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Abstract. A number of nonlinear models have recently been models can increase or decrease, depending whetlzgies

proposed for simulating soil carbon decomposition. Theirwith temperature. In contrast, the conventional linear models

predictions of soil carbon responses to fresh litter input andalways simulate a decrease in both microbial and litter car-

warming differ significantly from conventional linear mod- bon pools with warming. Based on the evidence available,

els. Using both stability analysis and numerical simulations,we concluded that the oscillatory behavior and insensitivity

we showed that two of those nonlinear models (a two-poolof soil carbon to carbon input are notable features in these

model and a three-pool model) exhibit damped oscillatory re-nonlinear models that are somewhat unrealistic. We recom-

sponses to small perturbations. Stability analysis showed thenend that a better model for capturing the soil carbon dy-

frequency of oscillation is proportional tg(s~1 — 1) Ks/ Vs namics over decadal to centennial timescales would cc_)mbine
the sensitivity of the conventional models to carbon influx

in the two-pool model, and tg (e71—1) K/ Viinthethree-  with the flexible response to warming of the nonlinear model.

pool model, where is microbial growth efficiencyKs and

K| are the half saturation constants of soil and litter carbon,

respectively, and/s and V| are the maximal rates of carbon

decomposition per unit of microbial biomass for soil and lit- 1 Introduction

ter carbon, respectively. For both models, the oscillation has ) ) -

a period of between 5 and 15 years depending on other paé‘ number of soil and litter carbon decomposition models

rameter values, and has smaller amplitude at soil temperd?@sed on Michaelis-Menton kinetics, or nonlinear soil car-
tures between 0 and 1E. In addition, the equilibrium pool bon models, have recently been developed (Schimel and

sizes of litter or soil carbon are insensitive to carbon inputs inVeintraub, 2003; Allison et al., 2010; German et al., 2012).

the nonlinear model, but are proportional to carbon input in 1N€S€ models can simulate the priming of existing soil car-
the conventional linear model. Under warming, the microbial bon stocks with additional litter inputs (Kuzyakov et al.,

biomass and litter carbon pools simulated by the nonlinea?000; Wutzler and Reichstein, 2013), can replicate the ac-
climatory response of soil carbon decomposition to warming
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1818 Y. P. Wang et al.: Nonlinear soil carbon models

(Allison et al., 2010; Bradford et al., 2008), and can represent Two-pool model
the spatial variation of global soil carbon better than models

based on conventional linear soil carbon dynamics (Wieder Vs/Ks e
et al., 2013). The key to this success has been to accoun jputs —
explicitly for the effects of both microbial biomass and sub- __B__,.
strate concentration on the rate of soil carbon decomposition £
in the nonlinear models, compared to the linear models for

which it is assumed that only the amount of substrate is lim-

iting to the rate of soil carbon decomposition. Consequently, )
the conventional linear models cannot simulate the effect of 1€ /—L“\
priming on soil carbon decomposition well without signifi- —lgelitfr@w@
cant modifications (see Wutzler and Reichstein, 2008).

However, the conventional linear models have been suc- 1¢
cessfully used to capture the soil carbon dynamics over in-_ o _
terannual to decadal timescales (see Parton et al., 1993). /Fﬁ'?e el' ?)S)Ter;noétjtleﬁsdl%]];?&?\ Si';]o"l‘ﬂ”g;trgssirﬁec“s‘ﬁl O(‘;rt";?]'igo(?;ﬁ::)dn
global synthesis of Il_tter decomposfu_on (Zhang et ?‘"’ 2008.)(SOC)ppoo| directly in the tvvo-gool model, and litter garbon pool
and a decade-long litter decomposition study in diverse cli-

. ] - (LIT) in the three-pool model. When carbon from litter or soil or-
mates (Adair et al., 2008; Bonan et al., 2013) both Ir]d'c"j‘teganic carbon is consumed by soil microbes, a fraction of the con-

the monotonic decay of a quantit_y .of Iitter. over time in di- gymed carbon, 1 ¢, is lost as CQ, wheree is microbial growth
verse ecosystems. Long-term soil incubation data show thefficiency. See main text for the definitions of all other symbols.
similar responses (Li et al., 2013). These dynamics can be

predicted well by conventional linear soil carbon models pro-

vided they use multiple carbon pools (Bolker et al., 1998).dictions from two types of models are more consistent with
However, the interannual to decadal response of soil carbo§Mmpirical evidence from field and laboratory studies.

to inputs has not been analyzed in detail for the nonlinear

models of soil decomposition to verify whether they can also2 Two nonlinear soil carbon models

capture these dynamics. Such analyses are needed because

nonlinear models can potentially exhibit a much richer rangeTthe two nonlinear soil carbon models developed by German
of behaviors than linear models, not all of which may be de-gt g1, (2012) and Wieder et al. (2013) were based on the ear-
sired or intended. For example, it is well known that a sys-jier work by Schimel and Weintraub (2003) and Allison et
tem of nonlinear ordinary differential equations, such as &, (2010). Both models assume that the decomposition rate
nonlinear soil model, can become unstable in response 10 g itter or soil carbon is proportional to the biomass of de-
small perturbation to its initial pool sizes (Raupach, 2007) orcomposers (soil microbes), and varies with substrate concen-
inputs and can switch between different equilibrium statesyration (litter or soil carbon) following Michaelis—Menten ki-

in response to climatic variation (Manzoni and Porporato, netics. Growth rate of soil microbes is proportional to the
2007), although there is presently no evidence that soil carrate of carbon decomposition, and mortality of soil microbes
bon dynamics exhibits such characteristics over interannuak proportional to their biomass (see Fig. 1).

to decadal timescales. In this paper, we analyze the stability The equations for the two-pool soil model developed by
of two recently published nonlinear soil carbon models in re- German et al. (2012) are

sponse to nonperiodic change in carbon input: the two-pool

model developed by German et al. (2012) and the three—pooijc_b —s CoVsCs HyCh (1)
model simplified from Wieder et al. (2013), and pay partic- df Cs+ Ks ’

ular attention to the time course of the responses to perturgnd

bation over decadal timescales. We focus on the intrinsic os-

. . s CszCs
cillatory responses of the modeled system to perturbations— = Fnpp+ pyCh — ,
and, therefore, do not consider the forced responses of the Cs+ Ks
system to oscillations in external factors, such as through diwhereCy, andCs are the pool sizes of soil microbial biomass
urnal variation in soil temperature or seasonal variation inand soil organic matter (in g C™), ¢ is microbial growth
carbon input. We address the following questions. (1) Whatefficiency or fraction of assimilated carbon that is converted
are the responses of these two models’ stable to small pertuinto microbial biomass (unit-less) |is the turnover rate of
bations in initial pool sizes? (2) What determines the stability microbial biomass per yeaFnpp is carbon influx into soil
of these two models? (3) How different are the simulated re<in g C m~2year 1), and Vs and Ks represent the maximum
sponses of soil carbon to climate-induced changes in litterate of soil carbon assimilation per unit microbial biomass
inputs and warming between the nonlinear and conventionaper year and the half-saturation constant for soil carbon as-
linear models? We conclude by discussing which of the pre-similation by microbial biomass (in g CTd), respectively.

Three-pool model

)
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We also analyze a simplified version of a three-pool non-3 Parameter values
linear soil carbon model developed by Wieder et al. (2013).
Compared with the two-pool model, the three-pool model in-To ensure positive pool sizes, the following constraints
cludes an additional litter carbon podafj§. Only a fraction ~— are applicable‘g% > 1, for the two-pool soil model and
of the carbon influx goes to the soil organic matter pooland__Y__ ~ 1 Y - 1 for the three-pool soil model.

the rest goes to the litter pool. The dynamics of these three™ e parameter values given by German et al. (2012) are for

carbon pools are a soil column with finite volume. Here we use both models
dc CpViC to represent the dynamics of the top 1 m of soil. Based on the
o (1—a) Fnpp— G+ K’ 3) results of German et al. (2012), the temperature dependence
of the model parameters evaluated here is given by

dcy,  CoViCi  CpVsCs V =8x 10 °exp(5.47+ 0.0637%) x (24 x 365), (12)
—=c +e¢ — HpCh, (4)

dr C+Ki Cs+Ks
and Vi=V xxy, (13)
dCsg CpVsCs
—— —qaF Cp— , 5

whereq is the fraction of carbon influx that directly enters Vo=V xxs, (14)

the soil organic matter pool, and usually is less than 0.05,
Vi and K| represent the maximum rate of litter carbon as-

similation per unit microbial biomass per year and the half- K = 10 x exp(3.19+0.00775) > 100Q (15)

saturation constant for litter carbon assimilation by microbial

biomass (in g C m?). To simplify mathematical analysis, we

assume that = 0, and will discuss the case with> O later. K= K x x, (16)
The equilibrium microbial pool sizes are identical for both Ks= K X xks, and

models:

F & = max(0.001, min(0.6,0.63— 0.016T7y)), (a7)

* _ npp

Cp = Wy (8—1 _ 1) ’ ©6) whereTs is mean temperature of the top 1 m soil{®) and

parametersy|, xvs, Xkl andxgs are tunable parameters that

wherex denotes equilibrium values. However the equilib- e yse to scale the rate of litter and soil decomposition, with
rium soil carbon pool sizes are different between the two,, . e [1,10], andxy, xks € [0.1, 1].V in Eq. (12) is mul-

models. For the two-pool model it is tiplied by a factor 24x 365 to convert from per hour to per
Ks year, andk is multiplied by 1000 to convert from milligrams
Cs= Vs (7 of carbon per cubic centimeter to grams of carbon per square
‘T meter (i.e., mg C cm? to g C n?) for the top 1m soil depth.
whereas it is less in the three-pool model: The valu_e used in this study fof, jis 4.38_ year?!, analogous
to rates in German et al. (2012) and Wieder et al. (2013). We
Cr = Ks @) impose a maximum value of 0.6 fer based on the work of
s % ~1 Sinsabaugh et al. (2013) and a lower limit of 0.001.

Both numerical simulations and analytical techniques
because part of the nonmicrobial equilibrium biomass is heldyere used to study the stability of the two models. For all

in litter, with numerical simulations, unless specified otherwise, we used
K a constant carbon influx of 345 g Cthyear ! representing

= v 9) the mean net primary production of the global land biosphere

(DT 1 under present climate conditions (Field et al., 1998), varied

soil temperature from-10 to 35°C, and modifiedxy, xys,
Xk andxgs within their respective ranges. The default values
are Ts =15°C, xy| = xi =8, andxy = xks =0.2. At steady
Cr— K, (10) state, the simulated carbon pool sizes using the default val-
' % _1 ues are 50.4 g C nt for Cp and 12650 g C m? for Cs for the
o two-pool model, and 688g C™ for ), 50.4gC nt? for
Cp and 13170 g C m? for Cs for the three-pool soil model.
Ks ] (11)  Thesevalues represent mean pool sizes within the global land
%HJTE) ~1 biosphere.

wheng > 0, the equilibrium pool sizes of litter or soil carbon
pools depend oa, and are given by

Ci=

www.biogeosciences.net/11/1817/2014/ Biogeosciences, 11, 18812014
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§ Fig. 3. Changes in litter carbon (upper panels), microbial biomass
g 13000 (middle panels) or soil organic carbon (lower panels) following a
o 12500 10% reduction in the initial pool sizes in microbial biomass and
§ 12000 soil organic carbon at time= 0 from their respective equilibrium
S 11500 pool sizes for the three-pool soil carbon model. The three panels on
'S the left are for soil temperatures of 16 and the right panels for

11000 - . .
0 20 40 60 80 100 120 soil temperatures of 3%C. The unit (gC nTZ) is the same for all
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Microbial biomass pool sizes (0-100 cm soil depth)

Fig. 2. Changes in microbial biomass (in g C¥1 upper panel) or . . o
soil organic carbon (in g C i2; middle panel) (bothingCm2,0—  Perature {s) of 15°C, the amplitude of the oscillation de-

100 cm soil depth) in time or soil organic carbon against microbial Creases to less than 5% of its initial value after 20 years.
biomass (lower panel) following a 10% reduction in initial pool Thus, both models have oscillatory responses to a pertur-
sizes at time = 0 from their respective equilibrium values for the bation to their initial values; however, the oscillatory re-
two-pool soil model. Soil temperature was constant & for this sponse in the three-pool model has a smaller amplitude than
simulation. the two-pool model at the sanfg. At higher temperatures
(Ts = 35°C) the oscillatory responses of litter carbon and mi-
crobial biomass are much stronger thaffat 15°C for the

4 Results three-pool model (see Fig. 3).
_ . _ The oscillatory responses of both models are a result of
4.1 Numerical simulations the interaction between substrate availability (litter or soil

carbon) and decomposer biomass (soil microbial biomass).

To study the stability of the two nonlinear models numeri- |n hoth models, the rate of carbon decomposition is propor-
Ca“y, we |n|t|al|zed the mOdels W|th 90 % Of the miCI’Obial tiona' to both the biomass Of decompOSers and the Carbon
biomass and soil organic carbon equilibrium pool sizes, anttoncentration of the substrate (Egs. 1-5). For the three-pool
100% of the litter carbon equilibrium pool, and ran both model, when soil microbial biomass is reduced below its
models for 500 years. equilibrium value at =0, the rate of litter carbon decompo-

Figure 2 shows that the responses of both microbialsition and the growth rate of soil microbial biomass are lower
biomass and soil organic carbon pools in the two-poolthan their respective values at equilibrium. As a consequence,
model to a small perturbation are oscillatory, and the am-jtter carbon increases and microbial biomass decreases. This
plitude of oscillation decreases with time. During the first |eads to more litter carbon being available for soil microbes,
50 years, the microbial biomass pool varies between 12 andn the growth rate of soil microbial biomass and rate of lit-
1149 Cn12 while soil organic carbon varies between 11508 ter decomposition rate consequently increase, soil microbial
and 134129 C m?. Following perturbation, both microbial piomass increases and litter carbon decreases. These changes
biomass and soil organic carbon spiral towards their equilibn sypstrate and microbial biomass carbon pools will result in
rium states with the width of spiral decreasing exponentially gscillatory behavior (see Fig. 3). The amplitude of oscillation
with time (see Fig. 2). decreases exponentially with time until both oscillatory pools

For the three-pool model, the response of the soil organiGeach their respective equilibrium states.
carbon is monotonic while the responses of litter carbon and
microbial biomass are oscillatory (see Fig. 3). At a soil tem-

Biogeosciences, 11, 1817831, 2014 www.biogeosciences.net/11/1817/2014/
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4.2 Mathematical analysis

Numerical simulations show that the responses of both mod-

els to a small perturbation are oscillatory and stable. We| *1 *Bl(l+i 4(1;?%71)
therefore conducted linear stability analyses to evaluate thq 2
stability of the two models more generally. This technique _ 7Bl<17i 4(11;?%71) ’ (20)
has been used in many studies of ecological models, biogeo} A2 5
chemical models and human—carbon cycle interactions (se¢
Manzoni et al., 2004; Raupach, 2007). —B;
The linear stability of a systemydd: = f(y,t), wherey A3
is a state vector, andl is a function — to small perturbations
can be determined by the Jacobian matix=df/dy) of where
the system. We linearized the nonlinear systems by assum- - " (-1 2
ing that changes of carbon pool sizes near their equilibriumB1 = (8,1%)%?" [ Vi ] >0 and 1)

values are proportional to the difference between the size of A v b

each pool and its equilibrium value, i.ey/dr = J(y — y*), ﬁ Ve (1 ) >0.

wherey* is the equilibrium value o§ (see Appendix A for

further details). If the response is stable, then the system will Both models have two complex eigenvalues with negative
return to its equilibrium state, otherwise, the system states (oreal parts, while the third eigenvalue of the three-pool model
carbon pools in our case) will depart from their initial values is a negative real number. This indicates that small perturba-
indefinitely. The stability of a linearized system is fully char- tions to the equilibrium carbon return to those equilibrium
acterized by its eigenvalues and corresponding eigenvectorstates through a series of damped oscillations, confirming
of matrix J. A stable system always has nonpositive eigen-what was observed in the numerical simulations.

values or nonpositive real parts, in case of eigenvalues being We used Egs. (18) and (20) to quantify the properties of
complex numbers, and an equilibrium is locally stable if all the oscillatory responses usipgperiod) andyg s (half-life).
eigenvalues of the Jacobian are negative or have negative rebr the two-pool model these are

parts, respectively. The response to a small perturbation is os-

cillatory if the eigenvalues are complex, or monotonic if the ;. — '@ _In@p (e -1 Ks [1_ &]72 I Gt Ks (22
eigenvalues are real (Drazin, 1992). —a1 Fopp Vs eVs Vs
If an eigenvalue related to the response of a carbon pooly 4
Aj,is complex {; =a; +bji, wherei? = —1), the change
of that carbon pool size W|th time close to equilibrium is os- . (871 _ 1) Ks
cillatory with a frequency of oscillation df; or period ) p=- =x — (23)
of 2r/b; (Roe, 2009). The amplitude of oscillation changes L s
with time at a rate of exja(¢). The half-life time fo5) of Similarly, for the three-pool model:
the amplitude decrease, or the time taken for the amplitude
to be reduced to half the initial value, can be calculated as @ (e -k [1 (Sl_l)“b}—Z (e 1-1)K (24)
—In(2)/aj if aj <0 (Drazm 1992) fos== Frpp 7 Vi x Vi

As shown in Appendix A, the eigenvalues;( 12) of the
linearization of the two-pool model are and

. TES -1_
(Al) __[os+ios/ 1) as  po (-DK 25)
*2 0.5—i05,/2-D 1

while the third pool (soil organic carbon) decays monoton-

where ically towards equilibrium according to exgff) and A3
Vs
F V. Hp 2 T (e -1k
A= ﬁfz [1— s_Vs:| >0, (19) Thus, the properties (period and half-life) of the oscilla-

tory approach to equilibrium in the microbial pools in both
whereas the corresponding eigenvalues for the three-podnodels, and the soil pool in the two-pool model or litter pool
model (.1, > andi3) are in the three-pool model, depend on the ratio of the half sat-
uration constant to the maximum decomposition rate. In ad-
dition, the response of organic soil carbon to a small pertur-
bation in the three-pool model is totally decoupled from the
responses of litter and microbial carbon (see Appendix A).

www.biogeosciences.net/11/1817/2014/ Biogeosciences, 11, 18812014
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350 60 T—— 1 three-pool model,max3), Whereaj1 and by are the val-
300 _ s0|—3 ©) ues of the real and imaginary parts of the first element of
o 250 f?i 40 ? the eigenvector for the microbial biomass carbon and are the
§ 200 g same for both model<;;0, Cpo, andCyo are the initial pool
o 190 2 0 sizes of soil organic carbon, microbial biomass and litter car-
< 10 . / bon; andaz; andas; are the first two elements of the third
52 0 / eigenvector corresponding #@. Given Fpp, € and |, the
00 02 04 06 08 10 12 %00 02 04 06 08 10 12 equilibrium pool sizes of microbial biomass in the two mod-
X Xy els are equal, but the soil carbon pool is at least one order of
magnitude greater than litter carbon, the maximal amplitude
06 20—z of the oscillation cycle of microbial biomass in the two-pool
o5 { — 01 ®) E) ot model is therefore much -
— 0 $ 15 05 greater than that of the three-pool
§ 0.4 ‘ § _ g; model (see Appendix B). The half-life and period are similar
§ 03 g 10 ' because the value d&fs/ Vs in the two-pool model is equal to
tg 02 % 05 / K)/V) in the three-pool model ifxs/xys = xki/xvi -
— X i /
Z(l) 0.0 @ 4.3 The temperature dependence of system stability and
0 2 4 6 8 10 0 2 4 6 8 10 soil carbon decomposition
XVS XVS

The responses and stability of the linearized systems vary
with soil temperature (see Figs. 3 and 4). In this study,
the values ofVs, Ks, V| or K| at a reference temperature

Fig. 4. Variation in the two-pool soil model at a soil temperature of
15°C of (a) half-time (g _5) with xig at different values afys (1, 3,

5,7, 9),(b) 1/ 5 with xys at differentxyg (0.1, 0.3, 0.5, 0.7, 0.9); _aco -
(c) period of oscillation p) with xys at different values ofys (1, 3, (75 =15°C) are varied by a factor Ofys, xks, xvi Or xk (see

5, 7. 9) andd) frequency of oscillation (1p) with xys at different Egs. 13, 14 and 16), respectively. To quantify the temperature
s (1, 3,5, 7, 9). responses of both models, we calculatggland p for both

models at differenfs and different combinations adis and
xys for the two-pool model oy andxy, for the three-pool
model using the analytic solutions (Eqgs. 22—-25).
To illustrate the numerical consequences of these analytic Figure 5 shows thafys and p increase withxys/xys for
results, we plot the values afs and p, or their reciprocals, the two-pool model. Results foi/xy from the three-pool
to. 51 and 1p (frequency) with different tuning parametetig model are quantitatively similar because the temperature de-
or xys, respectively (see Egs. 13, 14 and 16) in Fig. 4. As ex-pendence is quantitatively the same forand Vs or K| and
pected, half-life {5) increases linearly withs for a given K, and the differences i s and p between the two mod-
xvs, OF 1/10 5 decreases linearly withs for a givenxys. The els result from the terms in the square brackets in Eq. (19)
period increases witkys or the frequency of oscillation (&) for A and Eq. (21) for B1. Both those terms have a value be-
increases withs, and both increases are nonlinear. tween 0.3 and 0.98 within the soil temperature range from
The oscillatory response with longer period and half-life —10 to 35°C. Figure 5 shows that the period of oscillation
is likely to reach the equilibrium steady state much slower.(p) increases withys/xys for the two-pool model. For a given
Both the period and half-life increase withs/xys, therefore  value of xks/xys, t0.5 decreases witlfs when7s < 0°C, or
the system with larger value efs/xys will reach steady state when Ts > 20°C; and p decreases with an increase 18
much slower after some perturbation. Since the oscillatorywhen 75 < 10°C, and increases witlis when 75 > 30°C.
responses of both models are related to the complex eigerifFhe temperature responses of thg and p for the three-
values, and the dependence of two complex eigenvalues opool model are very similar to those for the two-pool model,
xks/xys in the two-pool model is quantitatively similar to the and are therefore not shown here. The results here suggest
dependence any/xy in the three-pool model, it might seem that both model systems will recover much faster after some
that the oscillatory response of two models should be quiteperturbation at a soil temperature between *2@han at
similar for a given carbon influxHnpp), with xy = xys, and  other temperatures, depending on the valuegh,s for the
xk = xks- However, the simulated oscillatory responses of two-pool model orxy/xy for the three-pool model.
two-pool model are much stronger than those of the three- These responses can be understood by analyzing the tem-
pool model. perature dependence of different termsgafin Eq. (22) for
This can be explained by studying the solution to the lin- the two-pool model and Eq. (24) for the three-pool model.
earized system. As shown in Appendix B, the maximal valueFor a givenFnpp, there are three terms dependentZ@rin
of the microbial biomass pool during the first cycle of oscil- 795 for both models: the first term is™t — 1, common to
lation is proportional to €0-Cpoa11)/b11 for the two-pool to5 for both models; the second term 4&/Vs in the two-

model Cpmax2), and to C’°‘C’?O“lﬁ%}f’l“e’z"ll‘cx(’%l for the  pool model ork|/V; in the three-pool model; and the third

Biogeosciences, 11, 1817831, 2014 www.biogeosciences.net/11/1817/2014/
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Fig. 6. Temperature dependence of different termsgaf or pe-
-10 0 10 20 30 riod for the two oscillatory pools in the three-pool model. The
T, C) solid and dashed curves represent the temperature dependence with

temperature-sensitive and temperature-insensitive microbial growth

Fig. 5. Variation of g 5 with xxs/xvs and 7s (upper panel) and pe-  €fficiency, respectively.

riod of oscillation withxys/xys andTs (lower panel) in the two-pool

model. The unit is year for botly 5 and period.
varies between 0.38 and 0.58 as soil temperature changes
from —10 to 35°C, variation of p with soil temperature is

term is that in square brackets with an exponent@finthe  proportional to,/(¢—1 — 1) Ks/ Vs in the two-pool model, or

Eqg. (22) for the two-pool model or Eq. (24) for the three-  /(:~-1_ 1)K,/ in the three-pool model.

pool model. As shown in Fig. 6 for the three-pool model,  The temperature dependence of microbial growth effi-
the first term ¢~!-1) increases witlls, the second term ciency also affects the turnover rate of soil organic carbon.
Ki/Vi decreases exponentially willy, and the third term de-  |f ¢ varies withTs, the turnover rate of soil organic carbon in
creases Withls but only varies within a small range. As a the three-pool model<43) is maximum around’s = 2°C
result, variation ofrps with soil temperature is dominated (see Fig. 7). However i does not vary wittfs, the turnover

by the responses of the first and second terms in Eq. (22)ate of soil organic carbon increases exponentially \ith
for the two-pool model or in Eq. (24) for the three-pool wjth an equivalen1g of 1.8.

model, orrgs o (671 — 1)K/ Vs in the two-pool model or

o (e~1—1)K/Vj in the three-pool model. For the parameter 4.4  Variations of equilibrium pool sizes to warming and

values used in our study,s is at a minimum whetfs = 2°C, carbon input: comparing the three-pool model with

and increases in warmer and colder conditions. However, if the conventional linear model

¢ does not vary withTs, fo5 and the rate of the oscillatory

pools approaching their steady state after some disturbandBecause of the variations of equilibrium pool sizes in the

(expl1t)) increase exponentially with, with an equivalent  two-pool model to warming and carbon input can be ex-

Q10 0f 1.8 (notea; = —In(2)1o5). plained in a similar way to the three-pool model, here
The response op to soil temperature is quite similar we only compare the three-pool model with the conven-

to g5 for both models, and can be calculated as the prodtional linear model. At equilibrium, microbial biomass does

uct of three terms (see Fig. 6). Because the third term onlynot change and litter carbon biomass decreases with soil

www.biogeosciences.net/11/1817/2014/ Biogeosciences, 11, 18812014



1824 Y. P. Wang et al.: Nonlinear soil carbon models

= o 12
8 15 o
=90 S 114 o
o< < ' o ®
\.ff \F_L &) 101 o ® e 0 © ° o ©
O < 1.0 s ° o
L8 / < 09/ ° 5
© = 7 8 ° o
- (U / — [¢]
B o 0.5 P g 0.8 ° . i
> .Q = 5
o 'c - 0.7
cac C—— 0 1 2 3 4 5 8
s © 0.0 ®
oS 10 o0 10 20 30 © 11
©
0 E 1.0 00000000 0 0 0
T.(°C) o .
7] L]
_ _ _ S 0.9 L
Fig. 7. Temperature dependence of the turnover rate of soil organic g .
carbon decomposition with temperature-sensitive (solid curve) or 5 081 * .
temperature-insensitive (dashed curve) microbial growth efficiency < 07 | .,
of soil microbes in the three-pool model. '§ '
L 06
= 0 1 2 3 4 5 6
warming if microbial growth efficiency does not vary with o 11
soil temperature; or microbial biomass decreases and litter 2 10 “
carbon increases with soil warming if microbial growth ef- % o )
ficiency decreases with an increase in soil temperature for < 0.9 e
the three-pool model (see Fig. 8). However soil carbon will 2 o8 - .
decrease with soil warming, independent of the temperature 8 .
dependence of microbial growth efficiency with an equiva- § 0.7
lent Q10 of 1.8. This is explained later. 0.6
The equilibrium pool sizes of litter or soil carbon do 0 1 2 3 4 5 6

not change with carbon inputFfpp), but soil microbial
biomass pool size at equilibrium will increase proportionally
with an increase inFnpp. This is easily seen by examining Fig. 8. Normalized equilibrium responses of the litter carbon, mi-
Egs. (8-10) for the three-pool model with= 0. For a con-  crobial biomass or soil carbon to soil warming by the three-pool
ventional linear model of soil carbon decomposition, its pool model witha = 0. The open and black solid circles represent the
sizes (litter, microbial biomass or soil carbon) will increase change in pool size with temperature-independent microbial growth
proportionally with an increasgnpp, and decrease with soil  efficiency (0.39) or temperature-dependent microbial growth effi-
warming (Xia et al., 2013). Therefore the responses to soifiency (a change from 0.39 at 16 to 0.31 at 20C), respectively.
warming can be quite different for the litter and soil micro- Response of soil carbon to warming is independent ahd can
bial biomass in the nonlinear models, and the response tf€ explained by @10 function (Cs(ATs) = 0l ATS)thereATS
an increasefpp can also be quite different for litter or soil 1S the soil warming irfC) with Q10 of 1.8. Change in each pool
carbon pools between the nonlinear and conventional linea?2€ 'S coalculated as change relative to the equilibrium pool size at
models. Is=15°C.

The above analysis is done by assuming:0 although
the results will be similar ifr is small (< 0.05 for most field
sites). To help explain the differences in the responses of théon pool (4 Cp) are proportional tcz‘«“npp/(f1 —1), therefore
equilibrium carbon pools to change fiypp between the lin-  the response of soil carbon to warming is independent of the
ear and nonlinear models, we developed a three-pool lineatemperature dependence of microbial growth efficiency (see
model that has same equilibrium pool sizes as the nonlineaFig. 8). Whena # 0 and is small, the response of soil car-
model (see Appendix C). It should be noted that the tran-bon to warming will also depend on the temperature response
sient responses of the three-pool linear model are differenbf microbial growth efficiency, but the dependence is rather
from the three-pool nonlinear model. We find that both the weak.
turnover rates of the litter and soil carbon pools at equilib- All of the analyses above relate to the properties of the
rium are proportional tdpp and therefore their equilibrium  carbon pools at equilibrium but do not tell us about how
pool sizes are independent &k, Whena =0, both the  warming or changes iy affect the transient responses.
turnover rate of soil carbon and input of carbon to soil car- As shown in Fig. 9, the simulated responses of litter carbon

Soil temperature increase (°C)
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or microbial biomass to a ® warming by the nonlinear ~ s 800
model are oscillatory, and converge to their equilibrium pool 5 7| . 0 e -
sizes along quite different trajectories from those by the con- £ * ‘; o o i
ventional linear model. Furthermore the simulated litter car- § 40| iv="""" 400
bon in response to warming by the nonlinear model de- § = @) 300 %)
creases initially below the initial value, and then increases =~ 20 = 7 o0 2 0 a0 s 4e0 200 40 00
to above the initial value after 200 years if the microbial
growth efficiency is reduced from 0.39 to 0.31 aftetGG . ™[, () 120 ©
warming. This response cannot be reproduced by the Iineagwﬁ N 100
model, as the response of the linear model to warming wills 5 * :"ll &
always approach the new equilibrium exponentially, that is §2  *°] fi'~~-~ __ 0
Ci (1) — Cio = (Cf — Cio) (1 — exp(—pt)), whereCyg is the = 40 0| Mmoo
initial pool size, yis the turnover rate of litter carbon angf 0 20 40 200 300 400 500 0 20 40 200 300 400 500
is the new equilibrium pool size. Therefore if the final equi- Lo
librium pool size is greater than the initial pool size, the pool = . | © L4000 ®
size after timer = 0 is always greater than the initial pool = 50 \ 13000 |\
size for the conventional linear models. S 12000 12000 \

The simulated response of soil carbon to@C5wvarming S iow L 11000 L
by the nonlinear model decreases with time much faster thau L 10000

100 200 300 400 500 0 100 200 300 400 500

that by the linear model for the first 50 years, then slower thar ’ Year Vear

the linear model after 100 years (see Fig. 9c and f). The sim-

ulated response of soil carbon by the nonlinear model cannofig. 9. Responses of different carbon pools to’@5varming above

be accurately reproduced using one soil carbon pool, this i¢5°C at timez =0 of the nonlinear (dashed black curves) or lin-

because the decomposition of soil carbon in the nonlineaf@" (yellow curves) versions of the three-pool models. Pdaets)

model depends on microbial biomass linearly and soil car-" @n instant acclimation to warming with a microbial growth ef-
ficiency of 0.39 as calculated for a soil temperature of@5and

bon nonlinearly. However the simulated response of the nothe panels(d—f) for no acclimation to warming with a microbial

linear model ca_n b(_e accuratel_y approxmated using tW(? SOIgrowth efficiency of 0.31 as calculated for a soil temperature of

carbon pools with first-order kinetics, as shown by the fittedgoc o — 0,02 for all simulations here. The pink curves on panels

pink curves in Fig. 9. (c) and (f) are the best fitted regressions to the simulation by the
nonlinear model (dashed black curves).

5 Discussion
menov et al., 1999), in which the oscillation of soil microbial

In this study we show both analytically and numerically that biomass carbon lasted for over a month, and was predom-
the two nonlinear models of soil carbon decomposition haveinately driven by microbe-substrate interaction only in the
an oscillatory response to a small perturbation (Figs. 2, 3)first week or so (Zelenev et al., 2006), which is much shorter
and provide quantitative understanding of how model paramthan the strong oscillation of multiple decades simulated by
eter values affect those oscillations (Figs. 4, 5). the nonlinear models here. The response of soil organic car-

Our analysis shows that responses of microbial biomas$on to a step change in carbon inputs is oscillatory only in the
and soil carbon in the two-pool model, or litter carbon and two-pool nonlinear model, but is monotonic in the three-pool
soil microbial biomass in the three-pool models, converge tononlinear model. Furthermore, oscillatory responses of soll
new states by a damped oscillation. We quantify the oscil-carbon to perturbations under relatively constant conditions
latory responses using two parametegs,and p of oscilla- are yet to be observed. Instead, field observations support the
tion for both models (Fig. 3). Bothy s and p increase with  simulated monotonic responses of soil carbon to a perturba-
(e~ 1-1)K¢/Vsin the two-pool model ord~1-1)K,/V; in the tion by the three-pool nonlinear model or conventional linear
three-pool model (Fig. 4). Becaugg/Vs or K|/V| decreases model, and are inconsistent with the simulated response by
exponentially with an increase in soil temperature, and-¢ the two-pool microbial model (Adair et al., 2008; Zhang et
1) increases with soil temperature, the optimal temperatural., 2008; Yang et al., 2011; Li et al., 2013). Therefore the
at whichzgs and p are smallest is between 0 and*I5 de-  two-pool nonlinear model may be limited to predicting mi-
pending on other parameter values. Therefore the two nonerobial dynamics over relatively short timescalesl(year),
linear models approach their respective equilibrium faster atand is probably not suitable for applications at regional or
a soil temperature between 0 and°Tothan at other higher global scales over multiple years or longer, and therefore will
or lower temperatures. not be discussed further.

Oscillatory responses of soil microbial biomass to nutrient When no carbon input enters the soil carbon pool di-
or carbon inputs in the rhizosphere have been observed (Seectly (@ =0), the response of soil carbon to warming
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is independent of microbial growth efficiency. When  thesis, plant production, litter mass, and soil carbon, partic-
is small (<0.05), the response of soil carbon to warm- ularly when nitrogen input to the ecosystem is high (Hun-
ing with temperature-dependentis weaker than that with  gate et al., 2009). In contrast, leaf litter manipulation studies
temperature-independentThis explains why, in the studies demonstrate that augmenting litter inputs does not necessar-
of Allison et al. (2010) and Wieder et al. (2013), who used ily increase soil C storage (Sulzman et al., 2005; Nadelhof-
a value of 0.02 fow, the soil with temperature acclimation fer et al., 2004; Leff et al., 2012). Elsewhere, a recent study
of ¢ was predicted to lose less carbon than the soil withoutfound that mycorrhiza-mediated competition between plants
temperature acclimation. and microbes, rather than NPP (net primary productivity), is
Mathematically there are two fundamental differences be-the major driver of soil carbon storage (Averill et al., 2014).
tween the nonlinear microbial models and conventional lin- Therefore more studies are needed to determine the sensitiv-
ear models: (1) the rate of decay of the substrate (litter or soilty of soil carbon storage to carbon input.
carbon) is proportional to microbial biomass and varies with The simulated responses to soil warming by the nonlinear
substrate concentration following the Michaelis—Menten ki- and conventional linear models also are quite different. This
netics in the nonlinear model, and is proportional to substratéhas attracted considerable attention recently (Allison et al.,
concentration only in the conventional linear model; and (2)2010; German et al., 2012; Wieder et al., 2013). The nonlin-
the microbial growth efficiency can vary with soil tempera- ear model simulated a decrease in microbial biomass carbon
ture in the nonlinear model, but typically does not vary with and an increase in litter carbon whedecreases with warm-
soil temperature in the conventional linear model. The firsting or no change in microbial biomass and a decrease in litter
difference results in oscillatory responses to a small perturcarbon ife does not vary with warming; whereas the conven-
bation in the nonlinear model and monotonic responses in théional linear models always simulate a decrease in both mi-
conventional linear model, and the second difference resultgrobial biomass and litter carbon pools with warming, given
in different sensitivity of soil carbon to warming between the everything else is independent of warming. These differences
two types of models. can be assessed by comparing changes in soil and microbial
The nonlinear and linear models represent two paradigmsbiomass carbon from various experiments and observations.
of our diverging understanding of soil carbon dynamics atZhang et al. (2005) found that warming did not significantly
present. In the following we will discuss which one is bet- change the soil microbial biomass amount but the species
ter supported by the evidence available from the observed¢omposition of the microbial community. As a result, micro-
responses of soil carbon to carbon input or warming atbial activities acclimated to the warming and soil respiration
timescales of years to decades. did not increase at the rate predicted by conventional linear
By mathematical coincidence, the formulation in the non- models (Luo et al., 2001). The shifted microbial community
linear models gives very different sensitivities of equilib- toward more fungi and less bacteria under warming than in
rium pool sizes to carbon influx from the conventional lin- the control was found to be the dominant driver of warming
ear model. The equilibrium pool sizes of litter or soil carbon acclimatization of soil respiration (Zhang et al., 2005). Fur-
are insensitive to a change in carbon input in the nonlineathermore, climate warming depletes labile carbon (Xu et al.,
three-pool model, and are proportional to change in carbor2012) and responses, such as changes in nutrient dynamics
input in the conventional linear model. Although the equi- and use efficiency, ecohydrology and plant phenology. (see
librium microbial carbon pool size is linearly proportional Luo, 2007; Melillio et al., 2011). It is still a challenge to re-
to carbon influx, which agrees with observations (Fierer etalistically simulate this cascade of mechanisms underlying
al., 2009), soil microbial biomass only accounts for about 1-acclimation of soil carbon decomposition.
4 % of total soil carbon (Sparling, 1992; Serna-Chavez et al., Theoretically microbial growth efficiency also varies with
2013), therefore the sensitivity of total soil carbon (micro- substrate quality and the composition of the soil microbial
bial biomass and soil organic carbon) to carbon influx in thecommunity (Frey et al., 2013; Sinsabaugh et al., 2013). The
nonlinear models is close to zero. nonlinear model seems to be quite flexible to capture a range
This difference in their sensitivity to carbon influx of the of the observed responses, and its simulated responses to
two types of models can be assessed using measurement&rming also encompass the simulated responses by the con-
from different ecosystems with different net primary produc- ventional linear model if appropriate temperature sensitivity
tion within a region, such as forests and grasslands, and thef ¢ is used in the nonlinear model. However the nonlinear
same ecosystems under different ambient @ atments. model has an unrealistic sensitivity to carbon influx. There-
Measurements of soil carbon change before and after confore a better model would have the sensitivity to carbon in-
version of forests to grasslands generally support the predicfux of the conventional linear model with the flexible re-
tions by the conventional linear model (Emanuel et al., 1984;sponse of the nonlinear model to warming.
Wang et al., 1997; Murty et al., 2002). Plant invasion usu- In theory, the nonlinear soil carbon models represent the
ally increases carbon input into ecosystems, leading to incarbon decomposition process more realistically than the
creased soil carbon storage (Liao et al., 2008). Several metazonventional model, but are yet to be tested against a wide
analyses also showed that elevatedb@@reased photosyn- range of field observations. Some key processes are still
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Appendix A and
Stability analysis of the nonlinear soil carbon P—— R P G 2 o
decomposition models 1=Coje; = 1=, K1 n (6)
2
: . : -2 Fi Ho
The three-pool model of soil carbon decomposition with B2 =Cp ogzs (e 1 pf)ub Ks (1 s) > 0.

0 can be written in the following form:
As the real part of the two complex eigenvalugs € a; +

d G Frpp —81 b1i, A2 = az + bpi) and the third eigenvaluerf{ = a3) are
Gl ]=1 0 |+ |esates2a—ty | Ch. (Al)  negative, the three-pool model and its response to a small
Cs 0 Ho — 82 perturbation is a spiral focal. The period of the oscillation is

2r/b1, and amplitude of the oscillation decays exponentially,

where i.e., expg1t), and the time in years taken for the amplitude to
o avi _ GsVs reduce to half its value at tinte= 0, orzg 5, is —In(2)/az. The
§1= C+K’ §2= Cs+Ks third pool (the soil organic carbon pool) responds to small

perturbations monotonically without any oscillation.

The stability of the Eq. (Al) around the equilibrium point  gimjlarly theJ matrix for the two-pool model is given by
(Cf", Cg, C¢) is determined by the following linearized sys-

tem (see Drazin, 1992): )
( ) €82 — Mo 8Cb3&;%25 . (A7)
e o Wy — 82 —Chbye

Cs C; Substituting the equilibrium pool sizes into Eq. (A5), we
haveegs — iy, =0, and |y — g2 = (1 — &™) .

where C|, Cp,, and Cg represent a small perturbation about ~ The two eigenvalues of Eq. (A7)y and. are given by

their respective equilibrium valud.is a 3x 3 Jacobian ma-

trix, and it elements are given by <k1> . 0.5+i05 /4<1*T€>Pb -1 (48)

—cbgg —g1 0 *2 0.5—0.5,/ 4= _q
J= stagl eg1+eg2— Wy eCoyes 3g2 ) (A3)
and
0 K — 82 _Cbacs
2
Substituting the equilibrium pool sizes of all three pools , _ Fopp Vs (0 Wy
, A= 1 > 0. (A9)
(Egs. 8-10) intd), we have (e71—1)py Ks &Vs
~Cp3d —g1 O
J= ergﬁ 0 eCpye dg2 | (A4)  Appendix B
0 0 —colg

The general solution to the linearized system
The eigenvaluesi() of J are solutions of the characteris-
tic equation of Det{-Al) =0, wherel is the identity ma- The general solution to the linearized system (Eq. A2) is
trix of order 3,0 is a 3x 1 zero matrix and Det represents
the determinant of matrid. The corresponding eigenvec- ¢ — Zk exp(a;t) [cos(b;t) +i sin(bit)] Vi, (B1)
tors (1, v, v3) can be calculated by solving the equation
(J=2jl)v; =0, j =1, 2, 3. For each eigenvalug(, the

eigenvectory(;) is a 3x 1 matrix. Because the last row 8f  \where C represents the departure from the equilibrium pool

has only one nonzero element, the third eigenvalue is given roN\T
by —Cbdga/dgCs. sizes, or(Cs, Cb) for the two-pool model, o(CI . Cp, Cs)

The eigenvalues of the three-pool model are given by for the three-pool modek; is a constant to be determined
from initial pool sizesy; is the eigenvector of ;, andi, =

. . .2 .
—B (1+,» M,O a+bi, \y=a—bi,i“=-1,a; <0, andvy = (a11+ b11i,
M : \/ZT 17, andvz = (a11-b11i,1)" .
Ao | = 731(1 \/W) , (A5) Given the initial values of all carbon pools ()‘f t=0=
3 2 Cio» Cpt =0) = Cj, and Cg(t = 0) = Cy, Eq. (B1) can
—B also be written as follows:
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for the two-pool model The approximation in Eq. (B9) is made because the size
of soil organic carbon is at least two-orders of magnitude
) ( ) + ChO exp(ai1t) greater than microbial biomass carbon, apgk0, a31<0 and

< a32<0. Numerical calculations also show thakQi1a32 —
<allcos(b11t) — bllsln(bllt)) az1 < 1, therefore the amplitude of the oscillation of micro-
cos(b11t) bial biomass in the two-pool model is greater than that in the
(B2) three-pool model.

+

%o bO 411
bll exp(aiit)

a11Sin(by1t) + b11c0s(b11t) Appendix C
sin(b11t) ’

The three-pool linear model of soil carbon decomposition
for the three-pool model

C C* To analyze the dependence of equilibrium pool sizes in the
Cp | = CI* + c1exp(aiit) nonlinear models to warming or changes in carbon input, we
C Ct’)" ! 11 construct the following three-pool linear model:
S S
a11€0s(b11t) — b11Sin(b11t) ac = (1— &) Fpp— WGl (C1)
cos(b11t) + coexp(a11t) dr PP ’
0
a11Sin(b11t) + b11c0S(b11t) (B3) o
sin(b11t) o — M Ci+eusCs — UpCh (C2)
0
asi dc.
+c3exp(rar) aiz , = = ®Fop+ HCo — ICs . (C3)

The notations we used in Egs. (C1-C3) have the same defi-
and nitions as for the three-pool nonlinear soil model. Two new
variables are introduced, the turnover rate of litter caron p

1= Cpo— Cyoa32, (B4) and the turnover rate of soil carbog poth per year.
Assuming the equilibrium pool size of the litter carbon,
) ) ) ) microbial biomass and soil carbon of the linear model above
Cio— (CbO - Csoaaz) a11— Cygaz are equal to those by the nonlinear three-pool model. We
cr= b ) (B5) have
11
(1— ) Fpp 1 1
/ == e | g Fapp  (C4
ca=Clo. ®6) G [< “Dd-am w] (D
whereas1 andagy are two elements in the eigenvecty
corresponding t@s, orva = (a1, aso, 1)7. _ aFnppt+UpCp . 1 Vs (C5)
The maximal value oCy, in the first oscillation is then Hs= Ct - e~1-1) Ks
obtained abj1t = /2, and its magnitude is as follows: e 1
for the two-pool model [m - VJ npp
Cpmax2= €0~ ot exp(allﬂ ) , (B7)  Therefore the turnover rates of both litter carbon and soil car-
b11 2b11 bon are proportional to the carbon inpAgpp. As a result, the
for the three-pool model equilibrium pool sizes of litter and soil carbon are indepen-

) ) , , dent of carbon input. The temperature dependence ang

Cp— Cpoa11+ Cpazzarr — C gazn ex ( a11ﬂ> . (B8) ls are given by the terms befofgpp on the right-hand sides
2b11 of Egs. (C4) and (C5), respectively.

The initial values gsed in the simulations shown in Figs. 2

and 3 areC,; =0,C,, =0.1C;, C , = 0.1C¢, and

Chmax3= b
11

Cpmax3 _ (a11a32—a31) Cg —a1n1Cy

~ ajjazp—azy . (B9)
Chmax2 C¢ —a1nCy
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