’s (2008) study

for the optimal parameter values (Table 1). Initial C pools

were set in 1987 and estimated by the method used in Luo

et al. (2001) based on an initial steady-state C balance in

the TECO model and experimental data at the start of this

study. A partial likelihood function pi(Zjc) was specified

according to distributions of observation errors (e(t)) for

data set m:

piðZjcÞ ¼ exp � 1

2r2
m

XNm

n¼1

½ynm � ŷnmðxn; aÞ�2
( )

(5)

where constant sm
2 is the error variance of the mth data set,

ynm is the nth observed data point in the mth data set,

ŷnm(xn, a) is the modelled value that corresponds to the

observation ynm, Nm is the total data points in the mth

Table 1. Symbol and definition of parameters, their lower (LL) and upper limits (UL) and other constraints for inverse analysis. Unit is

gC MJPAR
�1 for o* and years for carbon residence times. Allocation and partitioning coefficients are dimensionless.

Symbol Definition Unit LL UL Other constraint

o* Maximum light-use efficiency g C MJPAR
�1 0.0 2.76

aL Allocation of NPP to leaves Dimensionless 0.0 1.0 aL�aW, not for grassland and cropland

aW Allocation of NPP to wood Dimensionless 0.0 1.0 aW�0 for grassland and cropland

aR Allocation of NPP to roots Dimensionless 0.0 1.0 aL�aW�aR�1

nR1
Allocation proportion of NPP for roots (0�20 cm) Dimensionless 0.0 1.0 nR1

�nR2
�nR3

nR2
Allocation proportion of NPP for roots (20�50 cm) Dimensionless 0.0 1.0

nR3
Allocation proportion of NPP for roots (50�100 cm) Dimensionless 0.0 1.0 nR1

�nR2
�nR3

�1

uF Carbon partitioning coefficient of the fine litter pool Dimensionless 0.0 0.5

uC Carbon partitioning coefficient of coarse litter pool Dimensionless 0.0 0.1 uC�0 for grassland and cropland

hS1
Carbon partitioning coefficient of SOC (0�20 cm) Dimensionless 0.0 0.1

hS2
Carbon partitioning coefficient of SOC (20�50 cm) Dimensionless 0.0 0.1

h Fraction of mechanical breakdown for coarse litter pool Dimensionless 0.0 0.1

tL Site specific carbon residence time of leaves Year 0.0 5.0 05tL51 for deciduous broadleaf forest,

grasslands and cropland

tW Site specific carbon residence time of wood Year 0.0 200.0 tW�tL, not for grassland and cropland

sR1
Site specific carbon residence time of roots (0�20 cm) Year 0.0 10.0 sR1

BsR2
BsR3

, sR1
55 for grassland and

cropland

sR2
Site specific carbon residence time of roots (20�50 cm) Year 0.0 20.0 tR2

55 for grassland and cropland

sR3
Site specific carbon residence time of roots (50�100 cm) Year 0.0 50.0 sR3

510 for grassland and cropland

s�F Moisture and temperature corrected residence time of

fine litter

Year 0.0 2.0

s�C Moisture and temperature corrected residence time of

coarse litter

Year 0.0 50.0 s�C �s�F , not for grassland and cropland

s�S1
Moisture and temperature corrected residence time of

SOC (0�20 cm)

Year 0.0 50.0 s�S1
Bs�S2

Bs�S3

s�S2
Moisture and temperature corrected residence time of

SOC (20�50 cm)

Year 0.0 50.0

s�S3
Moisture and temperature corrected residence time of

SOC (50�100 cm)

Year 0.0 100.0
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data set, xn is an auxiliary forcing vector that includes

NDVI, solar radiation, air temperature, precipitation and

soil texture in a spatial grid where the nth observation was

made; and a is a vector consisting of 22 parameters: a�{o*,

aL, aW, aR, nR1
, nR2

, nR3
, tL, tW, uF, uC, h, sR1

, sR2
, sR3

, s�F ,
s�C , s�S1

, s�S2
, s�S3

, hS1
, hS2

}, each of the parameters is defined

in Table 1. An integrated likelihood function p(Zjc), which
consists of M (�13) partial likelihood functions pi(Zjc), is
defined to measure the deviations between modelled and

observed values for all the data points in the 13 data sets as

follows:

pðZjcÞ ¼ exp �
XM

m¼1

1

2r2
m

XNm

n¼1

½ynm � ŷnmðxn; aÞ�2
( )

(6)

Therefore, with Bayes’ theorem, the PPDF of parameters is

given by

pðcjZÞ 1 pðZjcÞpðcÞ (7)

Since Bayes’ theorem was applied to each of the eight

biomes, eight sets of biome-specific values of parameter

vector, a, were obtained in the study.

To draw samples from p(cjZ), a M�H algorithm was

employed to construct a PPDF of C residence time and C

allocation coefficients on the basis of prior information of

model parameters, model structure and the data sets. The

M�H algorithm is a MCMC technique, which could obtain

high-dimensional PDFs of random variables via a sampling

procedure (Metropolis et al., 1953; Hastings, 1970; Gelfand

and Smith, 1990). For each biome, 40 000 samples were

generated by the five runs from the M�H simulation

with an acceptance rate of about 30�40% for the newly

generated samples when the five runs converged as indi-

cated by the G-R statistics (see Supplementary material).

Marginal distribution, MLEs, means, SD and CV of C

residence time and allocation coefficients were calculated

from simulated 40 000 samples to assess the uncertainties

of parameters (see Appendix S1 for a detailed descrip-

tion of the M�H algorithm, as well as an estimate of

maximum likelihood estimators (MLEs), means and

cross-correlations between parameters in Supplementary

material).

2.4. Carbon uptake and uncertainties analysis

The MLEs of parameter values estimated from M�H
simulation together with the corresponding C pool sizes in

the inverse analysis were used in forward modelling to

simulate ecosystem C uptake. In addition to C residence

time, NPP is another key factor that determines the capacity

of an ecosystem to absorb C (Luo et al., 2003). Hicke et al.

(2002) estimated that the averaged NPP increase was 1.83 g

C m�2 yr�1 (i.e., 0.5% per year) from 1982 to 1998 by

remote sensing in the conterminous USA but the trend in

NPP changes varied with ecosystems. We applied the actual

spatial pattern of NPP changes from Hicke et al. (2002) to

quantify C uptake for each spatial grid at a yearly time step.

Therefore, the spatial difference of C uptake potential was

caused by both the spatial pattern of C residence times and

NPP changes. In our study, to focus on these two factors

(i.e., NPP changes and C residence times) in influencing

C uptake, we assumed that impacts of disturbance and

environmental factors (e.g., temperature) on C uptake were

reflected by remote sensing data in NDVI.

Uncertainties of terrestrial C uptake were assessed by the

SDs and coefficients of variation (CVs). We used 40 000

samples of C residence times and allocation coefficients

estimated from M�H simulation as expressed by PPDFs

p(cjZ) for each biome to simulate ecosystem C uptake

and assess propagation of the parameter uncertainties in

forward modelling as described above. The forward model

simulation for ecosystem C uptake was made over 50 yr

from 1987 to 2036. The SDs and CVs were calculated

from the 40 000 data sets of ecosystem C uptake in the

conterminous USA.

3. Results

3.1. Comparison between modelled and observed

data sets

To evaluate the validity of the inverse analysis method,

it is important to compare the values between modelled

and observed data sets. This study used the 13 observed

multi-site data sets and multiple sources of information

to constrain the parameters for each biome (totally eight

biomes), which may reduce uncertainty. The TECO-R

model with the Bayesian inversion reasonably simulated

C fluxes and pools in the conterminous USA, which were

closely related to the corresponding observed data sets

(Fig. 2). There were a few cases where modelled values

deviated from observations. For example, the simulated

NPP in roots and stems, and root biomass in 0�20 cm

soil layer were largely underestimated compared to the

observed data (Fig. 2).

3.2. Estimated C residence times and allocation

coefficients

The histograms of 40 000 samples generated by the five

runs from the M�H simulation are shown in Fig. 3 for

ENF and in Fig. 4 for G, representing forest and non-forest

biomes, respectively, when the five runs converged as

indicated by the G-R statistics (�1, data not shown).

For all eight biomes, most of the parameters are nearly

Gaussian distributed but with considerable differences in
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Fig. 2. Comparisons between modelled and observed data lumped by each biome for 13 data sets. Biomes: ENF, evergreen needleleaf

forest; DBF, deciduous broadleaf forest; MF, mixed forest; W, woodland; WG, wooded grassland; S, shrubland; G, grassland; and C,

cropland. Unit with dimensions is not shown.
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their variability. Parameters o*, aL, aW, aR, nR1
, nR2

and nR3

were well constrained with steep peaks of frequencies

(Figs. 3 and 4). In contrast, parameters uF, uC, hS1
, hS2

, h

and s�F were constrained to some degree but with con-

siderably spread posterior PDFs. Other parameters contain

intermediate information on parameter constraint com-

pared to those well and loosely constrained (Figs. 3 and 4).

Several parameters (e.g., tW, s�C) were well constrained

by some biomes but not by others, probably due to the

limitation of available data.

In performing a simultaneous optimisation on 22 para-

meters, which provides an ensemble of parameter sets, it is

likely to have parameter correlations due to tradeoffs

between the parameters pairs. Our cross-correlation analy-

sis showed that more than 85% of correlations between

parameters, jcorrj, were below 0.2 and �90% were below

0.3 (Appendix S3 in Supplementary material). High jcorrj
values (�0.4) mainly resulted from equality constraints

(e.g., aL�aW�aR�1). In addition, allocation of NPP to

wood (aW) was directly related to C residence times of

wood (tW) and coarse litter (tC), resulting in high jcorrj
values with a range of 0.4�0.7 depending on the biomes.

The MLEs are the parameter values corresponding to the

peaks of their marginal distributions (Figs. 3 and 4). The

estimated maximum potential light-use efficiencies (o*)

varied largely with vegetation types (Fig. 5a), being high

in cropland (0.7190.20 g C MJPAR
�1 ) and being low in ENF

(0.2390.08 g C MJPAR
�1 ). The S has the largest variability

(CV�119%) with a o* value of 0.4790.56 g C MJPAR
�1 .

The o* values for DBF, G, MF, W and WG were

similar, ranging from 0.30 to 0.41 g C MJPAR
�1 (Fig. 5a).

Our estimated maximum potential light-use efficiency

of cropland was within the range from 0.41 to 0.94 g C

MJPAR
�1 given by Lobell et al. (2002).

Allocation coefficients of NPP to leaves, stems and roots

also varied with biomes (Fig. 5b). C allocation to leaves
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Fig. 3. Inversion results showing the histograms of 22 estimated parameters and cost function with 40 000 samples fromM�H simulation

for evergreen needleleaf forest (ENF). See Table 1 for parameter abbreviation. Unit with dimensions is not shown.
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was relatively higher for the cropland (79911%) and S

(60914%) than the other biomes, which had similar C

allocation coefficients from 42918% (G) to 52910%

(MF). The C allocation of NPP to stems ranged from

1298% (WG) to 23910% (MF). Accordingly, there were

relatively lower C allocation to roots for MF, S, and

cropland (20913 to 24910%) and higher C allocation for

G (58918%) and WG (4497%). For the two non-forest

biomes (G and cropland), which allocated C only to leaves

and roots, G allocated much more C into roots (58918%)

than cropland did (21911%). The results were similar to

the findings from Bradford et al. (2005), showing cropland

allocated 28% of NPP to roots, much lower than G.

Vegetation types did not significantly affect the allocation

coefficients of roots to three soil layers (0�20, 20�50 and

50�100 cm) (Fig. 5c).

In DBF, G and cropland (0.5090.27 to 0.6190.02 yr),

the C residence times of leave (tL) were much lower than

those in other biomes (1.5890.97 to 2.8291.22 yr, Fig. 5e).

However, the C residence times of wood (tW) did not vary

largely with biomes (78.8948.8 to 109.3952.4 yr) but

they appeared in high variability (CV�46�62%, Fig. 5g).
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Fig. 4. Inversion results showing the histograms of 17 estimated parameters and cost function with 40 000 samples fromM�H simulation

for Grassland. See Table 1 for parameter abbreviation. Unit with dimensions is not shown.
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The root residence times varied from 4.4692.60 to

5.3792.38 yr in top soil layer, 11.4491.23 to 12.3893.92

yr in middle soil layer and 27.12910.1 to 31.1910.3 yr in

deep soil layer for the forests, W and S (Fig. 5d). The G and

cropland had much lower root residence times for all

three layers than other biomes (Fig. 5d). The temperature-

and moisture-corrected C residence times of litter and

SOC showed considerable uncertainties with large SDs

Fig. 5. MLEs or means of estimated parameters for eight biomes. Error bars represent standard deviations (SDs) of parameters

calculated from 40 000 samples of M�H simulation. Parameters uS1 and uS2 were not shown due to their consistence between biomes

(0.0590.03). See Fig. 2 for biome abbreviations and Table 1 for parameter abbreviations.
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(Fig. 5e, g, h). The C residence times of fine litter (tF*) were

only well constrained for G, showing the lowest value

(Fig. 5e). The C residence times of coarse litter (tC*) were

relatively lower for DBF, MF and WG with a range from

11.198.8 to 13.9910.4 yr than those for ENF, W and S

(19.3911.9 to 25.7913.1 yr). The values of SOC residence

times ðs�S1
; s�S2

; s�S3
Þ were much higher than those of litter,

ranging from 7.4894.86 to 17.3910.3 yr for the top

soil layer, from 23.5910.7 to 32.8910.4 yr for the middle

soil layer, and from 56.7921.4 to 67.3918.8 yr for the

bottom layer, but they did not vary largely with biomes. C

partitioning coefficients ðhF ; hC ; hS1
; hS2

; and gÞ also did

not vary with biomes but with large variability (CV�50%).

3.3. Spatial patterns of ecosystem C residence times

The C residence time of the whole ecosystem varied highly

with locations (or ecosystems) in the conterminous USA,

ranging from about 10 yr in some cropland grids to 180 yr

in some S grids (Fig. 6a). However, most values fell

between 15 and 90 yr. The averaged C residence time of

the whole conterminous USA was 56.8 yr. The west regions

had higher C residence time, while the central and east

regions showed lower values. The SDs of the ecosystem C

residence time for each grid were shown in Fig. 6b, ranging

from 1 to 32 yr, with most values between 2 and 15 yr. The

averaged SD of ecosystem C residence time was 8.8 yr for

the conterminous USA. As shown by the coefficients of

variation (CV�SD/mean), large uncertainties appeared

in southern USA (CV�14�22%) and small uncertainties

in the central (CV�5�10%, Fig. 6c).

Among all eight biomes, the cropland had the lowest C

residence time (16.691.8, Fig. 7b) due to the lack of long

residence wood tissues and coarse litter. WG also showed

the relative low C residence time because of the low

allocation of wood tissue from NPP (40.598.5, Fig. 7a).

The ENF showed the highest C residence times of 85.9

years, probably due to the low temperature in this area.

The other biomes had C residence times between 55.999.7

and 72.194.1 yr. Along the latitude, C residence time

displayed a strong positive correlation (Appendix S4

in Supplementary material, R2�0.91), suggesting that

Fig. 6. Spatial patterns of ecosystem carbon residence times (a),

its standard deviation (SD, b) and coefficient of variation (CV�
SD/mean, c) in terrestrial ecosystems of the conterminous USA.
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temperature could be one of the most important factors in

influencing C residence times.

3.4. Carbon uptake in soil and ecosystems

When the actual, spatially heterogeneous NPP changes

from Hicke et al. (2002) was applied to each spatial grid in

the forwarding model, the estimated ecosystem C uptake

showed large variability with a range from �60 to 140 g C

m�2 yr�1 within the 50 yr. The southeast regions had

higher C uptake, possibly due to the relatively higher values

of both NPP increases and C residence times (Fig. 8a and

Appendix S5). The Central Plains also had high C uptake,

which may mainly result from the highest NPP increase in

the conterminous USA. But ecosystem C release occurred

in some southwest regions because of decreased NPP

(Fig. 8a and Appendix S5). The estimated total C uptake

in the conterminous USA was 0.2090.06 Pg C yr�1.

For each biome, the large C uptake appeared in ENF, MF,

cropland and G, while S did not contribute C uptake in

the conterminous USA (Fig. 9). Among the ecosystem C

uptake, soil contributed about 50% of C uptake. G and

cropland had the relatively higher proportions of soil C

uptake (51�82%) than forests and Ws (25�49%) (Figs. 8c

and 9).

The coefficients of variance (CVs) of ecosystem C uptake

were higher in central and eastern USA with a range from

50 to 80% than other regions from 0 to 40% (Fig. 8b).

Both high C residence times and large increases in NPP

may mainly lead to high variability in ecosystem C uptake

in these regions. The ENF, MF and cropland displayed

large uncertainties with high SDs (Fig. 9).

4. Discussion

The results from atmospheric inversion methods have

substantially improved our understanding on the dynamics

of the global and regional C cycle over several decades

(Kaminski et al., 2002; Rayner et al., 2005; Prihodko et al.,

2008). Meanwhile, the atmospheric inversion can be greatly

complemented by the application of multiple-constraint

data assimilation with ecological observations in predictive

understanding of ecosystem C uptake (Barrett, 2002; Wang

and Barrett, 2003). In this study, the multiple-constraint

approach with Bayesian inversion of a regional terrestrial

ecosystem model (TECO-R) worked well to optimise C

residence times and assess their uncertainties with SD and

CV. The method also provided information on parameter

correlations. Such information on uncertainties of C

residence time is crucial for understanding the degree of

confidence we can have on model predictions of the global

terrestrial C balance.

Fig. 8. The potential of ecosystems C uptakes (a), their

coefficient of variance (b) and proportion of soil to ecosystem C

uptake in the conterminous USA under the actual NPP increases

from Hicke et al. (2002). The positive value means C sink while the

negative value mean C source.
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4.1. Method comparisons on estimated carbon

residence times

Comparisons between modelled and observed data are

essential to evaluate the validity of the inverse analysis

method. When most of the modelled values were closely

related to the corresponding observed data, the TECO-R

model simulated the lower values for the NPP in roots and

stems, and root biomass in 0�20 cm soil layer compared to

the observed ones (Fig. 2). The large underestimation is

probably due to both model assumptions and observation

errors. The model assumed that stem and root allocation

coefficients depended on leaf allocation coefficients (aL�
aW�aR�1), and the residence times of roots were on a

scale of years. We allowed the model to search for root

residence times within ranges of 0�10, 0�20 and 0�50 yr in

three soil layers (0�20, 20�50 and 50�100 cm), respectively.

Generally, the root residence times of deep soil layers (20�
50 and 50�100) may be larger than those of soil surface.

The wide lower ranges (close to 0) for the two deep soil

layers may underestimate root residence times. On the

other hand, the observed root NPP and biomass were

estimated from a variety of methods (e.g., ingrowth cores,

minirhizotron and allometry; Jackson et al., 1996) and stem

NPP was usually indirectly estimated from diameters at

the breast height (DBH, DeLucia et al., 1999), possibly

resulting in large errors in different locations. In addition,

the tradeoff of estimated parameter values under the

integrated cost function for all data sets minimised the

total deviation possibly at expense of stem and root NPP.

Using Bayesian inversion technique in this study, most of

the estimated optimal C residence times were similar to

those from Zhou and Luo (2008) using generic algorithm

(GA), although there were the less observed data sets in

Zhou and Luo (2008) (i.e., no coarse litter and only seven

fine litter data points). C residence times of leaves for

forests and Ws ranged from 0.78 to 3.17 yr, which were

comparable to those estimated by observed stocks and

fluxes with 1.64 yr for Ws and 2.32 yr for forests (Cannell,

1982; DeAngelis et al., 1997). The C residence times of

wood ranged from 78.8 to 109.3 yr similar to those

estimated from C balance and radiocarbon dating methods

(Cannell, 1982; Turner, 1984; DeAngelis et al., 1997). The

estimated temperature- and moisture-corrected residence

times of fine litter were from 0.67 to 1.0 yr (Fig. 5), which

were very close to the means from meta-analysis by Silver

and Miya (2001) and Zhang et al. (2008). The estimated

residence times of coarse litter were from 5.0 to 25.7 yr

(Fig. 5), well within the range (2.3�33 yr) summarised from

coarse-wood decomposition experiments for deciduous and

coniferous species in the eastern USA (Todd and Hanson,

2003). The estimated C residence times of roots were

similar to those from the other two inverse analysis by

Genetic Algorithm (GA) in Australia and USA (Barrett,

2002; Zhou and Luo, 2008), but were much higher than the

experimental estimations (Gill and Jackson, 2000). The

discrepancy between modelling and experiments may result

from the differences of root representatives for soil layers,

time scales and the methods (Jackson et al., 1996). The

estimated residence times of SOC increased with soil depth,

having a range of 5.53�13.32 yr for the top soil layer,

20.35�36.73 yr for the middle soil and 55.01�75.34 yr for

the bottom soil (Fig. 5), which were comparable from only

a few studies at different soil layers (Jenkinson et al., 1999;

Fontaine et al., 2007). However, most of the experimental

studies showed larger ranges from several years to thou-

sands of years when only the surface soil or one combined

soil layer was used (Jenkinson et al., 1999; Garten and

Hanson, 2006).

To facilitate parameter estimation in this study, we

divided SOC and root biomass into three soil layers

(0�20, 20�50 and 50�100 cm) as by Barrett (2002) and

Zhou and Luo (2008), instead of compartmentalised SOC

(i.e., fast, slow and passive) according to decomposition

rates as well as fine root and coarse root compartments

in most of the models (e.g., CENTURY, Parton et al.,

1987; TECO, Luo et al., 2003). In this way, a one-to-one

relationship was ensured between modelled and observed

root biomass and SOC, and the models do not need extra

mapping functions as by Luo et al. (2003). In the process-

based models, the conceptual compartmentalised SOC

generally cannot be measured directly. The experimentally

extractable soil C pools (e.g., labile and the remaining

recalcitrant pools) cannot simply represent the conceptual

C pools in the mechanistic models. This highlights the need

for a comprehensive representation of belowground C-

pools in the process models (including deep soil C) in order

to achieve unbiased parameter estimates (Barrett, 2002).

The relatively fast turnover of ecosystem C appeared in

the east and central regions, largely resulting from the

cropland and G due to the lack of long-residence wood

tissues and coarse litter (Figs. 6a and 7b). In the west

regions, forests andWs are in the mountainous regions with

high residence times (Fig. 7b). In addition, our results that C

residence times correlated positively with the latitude

(Appendix S4, R2�0.91) suggested that temperature may

be a key factor in influencing C residence time. The

estimated aggregate ecosystem C residence time in the

conterminous USA was 56.8 yr, which represented an upper

limit of the global average C residence time (26�60 yr)

as estimated by various experimental and modelling

approaches (Raich and Schlesinger, 1992; Randerson et al.,

1999; Thompson and Randerson, 1999), but was lower

than the estimation by Barrett (2002) in Australia (78 yr).

The relatively high ecosystem C residence time in the

conterminous USA compared to the global average one
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mainly resulted from the inclusion of deep C in the soil

profile (0�100 cm).

4.2. Uncertainties in C residence times

Unlike the methods of uncertainties analysis by varying

one parameter at a time (Knorr, 2000; El Maayar et al.,

2002), the probabilistic inversion can estimate the prob-

ability of uncertain parameters and state variables

(McCarthy, 2007). The Bayesian approach constructs

parameter distributions and assesses parameter uncertain-

ties by quantifying MLEs, means, SDs, and CVs, and offers

much richer information contained in data, model structure

and prior knowledge on parameters than the deterministic

inversion (Raupach et al., 2005; Xu et al., 2006). Our

results showed that posterior PDFs of most of the para-

meters are nearly Gaussian distributed but with consider-

ably different variability, which were largely improved in

comparison with the prior uniform distribution (Figs. 3

and 4). The MLEs of relatively well constrained parameters

o*, aL, aW, aR, nR1
, nR2

and nR3
were equivalent to optimal

estimates from deterministic inversion using the least

squares method (Tarantola, 1987; Raupach et al., 2005),

which are generally in good agreement with those by GA

in Zhou and Luo (2008). A very large set of various

observations, especially NPP and biomass in leaves, stems

and roots, is advantageous to constrain these allocation

coefficients of C from NPP.

The parameters uF, uC, hS1
, hS2

, h and s�F were con-

strained to some degree but with considerably spread

posterior PDFs. Their large uncertainties were probably

due to either the lack of experimental data or the mismatch

of timescales between the available data and the parameters

to be estimated. For example, the lack of microbial

biomass, respiration and other data probably resulted in

low constraints of parameters related to litter and SOC

dynamics (Xu et al., 2006). Because of the mismatch

between timescales for observation of vegetation change

and parameters, little is known about the dynamics of

terrestrial ecosystems over long temporal scales (Wiegand

and Milton, 1996). In addition, parameter correlations

(e.g., aW�tW or tC) may also result in large uncertainties in

C residence times (Appendix S3). Xu et al. (2006) found

that reduced measurement errors led to substantially

reduced uncertainties of estimated parameters, suggesting

that error magnitudes in observations may be one of

the factors in determining parameter uncertainties. Prior

information about parameter space has been suggested to

be another source of parameter uncertainties (Spear et al.,

1994). When we expanded prior ranges of these parameters

(i.e., increased upper limit), their histograms, however, did

not show statistically significant changes, similar to the

finding from Xu et al. (2006).

Parameters sR2
, sR3

s�S1
, s�S2

and s�S3
were relatively well

constrained by 13 data sets (Figs. 3 and 4), probably due to

a large number of data sets on roots and soil C (Appendix

2�3). The parameters representing long C residence times

from deep old SOC pools (i.e., s�S2
and s�S3

) can be further

constrained by long-term observations or data sets that

characterise long-term processes, such as those from C

isotope studies (Randerson et al., 2002; Scholze et al.,

2008).

Ecosystem C residence times in the conterminous USA

showed large spatial variability and uncertainties (Figs.

6b, c). Uncertainties of ecosystem C residence times as

indicated by CV were high in southern USA with a range of

14�22% and low in the central area (6�12%, Fig. 6c). The

spatial distribution of uncertainties in the conterminous

USA may be attributable to either the lack of experimental

data or the mismatch of timescales between the available

data and the estimated parameters as well as environmental

conditions. CVs of ecosystem C residence times were

similar with a range from 17.2 to 21.0% except G (6.0%)

and cropland (10.9%, Fig. 7b). Low uncertainties of C

residence times in the G and cropland greatly resulted from

availability of large volumes of data and relatively evenly

distributed environmental conditions over space, particu-

larly in croplands, compared to those in forests and W.

4.3. Estimated ecosystem C uptake and its

uncertainties

Driven by NPP changes from 1982 to 1998 as estimated by

Hicke et al. (2002), total C uptake estimated by the Bayesian

approach was 0.2090.06 Pg C yr�1 in the conterminous

USA. The estimate is comparable to the one by Houghton

et al. (1999) with a value of 0.15�0.35 Pg C yr�1 based on

the analysis of historical data on land use and land cover

changes as well as inventory estimate (0.30 Pg C yr�1,

Birdsey and Heath, 1995). However, this estimate is larger

than an ensemble of three models (Biome-BGC, Century

and TEM) with a value of 0.08 Pg C yr�1 (Schimel et al.,

2000) but smaller than C sink from atmospheric inversion

with a range from 0.30 to 0.58 Pg C yr�1 (Pacala et al.,

2001).

Ecosystem C uptake is largely determined by both

ecosystem C residence time and C input (Luo et al., 2003).

Our modelling results show that both forest and non-forest

ecosystems are potentially important to sequester C in the

conterminous USA (Fig. 8a and 9). The spatial pattern of

ecosystem C uptake was closely related to the greenness

map from U.S. Geological Survey (USGS) in the summer

(http://ivm.cr.usgs.gov/). The most important forests for C

uptake were ENF and MF, which were located in the

southeast regions. This may be attributed to the young

14 X. ZHOU ET AL.

http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://www.tellusb.net/index.php/tellusb/rt/suppFiles/17223/0
http://ivm.cr.usgs.gov/


stand age of pine plantations (Sheffield and Dickson, 1998)

and the immature hardwood forests (Brown et al., 1997).

Currently, many of the pine stands in southern states have

large potentials to increase productivity with intensive

management (Allen et al., 1990). Interestingly, our results

suggested that the substantial amounts of carbon (42% of

the total) were sequestered in the G and cropland, which

was comparable to the study by Pacala et al. (2001) with

atmospheric inverse analysis. The substantial C uptake in

the G and cropland largely resulted from their large areas,

the Conservation Reserve Program (i.e., conversion of

unproductive croplands to perennial G), expanded uses of

no-till agriculture and improved productivity due to new

plant varieties and increased fertiliser inputs (Houghton

et al., 1999; Pacala et al., 2001; Lobell et al., 2002). In

addition, disturbance and land management are important

components of terrestrial C balance. In this study, we

simply assumed that impacts of disturbance, land manage-

ment and environmental factors on C residence time and

uptake were reflected by remote sensing data in NDVI.

It is evident that large uncertainties remain in our

assessment of terrestrial C uptake on the regional and

global scales (Schimel et al., 2000; Pacala et al., 2001). Our

results show large uncertainties with high CV in continental

C storage, especially in central and eastern USA (Fig. 8b).

The large uncertainties in C uptake could result from high

spatial variability in initial NPP values, C residence times,

or both (Fig. 6a and Appendix S5). To separate sources of

uncertainties, we applied a uniformed NPP increase of 1.83

g C m�2 yr�1 (i.e., the averaged NPP increase in the

conterminous USA from Hicke et al. (2002)) to quantify

uncertainties of ecosystem C uptake. Our results suggest

that the main source of uncertainties in C uptake was from

spatial variability in C residence times (data not shown). In

addition, the initial condition of NPP was another source

of uncertainties. In the central and eastern USA, high

variability in initial NPP and median variability in ecosys-

tem residence time were combined to contribute to the large

uncertainties (Fig. 7a). Therefore, uncertainties of ecosys-

tem C uptake were strongly influenced by variability in C

residence times and initial NPP values. Uncertainties in C

uptake also varied with biomes (Fig. 9). The ENF, MF and

cropland thus displayed larger uncertainties than the other

biomes (Fig. 9). Besides those reasons discussed above,

one additional cause of the high uncertainties in forest C

uptake is scarce observations in mountainous regions

where forests grow.

In this study, the 40 000 samples of posterior parameters

were used to assess the regional uncertainty in terrestrial C

uptake for the conterminous US. However, it is impractical

with such a large size of ensemble simulations to assess the

uncertainty in the global models (e.g., Community Land

Model - CLM), especially with 3-D earth system models.

To reduce the computational cost for assessing the regional

uncertainty, we randomly selected 5000 samples to test

whether a subset of posterior parameters could represent all

parameters or not. We found that the results from these

two sets of posterior parameters were similar (data not

shown). We can thus use a subset of posterior parameters

to reduce the computational cost in assessing the uncer-

tainty for global models.

This study focuses on the uncertainties in process-based

terrestrial ecosystem models due to parameter uncertainties,

and aims at providing quantitative information about the

confidence in model results. Future steps toward a quanti-

tative assessment of uncertainties in modelling terrestrial

ecosystem dynamics will need to account for uncertainties

related to model assumptions and to consider driving

factors of climate change such as warming, elevated CO2,

altered precipitation, and land use change and N deposi-

tion. In addition, investigation andmapping of disturbances

are important to quantify C uptake in the conterminous

USA, particularly in the human-impacted ecosystems.

Long-term remote-sensing data sets may be important to

provide estimates of disturbance that could also be as-

similated into a model. An important improvement in

our understanding of uncertainties might be obtained

by the combination of long-term experiments with well-

documented time series data, such as net ecosystem

exchange by eddy covariance, NPP, plant biomass, SOC

and by the integration of the results with ecosystem

modelling in a multiple-constraint framework.

5. Conclusions

Terrestrial ecosystems play a significant role for CO2

uptake in global C cycling budget. The capacity of

ecosystem C storage is largely determined by C residence

time in plants and soil. However, C residence time is a large

source of uncertainties in the present understanding of the

global C cycle. To reduce its uncertainties and improve

prediction from C-cycle models, quantifying C residence

times and assessing its uncertainties becomes paramount.

In this study, we applied Bayesian approach with a M�H
algorithm to a regional model (TECO-R) to quantify

optimal C residence times and assess their uncertainties

with marginal distribution, SDs and CVs in the contermi-

nous USA based on 13 data sets. Our results showed that

most of the parameters are nearly Gaussian distributed but

with considerably different variability. The parameters with

large variability may be related to low availability of

experimental data or a mismatch of timescales. The cross-

correlations of parameters (corr) illustrated that more than

85% of the jcorrj values were below 0.20, and the high

jcorrj values mainly resulted from equality constraints.

With MLEs of estimated parameters, the estimated average
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ecosystem C residence time was 56.898.8 yr with a range

from 16.691.8 (cropland) to 85.9915.3 yr (ENF). Eco-

system C residence times and SDs have highly spatial

heterogeneity and their values depend on vegetation types

and climate conditions. Large uncertainties (i.e., high CV)

in estimated C residence times appeared in the southern

and eastern USA. Under the driving force of NPP changes

from 1982 to 1998, the forward modelling estimated that

terrestrial ecosystems in the conterminous USA would

absorb about 0.2090.06 Pg C yr�1. Uncertainties of

ecosystem C uptake were strongly influenced by variability

in C residence times and initial NPP values. The Bayesian

approach developed here is powerful for assimilating

multiple source of information to constrain parameter

estimation and assess uncertainties in model prediction.
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