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Abstract Global ecosystem models may require

microbial components to accurately predict feedbacks

between climate warming and soil decomposition, but

it is unclear what parameters and levels of complexity

are ideal for scaling up to the globe. Here we

conducted a model comparison using a conventional

model with first-order decay and three microbial

models of increasing complexity that simulate

short- to long-term soil carbon dynamics. We focused

on soil carbon responses to microbial carbon use

efficiency (CUE) and temperature. Three scenarios

were implemented in all models: constant CUE (held

at 0.31), varied CUE (-0.016 �C-1), and 50 %

acclimated CUE (-0.008 �C-1). Whereas the con-

ventional model always showed soil carbon losses

with increasing temperature, the microbial models

each predicted a temperature threshold above which

warming led to soil carbon gain. The location of this

threshold depended on CUE scenario, with higher

temperature thresholds under the acclimated and

constant scenarios. This result suggests that the

temperature sensitivity of CUE and the structure of

the soil carbon model together regulate the long-term

soil carbon response to warming. Equilibrium soil

carbon stocks predicted by the microbial models were

much less sensitive to changing inputs compared to the

conventional model. Although many soil carbon

dynamics were similar across microbial models, the

most complex model showed less pronounced oscil-

lations. Thus, adding model complexity (i.e. including

enzyme pools) could improve the mechanistic repre-

sentation of soil carbon dynamics during the transient

phase in certain ecosystems. This study suggests that

model structure and CUE parameterization should be

carefully evaluated when scaling up microbial models

to ecosystems and the globe.
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Introduction

Soil carbon (C) is the largest organic C pool in

terrestrial biosphere (Jobbagy and Jackson 2000).

Microbial communities are the primary drivers of soil

organic matter (SOM) decomposition, and climate

change effects on microbial physiology can affect the

rates of C cycling processes (Bradford et al. 2008;

Malcolm et al. 2008). Therefore, accounting for the

response of microbial communities to environmental

parameters in Earth system models may be needed to

adequately predict feedbacks between global change

and the decomposition of soil organic C (Friedlingstein

et al. 2006; Thornton et al. 2009). Recently, model

simulations of global soil C stocks were substantially

improved by integrating microbial processes (Wieder

et al. 2013). Such microbial models hold promise for

improving predictions of climate effects on soil

decomposition, yet the regulatory mechanisms gov-

erning microbial processes remain a major gap in

understanding (Ågren and Wetterstedt 2007).

Extracellular enzymes produced by microbes are

responsible for the degradation of complex organic C

that is ultimately taken up by microbial biomass and

released to the atmosphere as CO2 (Sinsabaugh et al.

1991; Schimel and Weintraub 2003). In contrast to the

assumptions of conventional first-order decomposi-

tion models (Parton et al. 1988), SOM decomposition

rates depend on not only the size of the soil C pool but

also on the size and composition of the decomposer

microbe pool (Schimel and Weintraub 2003). As

climate changes, soil carbon stocks will likely depend

on sequestration and loss pathways regulated by

microbial physiology (Schimel 2013), and first-order

models may have difficulty simulating climate

responses over short time scales (Manzoni and Porp-

orato 2007; Lawrence et al. 2009). Yet even with

recent advances in microbial models, nearly 50 % of

the spatial variation in global soil C stocks is still

unexplained (Wieder et al. 2013). Therefore, identi-

fying accurate and simple models at microbial to

ecosystem scales is essential for improving global soil

models.

Microbial growth depends on carbon use effi-

ciency (CUE), defined as the fraction of C uptake

allocated to growth (del Giorgio and Cole 1998). In

general, CUE decreases as temperature increases,

but terrestrial decomposers show variable CUE

responses to temperature (Manzoni et al. 2012).

CUE also varies with decomposer group and

substrate chemistry (Six et al. 2006; Frey et al.

2013). This variation implies that CUE responses

may change across environmental gradients. For

example, CUE acclimation under warming can

explain declines in soil respiration, microbial bio-

mass, and enzyme activity following an ephemeral

increase in soil respiration (Allison et al. 2010;

Zhou et al. 2012). In the longer term, adaptive

mechanisms that make a microbial community more

efficient at decaying stable SOM could enhance the

positive feedback between soil and climate (Frey

et al. 2013). However, conventional models that

assume first-order decay during SOM decomposition

do not include these mechanisms (Todd-Brown et al.

2012). As a key variable in microbial function,

parameterizing CUE and its response to temperature

is essential for predicting soil responses to climate

change (Luo et al. 2001; Bradford et al. 2008).

Recently, several microbial models have been

developed to simulate warming effects on SOM

decomposition (Allison et al. 2010; German et al.

2012; Wang et al. 2013a). These models are similar in

basic structure and key biogeochemical processes but

differ in model complexity and reference temperature.

Although such models are now being used at the

global scale (Wieder et al. 2013), there have been few

efforts to compare model structures and behaviors

relevant to this scaling process. Specifically, we asked

how microbial model predictions change with increas-

ing model complexity, and whether these predictions

differ fundamentally from models with a conventional

structure. As much as possible, we standardized

parameters across four focal models and compared

their predictions for soil C in response to temperature

variation under three CUE scenarios. We hypothe-

sized that model predictions would vary widely based

on CUE and its temperature response. We also

expected that the magnitude of soil C response would

be damped in models with more C pools. This type of

model comparison can help identify the fundamental

microbial mechanisms regulating soil responses to

warming and the appropriate level of mathematical

complexity for future microbial models (Todd-Brown

et al. 2012).
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Model structures

We compared microbial models from German et al.

(2012), Allison et al. (2010) and Wang et al. (2013a)

referred to here as GER, AWB, and MEND, respec-

tively. We also analyzed the conventional model

described in Allison et al. (2010) and referred to here

as CON (Fig. 1). The CON model includes two soil C

pools and a microbial C pool that produce CO2

through first-order decay, similar to structures used in

current Earth system models (Todd-Brown et al.

2012). The differential equations underlying all four

models are given in ‘‘Appendix 1’’.

The microbial models share a similar structure

characterized by dependence of soil C fluxes on

microbial biomass pools (Fig. 1). GER is the simplest

microbial model with a single soil organic C (SOC) pool

whose decomposition rate depends on microbial bio-

mass C (MBC). AWB has two additional pools:

extracellular enzyme C (ENZC) and dissolved organic

C (DOC). DOC is produced from SOC as a function of

ENZC, and MBC takes up DOC and produces ENZC.

MEND is the most complex model with SOC divided

into particulate (POC) and mineral organic C (MOC),

and ENZC divided into particulate (EP) and mineral

enzymes (EM). MEND also includes a mineral-

adsorbed phase of DOC (i.e. QOC) regulated by

temperature-dependent (Arrhenius) adsorption–desorp-

tion kinetics.

In all microbial models, C inputs enter the SOC

and/or DOC pools at a constant rate. SOC decompo-

sition and DOC uptake follow the Michaelis–Menten

equation (Eq. 1), and the maximum reaction rate and

half saturation constant follow Arrhenius temperature

dependence, which we express here in the form of

Eq. 2,

YðTÞ ¼ VðTÞ � EB � C

KðTÞ þ C
ð1Þ

VðTÞ ¼ VðTrefÞ � exp �Ea

R

1

T
� 1

Tref

� �� �
ð2Þ

where Y(T) is the C flux for SOC decomposition or

DOC uptake; V(T), EB, C, and K(T) denote the

maximum reaction rate, enzyme or microbial biomass,

substrate concentration, and half saturation constant,

respectively; V(Tref), Ea, R, and T denote the maxi-

mum reaction rate at reference temperature (Tref),

energy of activation (kJ mol-1), gas constant

(8.314 J mol-1 K-1) and simulation temperature

(Kelvin), respectively. The half saturation constants

also follow an Arrhenius relationship with temperature

(Eq. 2). The original version of AWB used a linear

relationship, but we used the Arrhenius relationship

here to make the models more comparable.

In all three microbial models, C is lost through

growth respiration dependent on CUE following

uptake of organic C. MEND also includes a separate

(a)

(c) (d)

(b)Fig. 1 Model structures of

a CON, b GER, c AWB and

d MEND as modified from

Allison et al. (2010) (CON,

AWB), German et al. (2012)

(GER) and Wang et al.

(2013a) (MEND).

Abbreviations are given in

Table 1
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term for maintenance respiration with Arrhenius

temperature dependence (Wang and Post 2012). All

models assume that carbon use efficiency (CUE, EC)

varies with temperature based on a linear relationship

(Devevre and Horwath 2000):

ECðTÞ ¼ EC;ref þ m� ðT � Tref Þ ð3Þ

where ECðTÞ; EC;ref ; and m denote the CUE at

simulation temperature T, the reference temperature

(Tref), and the temperature response coefficient (�C-1),

respectively.

Aside from their structures, the models in our

analysis also differ in parameters (Table 2 in Appen-

dix). If the same parameter was included in multiple

models, we used the parameter values from Wang

et al. (2013a) to make model predictions more

comparable. For unique parameters, we generally

used parameter values given with the published

version of the model. Because we hypothesized that

the models would be particularly sensitive to changes

in CUE, we ran the models under three CUE scenarios.

In the ‘‘constant CUE’’ scenario, m = 0, such that

CUE was constant at 0.31 under different tempera-

tures. This CUE is close to the value of 0.30 recently

suggested for terrestrial ecosystems (Sinsabaugh et al.

2013). In the ‘‘varied CUE’’ scenario, m =

-0.016 �C-1, as in Allison et al. (2010). Finally, the

‘‘acclimated CUE’’ scenario mimics 50 % thermal

acclimation of microbial physiology with m =

-0.008 �C-1. All scenarios used Tref = 20 �C and

EC,ref = 0.31. CON does not include an explicit CUE,

but the coefficients that specify partitioning of fluxes

into CO2 versus C pools are analogous. Therefore, we

applied the CUE scenarios to CON by setting these

partition coefficients equal to the CUE values from

each scenario.

To test model sensitivities to temperature and CUE

scenario, we analyzed C pools and CO2 efflux at

equilibrium and during the transient phase following

temperature increase. Equilibrium pool sizes and

efflux were determined analytically by solving the

differential equations for each model at steady state

(‘‘Appendix 1’’). Transient dynamics were simulated

following perturbation of the equilibrium model state

at 20 �C under constant, varied, and acclimated CUE

scenarios. Simulations were run for 100 years at

25 �C, representing 5 �C warming. By definition,

CO2 efflux must always return to the equilibrium value

(equal to inputs) because respiration is the only output

flux in these models. We report relative changes (%) in

C pool sizes and CO2 efflux compared to equilibrium

values at the reference temperature under different

CUE scenarios and between models.

Because we are ultimately interested in how model

predictions will differ under climate change, we

conducted a detailed temperature sensitivity analysis.

Warming can induce two opposite effects on SOC

decomposition in microbial models. First, temperature

increase enhances maximum reaction rates for SOC

decomposition and DOC uptake by microbes (Eqs. 1

and 2). Second, warming decreases CUE which then

reduces microbial biomass and enzyme production.

Because MBC or ENZC is a controlling variable in

Eq. 1, the decrease in CUE due to warming could act as

negative feedback on SOC decomposition and DOC

uptake. That is, there may exist a threshold temperature

at which the decline in microbial biomass exactly offsets

the positive effect of warming on C decomposition and

uptake. We determined this threshold temperature in

both models at steady state across a range of m values.

Results

Soil decomposition dynamics at steady state

Under the reference temperature (i.e. 20 �C) and

parameterization, steady state C pool sizes differed

somewhat between models (Table 1). CON and AWB

had similar SOC (33.3 vs. 37.8 mg C g-1 soil) with

more SOC in MEND and less in GER. MBC was similar

in all three microbial models (0.25–0.26 mg C g-1

soil), but substantially lower in CON. DOC was similar

in AWB and CON (0.03–0.04 mg C g-1 soil) but

nearly fivefold greater in MEND. ENZC was only

0.0014 mg C g-1 soil and almost identical in AWB and

MEND. MOC and POC pools in MEND were about 85

and 13 % of SOC, respectively, with the remaining

pools accounting for\2 % of SOC; QOC was 5.4 times

DOC at steady state.

The CON model showed consistent declines in

SOC, DOC, and MBC pools with increasing temper-

ature across all CUE scenarios, which contrasts with

the range of responses predicted by the microbial

models (Fig. 2). Most steady state pools in the

microbial models changed with temperature, with

the direction of change depending on the CUE

scenario and model (Fig. 2). However, DOC and

70 Biogeochemistry (2014) 119:67–84
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QOC temperature responses in MEND were similar

across all CUE scenarios (Fig. S1). Subsequently, we

present the changes in each specific C pool with

temperature under each CUE scenario and across the

four models. The results below are presented in Fig. 2

and Fig. S1 unless otherwise noted.

SOC: Under constant CUE, SOC declined with

increasing temperature in all models but with greater

relative changes in AWB and MEND than in CON and

GER at lower temperatures (Fig. 2). Under varied and

acclimated CUE scenarios, SOC response to temper-

ature differed between CON and the microbial models

(Fig. 2). In CON, SOC always monotonically

decreased with increasing temperature. In the micro-

bial models, equilibrium SOC declined with increasing

temperature to a point but then increased again. This

point, or temperature threshold, was higher in GER

than in the other microbial models and increased with

greater acclimation of CUE (Fig. 3). Under varied

CUE, minimum SOC in AWB and MEND occurred at

1.45 and 0.90 �C, corresponding to CUEs of 0.61 and

0.62, respectively. The temperature threshold for GER

under the varied CUE scenario was 7.95 �C (corre-

sponding CUE = 0.50). Under acclimated CUE, SOC

declined with temperature in AWB and MEND up until

thresholds of 19.15 and 18.65 �C (CUE = 0.317 and

0.321, respectively), whereas the threshold in GER

under this scenario was 21.80 �C (CUE = 0.236).

Thus, as CUE became less sensitive to temperature

(greater acclimation), the temperature threshold for

minimum equilibrium SOC shifted to warmer values

(Fig. 3). If there is no CUE temperature sensitivity

(constant CUE scenario), the microbial models con-

verge on the CON prediction of monotonic decline in

SOC storage with increasing temperature (Fig. 3).

In MEND, equilibrium MOC responses were

nearly identical to SOC in all CUE scenarios (Fig.

S1). In contrast, equilibrium POC increased at a

slower rate than SOC and MOC as temperature

declined (Fig. S1).

DOC: In CON, equilibrium DOC monotonically

decreased with increasing temperature under all CUE

scenarios (Fig. 2). In AWB, DOC followed SOC

under each CUE scenario. In contrast, DOC always

increased with increasing temperature in MEND, and

the magnitude of increase was identical across CUE

scenarios (Fig. 2). QOC always declined with increas-

ing temperature in MEND, and the decline was also

identical across CUE scenarios (Fig. S1).

ENZC: The ENZC response to temperature was

identical between AWB and MEND with no change

under constant CUE and greater declines with

increasing temperature from acclimated to varied

CUE scenarios (Fig. 2). In MEND, EM and EP

responses to temperature both tracked ENZC in all

CUE scenarios with the greatest declines with

increasing temperature under the varied CUE sce-

nario (Fig. S1).

MBC: Equilibrium MBC generally declined with

increasing temperature except in GER and AWB

under constant CUE where there was no change

(Fig. 2). The MBC response to temperature was

identical to ENZC in AWB. The magnitude of MBC

changes with temperature depended on CUE scenario,

with the greatest declines in the varied CUE scenario

and the smallest changes in the constant CUE scenario

for the three microbial models. The magnitudes of

MBC change predicted by all models followed the

order: CON [ MEND [ AWB = GER below the

reference temperature (i.e. 20 �C).

Table 1 Steady state C pool sizes (mg C g-1 soil) at the reference temperature (i.e. 20 �C) for four models

Model SOC POC MOC DOC QOC MBC ENZC EP EM

CON 33.36 – – 0.04 – 0.08 – – –

GER 24.82 – – – – 0.26 – – –

AWB 37.82 – – 0.03 – 0.25 0.0014 – –

MEND 43.51 5.75 36.97 0.15 0.79 0.26 0.0014 0.0007 0.0007

CON denotes a conventional model described in Allison et al. (2010); GER, AWB, and MEND are three microbial models described

in German et al. (2012), Allison et al. (2010) and Wang et al. (2013a), respectively

SOC soil organic carbon, POC particulate organic carbon, MOC mineral-associated organic carbon, DOC dissolved organic carbon,

QOC mineral-associated DOC, MBC microbial biomass carbon, ENZC extracellular enzyme, EP POC associated extracellular

enzyme, EM MOC associated extracellular enzyme

Biogeochemistry (2014) 119:67–84 71
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Soil decomposition dynamics during transient

phase

Most C pools and CO2 efflux reached steady state after

50–100 years in all models, except those in GER,

which required 100 years or more to reach steady state

(Fig. 4). Transient responses to 5 �C warming differed

between CON and the microbial models. With CON,

all pool sizes declined monotonically to equilibrium

whereas the microbial models showed oscillations

during the transient phase. These oscillations had the

greatest magnitude in GER and the highest frequency

Fig. 2 Modeled relative changes (%) in steady state SOC,

DOC, MBC, and ENZC as a function of temperature predicted

by CON, GER, AWB, and MEND under constant, acclimated,

and varied carbon use efficiency (CUE) scenarios. There are

four models for SOC and MBC, three models for DOC, and two

models for ENZC

72 Biogeochemistry (2014) 119:67–84
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in MEND. Oscillations tended to be weakest in the

acclimated CUE scenario and strongest in the varied

CUE scenario, which also showed the largest absolute

change in SOC at equilibrium. The amplitude of the

oscillations was largest for CO2 efflux, with the range

exceeding 100 % relative change for GER and AWB

in the early years of the constant and varied CUE

scenarios. The dynamics for MBC and ENZC were

similar to CO2 but with slightly lower magnitudes of

oscillation. In MEND, MOC dynamics were similar to

total SOC but with weaker oscillations. Most of the

oscillation in MEND SOC was driven by strong

oscillations in POC, especially during the first

40 years and in the varied CUE scenario (Fig. S2).

Equilibrium responses to a step increase of 5 �C

from the numerical simulations were consistent with

analytical solutions as a function of temperature.

Warming reduced equilibrium SOC in all models

under constant CUE but increased SOC in the

microbial models under varied and acclimated CUE

scenarios (Fig. 4). Equilibrium DOC showed little

response to warming in MEND, but declined under

Fig. 3 Modeled relative changes (%) in steady state SOC as a

function of temperature (-5 to 35 �C) predicted by CON, GER,

AWB, and MEND under varying carbon use efficiency (CUE)

scenarios. Each line corresponds to a different CUE temperature

response coefficient (m). Filled circles denote the threshold

temperatures associated with minimum SOC pool sizes under

varied (m = -0.016) and acclimated (m = -0.008) CUE

scenarios, respectively. See ‘‘Model structures’’ for details on

the model descriptions and CUE scenarios

Biogeochemistry (2014) 119:67–84 73
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constant CUE and increased under varied CUE in

AWB. Across all models, equilibrium MBC declined

more with warming as the temperature sensitivity of

CUE increased. The magnitude of decline followed

the order CON [ MEND [ AWB = GER regardless

of CUE scenario. In AWB and MEND, the warming

response of equilibrium ENZC was similar to MBC,

although the equilibrium ENZC was identical in the

two models, unlike with MBC. EP and EM in MEND

showed warming responses very similar to total ENZC

(Fig. S2). Equilibrium CO2 efflux always converged

on 0 % relative change in all models and scenarios,

consistent with inputs = outputs at steady state

(Fig. 4).

Discussion

Model comparison

Based on the model analytical solutions, CON showed

fundamentally different responses to temperature and

CUE change relative to the microbial models (Fig. 3).

The microbial models, while differing in the number

of pools and some parameter values, generally showed

similar responses to temperature and CUE change. For

example, the steady state SOC pool in CON was

proportional to SOC inputs and inversely proportional

to the SOC decay constant, which increased exponen-

tially with temperature (Eq. 13). Thus, the main effect

of temperature increase in CON was to increase the

decay constant and reduce the equilibrium SOC pool.

In contrast, SOC in the microbial models depended

primarily on microbial parameters. In GER for

example, equilibrium SOC was proportional to micro-

bial turnover and enzyme Km but inversely propor-

tional to CUE and enzyme Vmax (Eq. 20). As

temperature increases in the microbial models, the

direction of SOC change depends on the balance

between increases in Km and declines in CUE, both of

which tend to increase SOC, and increases in Vmax,

which tend to reduce SOC.

CUE and model complexity influence soil C

response to warming

We found that the microbial models, but not CON,

predicted a threshold temperature corresponding to

minimum soil C storage (Fig. 3). This threshold is

important because it determines whether warming

causes an increase or decrease in soil C storage in a

given ecosystem. Cooler ecosystems with mean tem-

peratures below the threshold should lose soil C with

warming, whereas ecosystems with mean tempera-

tures above the threshold should gain soil C with

warming. Below the temperature threshold, the

positive effect of warming on enzyme kinetics exceeds

the negative effect of warming on CUE, microbial

biomass, and enzyme production. Above the thresh-

old, an increment of warming has a greater relative

impact on CUE (which declines linearly toward zero

with increasing temperature) than on enzyme kinetics.

Our analysis shows that temperature thresholds

depend on CUE scenario and model complexity. For

the microbial models, the greater the temperature

sensitivity of CUE, the lower the temperature thresh-

old for minimum SOC (Fig. 3). Under varied CUE, the

temperature thresholds fell well below the reference

temperature, so warming increased SOC and/or DOC

and decreased MBC, ENZC, and CO2 efflux. Under

constant CUE, temperature thresholds were not

observed, so warming decreased SOC and DOC and

generally increased MBC, ENZC, and CO2 efflux.

Which of these scenarios will prevail in the coming

century is unclear; soil CUE usually decreases with

warming (Manzoni et al. 2012), but the response can

vary with ecosystem and substrate chemistry (Frey

et al. 2013). It is also possible that microbial CUE will

adapt or acclimate to warming temperatures (Allison

et al. 2010).

We found that the two microbial models with more

C pools (i.e. AWB and MEND) predicted different

temperature thresholds than the simpler GER model

for a given CUE scenario (Fig. 3). For instance, under

varied CUE, the threshold temperatures were 0.90,

1.45, and 7.95 �C for MEND, AWB, and GER,

respectively. When the CUE sensitivity to temperature

was intermediate (i.e. acclimated CUE), the threshold

temperature was closer among models but still

followed the ranking MEND \ AWB \ GER. We

attribute these differences in threshold temperature to

differences in model complexity, given that temper-

ature and CUE were equal across the models. Com-

plexity includes both the difference in model

structure—i.e. more pools (MBC and ENZC) in

AWB and MEND than GER—and the parameters

associated with those additional pools. Both factors

likely contribute to the inter-model differences in

74 Biogeochemistry (2014) 119:67–84
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threshold temperature. However, the increased com-

plexity of MEND relative to AWB led to a relatively

minor difference (\0.6 �C) in the temperature thresh-

old between these models. Thus, subdivision of major

C pools into sub-components (i.e. MOC, POC, EM,

and EP) had relatively little effect on model predic-

tions, at least under the CUE scenarios and parameters

we examined.

Differences in decomposition dynamics

between models

The three microbial models showed warming

responses distinct from the conventional model. This

difference is mainly attributed to microbial control

over decomposition through enzyme-mediated pro-

cesses (Schimel and Weintraub 2003) which are

absent from first-order decay models (Parton et al.

1987). Including microbial-enzyme processes couples

the dynamics of SOC and MBC pools, which has two

main consequences in our analysis. First, reductions in

microbial biomass that occur due to warming effects

on CUE tend to increase SOC pool sizes. Thus, the

microbial models lose SOC under constant CUE and

gain SOC under varied CUE whereas CON always

loses SOC with warming. Second, the coupling of the

soil C and MBC pools results in damped oscillations

reminiscent of predator–prey dynamics. The ampli-

tude and period of oscillation depend on model

parameters, specifically CUE, Vmax, and Km (Wang

et al. 2013b). Though some first-order systems could

also show damped oscillations (Bolker et al. 1998),

CON did not, suggesting that its pools are not

sufficiently coupled to produce oscillatory responses

to temperature change under these parameters.

Among the microbial models, oscillations were

generally weaker in MEND and in the acclimated

CUE scenario. Greater complexity in MEND’s struc-

ture likely contributed to weakened oscillations,

especially in relation to MOC, the largest SOC pool

in MEND. The MOC pool receives inputs from POC

decomposition and loses C through MOC decompo-

sition (Eq. 48), whereas the SOC pools in the other

microbial models receive constant external inputs. The

structure of MEND means that changes in microbial

biomass and associated enzyme production have

counterbalancing effects on MOC inputs and losses,

thereby weakening MOC oscillations. For example,

warming under varied CUE reduced MOC

decomposition by EM but also reduced MOC inputs

from POC decomposition by EP (Fig. S2). Weaker

oscillations occurred under acclimated CUE in all

microbial models because initial pool sizes were

closer to equilibrium pool sizes in this scenario. There

was almost no net change in SOC with warming

because the temperature threshold for minimum SOC

was near 20 �C for all three models under acclimated

CUE (Fig. 3).

Although the microbial models tended to show

similar behaviors, we did find contrasting DOC

dynamics between AWB and MEND during the

transient phase. In both models, DOC pools are

primarily controlled by inputs from SOC decomposi-

tion, but MEND has multiple SOC pools that contrib-

ute to DOC flux. In AWB, increased decomposition of

a single SOC pool results in greater DOC production

pool under constant CUE, whereas reduced SOC

decomposition reduces DOC under varied CUE. In

MEND, the dynamics are more complex because DOC

dynamics are also influenced by decomposition of the

POC pool. Under constant CUE in MEND, the POC

pool decomposes rapidly at first and supplies increased

DOC. After a few years, POC decomposition slows

and POC pool size starts to recover, leading to lower

DOC production and oscillations in DOC pools.

Similar controls act in the varied and acclimated

CUE scenarios, but the POC pool increases or changes

little initially (due to reduced MBC), resulting in

reduced DOC production. In MEND, the QOC pool

equilibrates with DOC through sorption–desorption,

and therefore the two pools show very similar

dynamics.

Implications for global soil C projections

Our analyses show that both conventional and micro-

bial models predict soil C losses in the decade

immediately following warming. Thus, all of these

models are consistent with short-term observations

from field and laboratory warming experiments

(McGuire et al. 1995; Rustad et al. 2001; Melillo

et al. 2002, 2011; Hartley et al. 2007, 2008; Bradford

et al. 2008). However, our conventional model could

not replicate the relatively rapid attenuation of soil

respiration that is often observed following the initial

increase (Luo et al. 2001; Knorr et al. 2005; Hartley

et al. 2007, 2008; Bradford et al. 2008; Zhou et al.

2012; Tucker et al. 2013). Ultimately, depletion of
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SOC and DOC substrates reduces CO2 efflux to pre-

warming levels even in CON, but this attenuation

requires nearly five decades. In contrast, attenuation

has the potential to be much more rapid in the

microbial models, albeit followed by damped oscilla-

tions (Fig. 4). Other studies also show that microbial

mechanisms are required to explain soil respiration

responses. For example, including enzyme and micro-

bial controls on decomposition improved the ability to

simulate rewetting dynamics (Lawrence et al. 2009).

Our analysis reveals model properties that are

relevant for scaling up microbial processes to the globe.

In the microbial models, equilibrium SOC responses to

warming depend on the initial soil temperature (Fig. 3).

At initial temperatures below 8 �C in GER or 1 �C in

AWB and MEND, SOC declines in response to

warming under the varied CUE scenario, and the

temperature threshold increases as the temperature

sensitivity of CUE declines. Thus, the models would

predict SOC losses with warming in cold biomes, such

as arctic tundra (Fig. 3). The losses increase with lower

temperature sensitivity of CUE. Warmer regions such as

the tropics could experience minimal SOC losses or

even gains with warming, especially if CUE is highly

sensitive to temperature. This finding is consistent with

observations that the temperature sensitivity of SOC

decomposition is regulated by native soil temperature

(Ågren and Bosatta 2002).

Another key feature of the microbial models is a

decoupling between equilibrium SOC and inputs.

Whereas SOC pool sizes are directly proportional to

inputs in conventional models, inputs have different

effects on equilibrium SOC in the microbial models

(Wang et al. 2013b). In GER, equilibrium SOC has no

mathematical dependence on inputs (Eq. 20), and in

AWB and MEND, equilibrium SOC depends on the

ratio of SOC to DOC inputs but not the total amount

(Eqs. 32 and 52–53). This result explains why Allison

et al. (2010) did not observe significant changes in soil

C when SOC and DOC inputs were both either

increased or decreased. Likewise, Wieder et al. (2013)

observed little change in predicted global soil C

following a simulated 20 % increase in global litter

inputs. In these microbial models, MBC is directly

proportional to inputs such that increased inputs

stimulate microbial growth and SOC turnover. This

prediction, while at odds with conventional models, is

consistent with an analysis showing that NPP explains

under 10 % of the global spatial variation in SOC

stocks (Todd-Brown et al. 2013). However, additional

empirical analyses are needed to confirm whether

spatial variation in SOC stocks is better explained by

microbial parameters.

Conclusion

Recent papers have called for integration of microbial-

scale models into broad-scale land models (Todd-

Brown et al. 2012; Treseder et al. 2012). Such efforts

could help resolve the uncertainty in predictions from

these broad-scale models (Todd-Brown et al. 2013;

Wieder et al. 2013). Our model comparison indicates

that both model complexity and the extent of CUE

acclimation regulate decomposition dynamics with

warming over decadal to centennial time scales.

Furthermore, different model structures and parame-

terization resulted in different predictions for C pool

responses to warming. Temperature thresholds that

affect the magnitude and direction of SOC response to

warming appear to be a common feature of microbial

models. In addition, the most complex microbial

model predicted less pronounced oscillations in soil C

pools and fluxes. Together, these findings suggest that

relatively simple microbial models could represent

long-term SOC responses to climate, especially given

the rapidly increasing availability of observations at

short-term to long-term time scales.

Although the microbial models we analyzed made

largely similar predictions at equilibrium, more com-

plex models could improve the mechanistic represen-

tation of SOC dynamics on decadal time scales.

Continuous change in climate over time may prevent

soils from reaching equilibrium and require models

that accurately predict transient dynamics. Whether

these dynamics will take the form of strong oscilla-

tions is unclear, since global warming will occur

gradually over decades to centuries, rather than as a

step change in temperature. In addition, we cannot rule

out the need for more complex models to describe

short-term processes in soil C dynamics (Zelenev et al.

2005) or other mechanisms that were not explored

here, such as physiochemical changes, priming, and

Fig. 4 Modeled relative changes (%) in SOC, DOC, ENZC,

MBC, and CO2 efflux with 5 �C warming under constant,

acclimated, and varied CUE scenarios. See ‘‘Model structures’’

for details on the model descriptions and CUE scenarios

b
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nitrogen interactions (Thornley and Cannell 2001;

Fontaine et al. 2003; Thornton et al. 2009; Kuzyakov

2010; Li et al. 2013). Still, our approach should be

useful for optimizing microbial model complexity

before integration into larger-scale models.
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Appendix 1

Conventional model (CON)

The conventional model is representative of first-order

models of soil organic carbon (SOC) dynamics. This

model includes SOC, dissolved organic C (DOC), and

microbial biomass C (MBC) pools with the decom-

position rate of each pool represented as a first-order

process. The decay constant ki increases exponentially

with temperature T according to the Arrhenius

relationship:

kiðTÞ ¼ ki;ref � exp �Eai

R
� 1

T
� 1

Tref

� �� �
ð4Þ

where ki,ref is the decay constant at the reference

temperature Tref (K), and Eai is the activation energy

with i = D, S, or B representing DOC, SOC, and MBC

pools, respectively. R is the ideal gas constant,

8.314 J mol-1 K-1. Decomposition of each pool is

represented as:

FS ¼ kS � S ð5Þ

FD ¼ kD � D ð6Þ
FB ¼ kB � B ð7Þ

The change in the SOC pool is proportional to external

inputs (IS), transfers from the other pools, and losses

due to first-order decomposition:

dS

dt
¼ IS þ aDS � FD þ aB � aBS � FB � FS ð8Þ

where aDS is the transfer coefficient from the DOC to

the SOC pool, aB is the transfer coefficient from the

MBC to the DOC and SOC pools, and aBS is the

partition coefficient for dead microbial biomass

between the SOC and DOC pools. Transfer coeffi-

cients can range from 0.0 to 1.0, with lower values

indicating a larger fraction of C respired as CO2. The

change in the DOC pool is represented similarly, but

includes a transfer from SOC to DOC in proportion to

aSD and a loss due to microbial uptake, u * D:

dD

dt
¼ ID þ aSD � FS þ aB � 1� aBSð Þ � FB � u � D

� FD

ð9Þ

The change in the microbial biomass pool is the

difference between uptake and turnover, where u

represents the fraction h-1 of the DOC pool taken up

by microbial biomass:

dB

dt
¼ u � D� FB ð10Þ

The CO2 respiration rate is the sum of the proportion

of fluxes that do not enter soil pools:

CR ¼ FS � 1� aSDð Þ þ FD � 1� aDSð Þ þ FB � ð1
� aBÞ:

ð11Þ

Steady state analytical solution

The steady state analytical solutions for the DOC,

SOC, and MBC pools in CON are:

D

¼ IDþ IS �aSD

uþkDþu�aB �ðaBS�1�aBS �aSDÞ�aDS �kD �aSD

ð12Þ
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S ¼ IS þ D � aDS � kD þ u � aB � aBSð Þ
kS

ð13Þ

B ¼ u � D

kB

ð14Þ

GER

The GER microbial model represents SOC change as a

function of input rate IS, microbial turnover rB, MBC,

and extracellular enzyme Vmax and Km:

dS

dt
¼ IS þ rB � B� B � V � S

K þ S
ð15Þ

C inputs and dead biomass enter the SOC pool, and

SOC is lost through decomposition, which is assumed

to be a Michaelis–Menten process represented by the

last term in Eq. 15. MBC change is a function of

microbial turnover and assimilation of decomposed

soil organic C, which occurs with C use efficiency EC:

dB

dt
¼ EC � B �

V � S
K þ S

� sB � B ð16Þ

where EC is a linear function of temperature with slope

m:

EC Tð Þ ¼ EC;ref þ m � ðT � Tref Þ ð17Þ

The CO2 respiration rate (CR) is then the fraction of

decomposition not assimilated by microbial biomass:

CR ¼ ð1� ECÞ � B �
V � S

K þ S
ð18Þ

Vmax and Km (Y) have an Arrhenius dependence on

temperature, similar to Eq. 4 in the conventional

model:

YðTÞ ¼ Yref � exp �EaY

R
� 1

T
� 1

Tref

� �� �
ð19Þ

Steady state analytical solution

The steady state analytical solutions for the SOC and

MBC pools in GER are:

S ¼ rB � K
EC � V � rB

;
rB

V
\EC\1 ð20Þ

B ¼ IS � EC

rB � ð1� ECÞ
ð21Þ

where EC must be larger than rB/V, otherwise microbes

cannot assimilate enough C to compensate for

microbial turnover; if EC = 1, then microbes respire

no C, all C is assimilated, and biomass grows

indefinitely.

AWB

AWB is a more complex version of GER that includes

explicit DOC and ENZC pools. Microbial biomass

increases with DOC uptake (FU) times C use effi-

ciency and declines with death (FB) and enzyme

production (FE):

dB

dt
¼ FU � EC � FB � FE ð22Þ

where assimilation is a Michaelis–Menten function

scaled to the size of the microbial biomass pool:

FU ¼
VU � B � D

KU þ D
ð23Þ

Microbial biomass death is modeled as a first-order

process with a rate constant rB:

FB ¼ rB � B ð24Þ

Enzyme production is modeled as a constant fraction

(rE) of microbial biomass:

FE ¼ rE � B ð25Þ

Temperature sensitivities for V, VU, K, and KU follow

the Arrhenius relationship as in Eq. 19. Note that this

relationship differs from the published version of

AWB that used a linear relationship for K and KU

temperature sensitivity. We used the Arrhenius rela-

tionship here to facilitate comparison with the other

models and used the parameter values from the linear

relationship at 20 �C as the reference values in Eq. 19.

CO2 respiration is the fraction of DOC uptake that is

not assimilated into MBC:

CR ¼ FU � 1� ECð Þ ð26Þ

The enzyme pool increases with enzyme production

and decreases with enzyme turnover:

dE

dt
¼ FE � FL ð27Þ

where enzyme turnover is modeled as a first-order

process with a rate constant rL:

FL ¼ rL � E ð28Þ

The SOC pool increases with external inputs and a

fraction (aBS) of microbial biomass death and
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decreases due to decomposition losses:

dS

dt
¼ IS þ FB � aBS � FS ð29Þ

where decomposition of SOC is catalyzed according

to Michaelis–Menten kinetics by the enzyme pool:

FS ¼
V � E � S

K þ S
ð30Þ

The DOC pool receives external inputs, the remaining

fraction of microbial biomass death, the decomposi-

tion flux, and dead enzymes, while assimilation of

DOC by microbial biomass is subtracted:

dD

dt
¼ ID þ FB � 1� aBSð Þ þ FS þ FL�FU ð31Þ

Steady state analytical solution

The steady state analytical solutions for SOC, DOC,

MBC, and ENZC in AWB are:

which simplifies to the following if ID = IS:

D ¼ �KU � ðrB þ rEÞ
rB þ rE � EC � VU

ð34Þ

B ¼ EC � ðID þ ISÞ
1� ECð Þ � ðrB þ rEÞ

ð35Þ

E ¼ B � rE

rL

ð36Þ

MEND

Five C pools are considered in MEND: (1) particulate

organic carbon (POC, represented by the variable P in

model equations), (2) mineral-associated organic

carbon (MOC, M), (3) active layer of MOC (Q)

interacting with dissolved organic carbon through

adsorption and desorption, (4) dissolved organic

carbon (DOC, D), (5) microbial biomass carbon

(MBC, B), and (6) extracellular enzymes (EP and

EM). The component fluxes are DOC uptake by

microbes (denoted by the flux F1), POC decomposi-

tion (F2), MOC decomposition (F3), microbial growth

respiration (F4) and maintenance respiration (F5),

adsorption (F6) and desorption (F7), microbial mor-

tality (F8), enzyme production (F9), and enzyme

turnover (F10). Model equations for each component

are listed as follows:

F1 ¼
VD þ mRð Þ � B � D

EC � KD þ Dð Þ ð37Þ

F2 ¼
VP � EP � P

KP þ P
ð38Þ

F3 ¼
VM � EM �M

KM þM
ð39Þ

F4 ¼
1

EC

� 1

� �
� VD � B � D

KD þ D
ð40Þ

F5 ¼
1

EC

� 1

� �
� mR � B � D

KD þ D
ð41Þ

F6 ¼ Kads � D � 1� Q

Qmax

� �
ð42Þ

F7 ¼
Kdes � Q

Qmax

ð43Þ

S ¼ �rL � K � IS � rB � 1þ EC � aBS � 1ð Þð Þ þ rE � 1� ECð Þð Þ þ EC � ID � aBS � rBð Þ
IS � rB � rL � 1þ EC � aBS � 1ð Þð Þð Þ þ rE � rL � 1� ECð Þ � EC � Vð Þð Þ þ EC � ID � aBS � rB � rL � rE � Vð Þ

ð32Þ

S ¼ �rL � K � rB þ rEð Þ � 1� ECð Þ þ 2 � EC � aBS � rB

rL � rB þ rEð Þ � 1� ECð Þ þ 2 � EC � aBS � rB � rL � rE � Vð Þ ð33Þ
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F8 ¼ mR � B � 1� pEP � pEMð Þ ð44Þ
F9;EP ¼ pEP � mR � B; F9;EM ¼ pEM � mR � B ð45Þ
F10;EP ¼ rEP � EP; F10;EM ¼ rEM � EM ð46Þ

where Vi and Ki represent the Vmax and Km for

enzymatic degradation of pool i, mR is the mainte-

nance respiration rate, Qmax is the maximum DOC

sorption capacity, Kdes and Kads are the specific

adsorption and desorption rates, pi is the fraction of

mR associated with production of enzyme i, and ri is

the turnover rate of enzyme pool i. Vi, Ki, mR, Kdes, and

Kads follow Arrhenius temperature sensitivity similar

to Eq. 19, and EC is linearly dependent on temperature

as in Eq. 17. The differential equations are as follows

for the pools:

dP

dt
¼ IP þ 1� gDð Þ � F8�F2 ð47Þ

dM

dt
¼ 1� fDð Þ � F2�F3 ð48Þ

dQ

dt
¼ F6 � F7 ð49Þ

dB

dt
¼ F1 � F4 þ F5ð Þ � F8 � ðF9;EP þ F9;EMÞ ð50Þ

dD

dt
¼ ID þ fD � F2 þ gD � F8 þ F3

þ F10;EP þ F10;EM

� �
� F1 � ðF6 þ F7Þ ð51Þ

dEP

dt
¼ F9;EP � F10;EP ð52Þ

dEM

dt
¼ F9;EM � F10;EM ð53Þ

and the CO2 respiration rate is calculated as:

CR ¼ F4 þ F5 ð54Þ

MEND represents microbial respiration as a fraction

of assimilation (Eqs. 40, 41) whereas GER and AWB

represent respiration as a fraction of microbial uptake

(Eqs. 18, 26); note that these representations are

algebraically identical with respect to CUE.

Steady state analytical solution

The steady state analytical solutions to the MEND

differential equations are as follows:

P ¼ KP

VP � pEP � EC � ðID=IPÞþ1

rEP�A � 1
ð55Þ

M ¼ KM

VM � pEM � EC

rEM� 1�fDð Þ�A � 1þ ID

IP

� 	
� 1

ð56Þ

where

A ¼ 1� EC þ 1� pEP � pEMð Þ � EC � 1� gDð Þ

� ID

IP

þ 1

� �

ð57Þ

Equations 55–56 simplify to the following if ID � IP:

P ¼ KP

VP � pEP � EC

rEP� 1�gD�ECð Þ � 1
ð58Þ

M ¼ KM

VM � pEM � EC

rEM� 1�gD�ECð Þ� 1�fDð Þ � 1
ð59Þ

D ¼ mR � KD

VD

ð60Þ

Q ¼ Qmax

1þ 1
ðD�KBAÞ

� 	� 	 ð61Þ

EP ¼
B � mR � pEPð Þ

rEP

ð62Þ

EM ¼
B � mR � pEMð Þ

rEM

ð63Þ

B ¼ ID þ IP

1
EC
� 1

� 	
� mR

ð64Þ

See Table 2 for all model parameter values.

Table 2 Parameters used in model comparison

Model Parameter Description Value Units

All Tref Reference temperature 20 �C

EC,ref CUE at reference temperature 0.31 mg C mg-1 C

m CUE change with temperature [0, -0.016] �C-1
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Table 2 continued

Model Parameter Description Value Units

CON IS SOC input rate 0.00015 mg C g-1 soil h-1

ID DOC input rate 0.00001 mg C g-1 soil h-1

kS,ref SOC decay rate 5 9 10-6 mg C mg-1 C h-1

kD,ref DOC decay rate 0.001 mg C mg-1 C h-1

kB,ref MBC turnover rate 0.00028 mg C mg-1 C h-1

EaS SOC activation energy 47 kJ mol-1

EaD DOC activation energy 47 kJ mol-1

EaB MBC activation energy 20 kJ mol-1

aDS DOC to SOC transfer coefficient EC(T)

aSD SOC to DOC transfer coefficient EC(T)

aB MBC to soil C transfer coefficient EC(T)

aBS Fraction of dead MBC transferred to SOC 0.5

u DOC uptake rate 0.0005 mg C g-1 DOC h-1

GER IS SOC input rate 0.00016 mg C g-1 soil h-1

Vref SOC reference Vmax 0.01 mg C mg-1 MBC h-1

Kref SOC reference Km 250 mg C g-1 soil

EaV SOC Vmax activation energy 47 kJ mol-1

EaK SOC Km activation energy 30 kJ mol-1

rB MBC turnover rate (same as kB,ref in CON) 0.00028 mg C mg-1 C h-1

AWB IS SOC input rate 0.00015 mg C g-1 soil h-1

ID DOC input rate 0.00001 mg C g-1 soil h-1

Vref SOC reference Vmax 1 mg C mg-1 C h-1

VU,ref DOC uptake reference Vmax (similar to Vref in GER) 0.01 mg C mg-1 MBC h-1

Kref SOC reference Km 250 mg C g-1 soil

KU,ref DOC uptake reference Km 0.26 mg C g-1 soil

EaV SOC Vmax activation energy 47 kJ mol-1

EaVU Uptake Vmax activation energy 47 kJ mol-1

EaK SOC Km activation energy 30 kJ mol-1

EaKU Uptake Km activation energy 30 kJ mol-1

rB MBC turnover rate (same as kB,ref in CON) 0.00028 mg C mg-1 C h-1

rE Enzyme production rate (same as rEP ? rEM in MEND) 5.6 9 10-6 mg C mg-1 MBC h-1

rL Enzyme loss rate 0.001 mg C mg-1 C h-1

aBS Fraction of dead MBC transferred to SOC 0.5

MEND IP POC input rate 0.00015 mg C g-1 soil h-1

ID DOC input rate 0.00001 mg C g-1 soil h-1

VD,ref DOC reference Vmax (same as u in CON) 0.0005 mg C mg-1 C h-1

VP,ref POC reference Vmax 2.5 mg C mg-1 C h-1

VM,ref MOC reference Vmax 1 mg C mg-1 C h-1

KD,ref DOC reference Km (same as KU,ref in AWB) 0.26 mg C g-1 soil

KP,ref POC reference Km 50 mg C g-1 soil

KM,ref MOC reference Km 250 mg C g-1 soil

Kads,ref Reference specific adsorption rate 0.006 mg C mg-1 C h-1

Kdes,ref Reference specific desorption rate 0.001 mg C mg-1 C h-1
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