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Abstract. In this rapidly changing world, improving the capacity to predict future dynamics of

ecological systems and their services is essential for better stewardship of the earth system. Prediction relies

on models that describe our understanding of the major processes that underlie system dynamics and data

about these processes and the present state of ecosystems. Prediction becomes more effective when models

are well informed by data. A technological revolution in the capacity to collect data now provides very

different opportunities to test hypotheses and project future dynamics than when many standard statistical

tests were first developed. Data assimilation is an emerging statistical approach to combine models with

data in a rigorous way to constrain model parameters and system states, identify model error, and improve

ecological prediction. In this paper, we illustrate how data assimilation can improve ecological prediction

to support decision-making by reviewing applications of data assimilation across four different research

fields: (1) emerging infectious disease, (2) fisheries, (3) fire, and (4) the terrestrial carbon cycle. Across these

fields, data assimilation substantially improves prediction accuracy, highlighting its important role in

enabling predictive ecology. Data assimilation with regional and global models faces major challenges,

such as the large number of parameters to be estimated, high computational demands, the need to

integrate multiple and heterogeneous data sets, and complex social-ecological interactions. Nevertheless,

data assimilation provides an important statistical approach that has great potential to enhance the

predictive capacity of ecological models in a changing climate.
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INTRODUCTION

We live in a period marked by numerous
environmental challenges: rapid climate change,
profound alteration of biogeochemical cycles,
unsustainable depletion of natural resources,
rapid spread of invasive species, emerging
infectious disease, and unprecedented threats
from natural and anthropogenic disturbance
(IPCC 2007). Predicting future changes in natural
resources and the environment is therefore
critical to effectively inform policy-makers if
society hopes to continue to extract and use
natural resources to support local-to-global econ-
omies and sustain thriving human societies.
Toward that end, we, as a research community,
need to advance the predictive capacity of
ecology to better anticipate future states and
services of ecosystems and enable a better
stewardship of the earth system.

Despite the great societal need to predict future
changes in the environment and natural resourc-
es under global change, predictive ecology has
not been well developed, partly because we still
lack effective approaches to improve the accura-
cy of ecological prediction. Data assimilation
(DA) has the potential to enable and empower
predictive ecology (Luo et al. 2011). DA refers to
a suite of statistical techniques used to improve
process models based on data. A process model
describes how a system works by characterizing
major components and their interactions under
various forcing scenarios. Like regression analy-
sis, DA requires both a model and data to be
combined, aims to minimize differences between
data and model, and uses an algorithm to obtain
optimal parameters with data-model differences
being minimized (Lewis et al. 2006). Unlike
simple regression, DA can be applied to complex
process models and multiple heterogeneous data
sets, can optimizes tens or hundreds of param-
eters and state variables simultaneously, and has
the capacity to navigate complex parameter
spaces. As such, a DA-trained process model
can not only better describe observed dynamics
of an ecological system but can also provide
improved predictions of future states of the
system in a manner consistent with process
understanding (Luo et al. 2011, Keenan et al.
2012). For example, it has long been used to
successfully improve numerical weather predic-

tion. The capacity of DA to improve ecological
predictions, however, has not been fully ex-
plored.

This paper examines how DA may enable and
empower predictive ecology. We first discuss
approaches used to predict future states of
ecological systems. Then we use examples from
four research areas, infectious diseases, fisheries,
fire, and the carbon cycle, to show that DA can
make predictive ecology possible by improving
ecological predictions to the extent that predic-
tion results can guide policy making. We
conclude with a discussion of the future chal-
lenges and opportunities for further develop-
ment of DA to enable predictive ecology.

APPROACHES OF PREDICTING FUTURE STATES
OF ECOLOGICAL SYSTEMS

Ecological prediction involves describing fu-
ture state of ecological systems with fully
specified uncertainties (Clark et al. 2001). There
are two types of ecological prediction: (1)
classical prediction of the most likely future state
of an ecological system, conditioned on current
observations and trends; and (2) projections,
which are ‘‘what-if’’ analyses of the most likely
future state of a system under explicit scenarios
of climate, land use, human population, technol-
ogies, and economic activity (Luo et al. 2011).
Classic prediction may be applied to fast-evolv-
ing systems, such as the spread of an infectious
disease, whose dynamics are strongly governed
by their current state, whereas projection be-
comes necessary when alternative scenarios, such
as disturbance impacts on ecosystem carbon
dynamics, are plausible. Both types of predic-
tions must quantify the past and current states of
ecological systems as a starting point and then
use models to project the future dynamics.

Traditionally, models have been the primary
tool for predicting the future states of ecological
systems. For example, biogeochemical models
have been incorporated into earth system models
to predict responses and feedbacks of the
terrestrial carbon cycle under climate-change
scenarios (Lawrence and Swenson 2011). Those
predictions have been incorporated into the
assessment reports of the Intergovernmental
Panel on Climate Change (IPCC) to guide
mitigation and adaptation efforts by govern-
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ments and public (IPCC 2007, 2013). The models
used have incorporated the dominant processes
of ecological systems in order to quantitatively
explore ecosystem dynamics. Each of these
models usually projects one deterministic trajec-
tory about the future behavior of the system. The
trajectory, in most cases, does not capture the
dynamics of the ecosystem in the real world
because using fixed values for all the parameters
in one deterministic model does not account for
uncertainty in the parameters and state variables.
Therefore, models alone often do not represent
the past and current system dynamics closely
enough to allow confidence in their predictions
(Schwalm et al. 2010, Dietze et al. 2011, Keenan et
al. 2012).

To be useful for predictive ecology, we need
both process models, to represent key processes
that determine the dynamic behavior of an
ecological system, and also data, to identify
those key processes and constrain model param-
eters and state variables via data assimilation.
DA treats the model structure and ranges of
parameter values as prior information in a
Bayesian framework to represent the current
state of knowledge. It uses global optimization
techniques to update parameters and state
variables of a model based on information
contained in multiple, heterogeneous data sets
that describe the past and current states of an
ecosystem (Fig. 1). The posterior distributions of
estimated parameters through DA usually in-
clude the maximum likelihood estimates and are
used for forward modeling toward prediction.
The probability density function of predicted
future states after DA usually has a narrower
spread than that without DA for the same model
structure and priors (Weng and Luo 2011, Keen-
an et al. 2013). In the case that data does not
match model structure and/or priors, data sets
should not be assimilated into a model before the
model structure and/or priors are reexamined
and adjusted (LeBauer et al. 2013).

DA techniques have long been successfully
applied to improve the accuracy of weather
forecasts by initializing an atmospheric model
with estimates of recent and current weather that
form a basis for weather forecasts for the next
few days (Kalnay 2002). Numerical weather
forecasting was first attempted in the 1920s but
did not produce realistic forecasts until the 1950s

when DA could be done by computer simulation.
Since then weather forecasts have improved
steadily and are currently much more accurate.
This great success results from advances in (1)
mathematical models to represent physical pro-
cesses of atmosphere dynamics, (2) improved
observation technologies, and (3) DA to infuse
observations into models to continuously update
predictions. In DA, both model and data uncer-
tainty are fully specified, as the information
content of a prediction is inversely proportional
to its uncertainty (Chatfield 1995, Clark et al.
2001, Liu and Gupta 2007). It is also important to
understand which processes drive predictive
uncertainty (Weng and Luo 2011, Dietze et al.
2013, LeBauer et al. 2013). Thus, data-model
integration via DA acknowledges the critical
importance of not just data quantity, but also
the uncertainties in both the model and the data,
in providing a predictive understanding. Overall,
DA can improve ecological prediction by (1)
providing estimates of parameters, initial values,
and state variables, (2) quantifying uncertainties
with respect to those parameters, initial condi-
tions, and modeled states of an ecological system,
(3) selecting alternative model structures, and (4)
providing a quantitative basis to evaluate sam-
pling strategies for future experiments and
observations that will enable improvement to
models and predictions (Luo et al. 2011).

This paper mentions a few DA techniques,
which mostly are variants of the Kalman filter
(KF). This is a recursive algorithm for estimating
initial conditions, parameters, and state variables
of a model from a series of heterogeneous,
intermittent measurements (Kalman 1960). The
KF iteratively repeats two sequential steps:
forecast and update. The forecast step evolves
the currently estimated ecosystem state forward
in time using the model. The update step adjusts
target parameters by combining observations of
the current state of a system with the results from
a model. The Ensemble Kalman Filter (EnKF) is a
commonly-used and flexible variation on the KF
that uses Monte Carlo techniques to generate
ensemble predictions for the forecast step (Gao et
al. 2011). This paper mentions a few DA
techniques, which mostly are variants of KF.
For a detailed description of DA techniques and
principles, please refer to classical books by
Kalnay (2002), Lewis et al. (2006), and Evensen
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(2007) or some of the published papers, including
those by Wang et al. (2009), Harrison (2011), and
Peng et al. (2011).

APPLICATION OF DA IN PREDICTIVE ECOLOGY

As a relatively new technique to ecology, DA
has only recently been applied to a breadth of
research issues. In this section, we review
examples of its applications in four diverse fields
of ecological research. In each field, we briefly
describe the system and research issues, the
process-based models used to describe those
systems, and the effectiveness of DA in con-
straining the models and their predictions.

Infectious disease
The study of epidemics has long recognized

the importance of connecting observations with
theory. DA is a powerful tool for rigorously

establishing these connections, allowing predic-
tions of the trajectory of infectious disease
outbreaks—an excellent example of the impor-
tance of DA to societally relevant predictive
ecology. The dynamics of infectious diseases are
classically described by Susceptible-Infected-Re-
moved (SIR) models, which predict threshold
responses to both population size and R0, the
ratio between contagion and recovery rate
(Kermack and McKendrick 1927). Given these
theoretical thresholds, DA has historically been
solely focused on estimating the parameters of
SIR models (LaDeau et al. 2011). However, one of
the primary challenges in disease prediction is
that in the early stages of an outbreak the key
parameters almost always have to be estimated
from very few data points. Even with well-
studied human diseases like influenza, key
parameters still need to be estimated each year
from limited information (Hooten et al. 2010).

Fig. 1. Techniques framework for ecological prediction. Data assimilation uses observed data to train models

and updates the model output so as to accurately describe the past and current states of the system and finally to

better predict the future states.
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Combining this difficulty with the fact that the
onset of an outbreak is stochastic, non-linear, and
sensitive to initial conditions, accurate prediction
of outbreaks remains challenging, whether it is
for an animal, plant, or human disease.

A growing body of DA literature goes beyond
just parameter estimation to demonstrate the
potential for real-time estimation and prediction
of both parameters and state variables (such as
the number of people currently infected). In real-
time estimation, updates to forecasts are gener-
ated automatically based on new observations as
soon as those observations are made. For
example, the emergence of real-time data on
human influenza indirectly from Google Flu
Trends has spawned multiple attempts at real-
time assimilation (Dukic et al. 2012, Shaman and
Karspeck 2012). The real-time modeling during
the 2001 foot-and-mouth epidemic in the UK
(Keeling et al. 2003, Tildesley et al. 2008)
contributed substantially to decisions to restrict
animal movement and cull livestock populations.
These actions have been credited with helping to
control the outbreak, and more generally suc-
cesses like these have contributed to progress of
disease modeling toward a more predictive
science (Tildesley et al. 2008).

The real-time daily forecast of the 2009 H1N1
outbreak in Singapore is an excellent example of
the use of DA to quickly create an operational
forecast system (Fig. 2; Ong et al. 2010). This
largely grass-roots effort was pulled together
within a month with no budget during the early
stages of the outbreak by researchers at local
hospitals and universities who asked local clinics
to report cases of influenza-like illness (Ong et al.
2010). A Susceptible-Exposed-Infectious-Re-
moved model was updated daily using a
sequential DA approach to evolve the estimates
of both the model parameters and the numbers of
individuals in each state. The parameters of the
model are estimated within the Bayesian statis-
tical paradigm in which semi-informative prior
distributions are assigned to parameters and
incoming data incorporated via the likelihood
function to obtain a time series of posterior
distributions for the parameters and unobserved
state space. By doing so, DA increased the
confidence in parameter estimates over time,
while allowing parameters to change as the
epidemic evolved. From these daily updated

states and parameters, probabilistic forecasts of
the epidemic’s progression were generated for
the coming month and forwarded to a public
website. Initial forecasts were adversely affected
by uncertainty in the parameters, caused by the
vagueness of the subjective prior distributions
and the scarcity of information from the data
(Ong et al. 2010). So, early in the epidemic the
model tended to over-predict the magnitude of
the outbreak. However, the accuracy improved
through time. The model correctly predicted the
timing of the peak infection weeks ahead of time
and provided a remarkably accurate forecast of
the declining phase of the epidemic. These
forecasts were publicized by the local media
and are believed to have contributed to increased
transparency, improved risk communication and
mitigation, and reduced panic.

While much of the above discussion focused
on human diseases there is also a growing body
of examples of DA in plant, animal, and zoonotic
disease systems. Outside the context of real-time
forecasting, Bayesian state-space models have
been used for combined parameter and state
estimation in systems ranging from measles in
sub-Saharan Africa (Ferrari et al. 2008), to white
pine blister rust in the greater Yellowstone
ecosystem (Hatala et al. 2011), to chronic wasting
disease of North American mule deer (Farns-
worth et al. 2006). More generally, hierarchical
models are being used in disease modeling to
better partition different sources of uncertainty,
such as separating process variability from
observation error (LaDeau et al. 2011).

Fisheries
Sustainable exploitation of marine resources,

such as commercial fisheries and fish farming, is
becoming increasingly important for economic
development. Given past fishery collapses, deci-
sion-makers need information on current and
potential future states of fish stocks. DA tech-
niques, such as the Kalman filter, were first
applied to fisheries models in the 1990s (Schnute
1991). Now, a wide array of DA techniques has
been applied to fishery models that generally
describe population dynamics and spatial distri-
butions of fish presence and absence.

Fish stock assessment models are designed to
determine the effects of the fishery on fish
populations and usually include the demograph-
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Fig. 2. Real-time forecasts of H1N1 in Singapore. The first three rows depict observations (crosses) and

forecasts (grey shaded area) at three points in time during the outbreak (indicated by the triangle on the time

axis). The cross in the lower left indicates an independent estimate of infection from adult seroconversion. The

bottom panel shows the posterior absolute deviation between predicted and observed incidence. As data

assimilation trained the model (going from the first row to the third row, the forecasts (gray shading) became

more certain (row 3) and prediction error declined (row 4). Figure reproduced from Ong et al. 2010.
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ic processes of birth, natural death, harvest,
growth, maturation, and movement. The assess-
ment models can be constrained either by time
series of fish catch to infer current and target fish
stock abundance and the maximum sustainable
yield, or by a time series of detailed fishery catch-
at-age data, to reconstruct the virtual abundance
of each annual cohort that had been fished
(Methot and Wetzel 2013). For example, after
using DA to integrate standardized catch-per-
unit-of-effort (CPUE) data into stock assessment,
the prediction uncertainty was reduced for
simulation of the annual variation of Trevally
(Pseudocaranx dentex) in the west coast of New
Zealand (Maunder and Langley 2004).

The Kalman filter (KF) is the most common
DA technique used to improve fish stock
predictions. Holt and Peterman (2004) analyzed
24 sockeye salmon stocks and compared the
mean square error (MSE) and percent bias of
predicted recruitments (relative vs. observed)
estimated with and without KF. They found that
DA lowered MSE for about 35% of the stocks and
had bias closer to zero. Gronnevik and Evensen
(2001) used DA for fisheries modeling and stock

assessment. Three DA techniques, EnKF, ensem-
ble smoother (uses of data backward in time to
improve the estimates at prior times), and
ensemble Kalman smoother (an extension of
EnKF to improve the estimate at prior times
with data which work better with nonlinear
dynamics), were applied to an age-structured
population model using catch-at-age data for
Icelandic cod. All three estimates that used DA
had lower variance of prediction than that with
no data assimilation (Fig. 3) (Gronnevik and
Evensen 2001).

In addition to stock assessment models, species
distribution modeling is widely used to estimate
the presence and absence of fish species using the
geographical and environmental characteristics
of each fishing location. To better predict fish
occurrence, some models, such as a hierarchical
Bayesian spatial model (Munoz et al. 2013) and
generalized linear and additive models (GLM
and GAM) (Guisan et al. 2002) were improved by
DA in terms of either model structure or
parameters. For example, Bayesian Kriging,
which can incorporate parameter uncertainty
into the prediction process, was used to generate

Fig. 3. The variances of the estimated fishing mortalities for 7 years old fish using pure ensemble integration

with no data assimilation (Ens pred) and three data assimilation techniques. Ensemble Kalman filter (EnKF), the

ensemble smoother (ES), and ensemble Kalman smoother (EnKS) (modified from Gronnevik and Evensen 2001).

The figure shows that DA greatly reduces the variance of prediction.
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the maps of horse mackerel occurrence probabil-
ities that that incorporated spatial and parameter
uncertainties, geographical characteristic data,
and chlorophyll-a concentration (Munoz et al.
2013). In classical geostatistical predictions, the
true range of uncertainties is underestimated
because many parameters are estimated through
the statistical model, potentially leading to the
overestimation of predictive accuracy. By incor-
porating the geographical characteristic data and
chlorophyll-a concentration data into the model,
the occurrence of the species in unsampled areas
was predicted with more accuracy and fully
quantified uncertainty.

Fire
Fire shapes the structure, function, and biodi-

versity of many ecosystems, such as savannah,
heathland and forest. Most fire management
relies on the prediction of fire frequency, severity,
and spread (McKenzie et al. 2000, Xue et al. 2012)
to assist decision-making. In addition, fire is a
key determinant of the global carbon cycle
(Bowman et al. 2009).

Simulation models that describe fire behavior
are used to manage fire. For example, Linn and
Cunningham (2005) modeled the forward spread
of grassland fires under ambient atmosphere
winds and different initial lengths of the fire
lines. AIOLOS-F, a model of fire behavior
prediction was developed as a decision support
tool (Croba et al. 1994). However, many of the
existing models were not developed for practical
use and real-time predictions, but instead used
for academic research. Accurate fire prediction
requires not only physical models but also
datasets of fuel and weather, both of which are
quite variable in both time and space (Keane et
al. 2001). Moreover, fire behavior is also highly
non-linear and complex with interactions among
the combustion processes, the landscape, local
atmospheric environment and vegetation char-
acteristics, as well as human aspects (Lavorel et
al. 2007). The performances of fire model are also
sensitive to boundary conditions, which are
usually unknown (Sullivan 2009). Therefore,
there are many challenges in predicting fire
behavior with sufficient accuracy to support the
decision-making process.

DA can address some of the above-mentioned
issues in fire modeling and improve the accuracy

of fire predictions. For example, Mandel et al.
(2008) used an ensemble Kalman filter (EnKF) to
assimilate measured temperature and remaining
fuel into a simple wildfire model in order to
effectively track the location of the fireline. They
found that fire temperature simulation was
significantly improved with EnKF, and the
trained model accurately tracked the measured
fireline correctly regardless of ignition location.
This successful application showed that even
with a relatively simple fire model and signifi-
cant errors in the initial conditions, DA can help
train the model to realistically predict fire
behavior with high confidence.

Sequential Monte Carlo (SMC or particle
filters) is another effective DA technique that
has been used for integrating observations into
wildfire models. Wildfire models typically have
nonlinear and unstable behaviors. SMC methods
are particularly useful for the wildfire models
because they use an ensemble-based approach
and implement the Bayesian recursion algo-
rithms directly to highly nonlinear state-space
models (Doucet et al. 2001). Xue et al. (2012)
dynamically assimilated ground temperature
sensor data of a wildfire to improve predictions.
The wildfire model is a discrete event model
called DEVS-FIRE. SMC uses Bayesian inference
and a stochastic sampling technique to recur-
sively estimate the state of dynamic systems from
given observations. After assimilating ground
temperature sensor data, the DA system im-
proved the accuracy of wildfire prediction. The
application of DA to fire behavior modeling is
currently not very common. Nonetheless, DA is a
promising tool to help accurately predict fire
behavior.

Terrestrial carbon cycle
The development of DA approaches has been

an active area of research in terrestrial carbon
cycle models. This application is stimulated
partly by climate change research and partly by
an increasing availability of data. From very
simple models with scores of parameters to
highly complex models with thousands of
parameters, biogeochemical models have been
widely used to explore ecosystem responses and
feedbacks to climate changes on century-to-
millennium time scales (McGuire et al. 2001,
Friedlingstein et al. 2006) or to study interactions
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of multiple global-change factors on land man-
agement and ecosystem services on decadal or
shorter time scales (Schroter et al. 2005, Schmid et
al. 2006, Pretzsch et al. 2008). DA has shown
promise in improving carbon cycle predictions
(Williams et al. 2005, Luo et al. 2011, Peng et al.
2011), spurred by increasing amounts of exper-
imental data available and active process-based
model development.

In the early stages of research, DAwas applied
primarily to relatively simple terrestrial ecosys-
tem models and quickly became a very effective
tool to diagnose model structure (Keenan et al.
2012), evaluate the usefulness of different data-
sets (Keenan et al. 2013), and quantify relative
contributions of model and data in constraining
model parameters and for carbon cycle model
predictions (Weng and Luo 2011). Several DA
studies have indicated that different datasets and
their error structures can influence the parameter
estimates and model predictions (Luo et al. 2003,
Xu et al. 2006, Richardson et al. 2010, Weng et al.

2012). Keenan et al. (2013), for example, found
that many datasets have redundant information
for constraining model performance. Only five
out of the seventeen available data streams were
necessary to constrain the model (Fig. 4). In
particular, numerous studies have demonstrated
that flux data, such as soil respiration and net
ecosystem exchange (NEE), do not contain
sufficient information to constrain pool-related
parameters (Wu et al. 2009, Keenan et al. 2013).
Weng and Luo (2011) evaluated information
contributed by model structure vs. data to short-
and long-term prediction of forest carbon dy-
namics. Measurements over ten years at a forest
ecosystem primarily constrained fast, upstream
carbon pools (e.g., foliage and fine root) whereas
model structure determined slow, downstream
pools (e.g., slow and passive soil organic matter).
This suggests that both process understanding to
improve model structure and datasets to con-
strain model parameters are important for long-
term carbon predictions.

Application of DA to regional and global
carbon cycle models is challenging largely due
to prohibitive computational demands. Instead,
comprehensive global models are often calibrat-
ed against data at multiple locations. For
example, Kuppel et al. (2012) assimilated net
CO2 flux (NEE) and latent heat flux (LE)
measurements collected from 12 temperate de-
ciduous broadleaf forest sites into the ORCHID-
EE model. Several studies have successfully
assimilated regional and global data sets into
models (Barrett 2003, Zhou et al. 2009, Zhou et al.
2012, Hararuk et al. 2014). For example, Hararuk
and Luo (in revision) applied DA to constrain the
Community Land Model (CLM3.5) against a
global soil organic carbon database. The con-
strained model explained 41% of the global
variability in the observed SOC in comparison
with the initial 13%.

While increasingly employed for model cali-
bration, DA has not been widely used for
predictions. Gao et al. (2011) used EnKF to
assimilate eight sets of data from Duke Forest
during 1996 to 2004 into a terrestrial ecosystem
model as a basis for predicting the daily carbon
pools (state variables) from 2004 to 2012 (Fig. 5).
Uncertainties in predicted carbon sinks increased
over time for the long-term carbon pools but
remained constant over time for the short-term

Fig. 4. Model uncertainty for the simulations of

carbon fluxes (NEE, GPP, Ra, and Rh) for the FöBAAR

model (Keenan et al. 2012). Three different approaches

to constrain the model are shown: (1) using all data

constrains (flux and biometric data) (black), (2) using

short and long term flux data constrains (dark gray),

and (3) using only short term flux data constrains

(light gray). The shaded areas represent the confidence

in model predictions. The figure shows that the model

uncertainty can be quantified and reduced by assim-

ilating different datasets into the model (modified

from Keenan et al. 2012).
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carbon pools. In addition, prediction of future

carbon dynamics requires weather data in the

future time as forcing since ecological system

dynamics are influenced by weather and climate.

Thus, climate models and emissions scenarios are

required to generate future weather data that are

used to drive forecasting with an ecological

model. Keenan et al. (2013) showed how predic-

tion uncertainties to 2100 were greatly reduced

by the incorporation of orthogonal data con-

straints. The identification of the key datasets

that contain the information needed to improve

model predictions of future states and fluxes

remains an important and outstanding challenge.

FUTURE CHALLENGES AND OPPORTUNITIES

OF DA

Overall, all of the four areas discussed here use
models to represent major processes underlying
the system dynamics. When models are not
constrained by data before they are used to
project future states, the uncertainty in those
projections is typically quite large. When models
are constrained by data, uncertainty in predic-
tions declines and accuracy increases. Among all
four areas, there are a few examples of real-time
forecasting capability. In the case of infectious
diseases and wildfire, real-time forecast can save
human lives and thus has immediate societal

Fig. 5. Daily analysis from1996-2004 (green) and daily forecast of carbon pools from 2004–2012 (yellow) at

Duke Forest with 100 ensembles after eight data sets were assimilated into the TECO model using Ensemble

Kalman Filter (EnKF). The uncertainties of the analysis were reduced when data was assimilated into the model

and the uncertainties of the forecasted carbon pools were relatively stable (modified from Gao et al. 2011).
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value. Natural resource managers, such as in
fisheries and agriculture, would likewise benefit
from frequent, on-demand access to forecast
models that have assimilated the most up-to-
date information. Likewise, both in natural
resources and in other sectors of the economy,
there is increasingly concern about the carbon
cycle impacts of human activity. However,
decision makers rarely have access to the best
available models or data when evaluating the
sustainability of alternative scenarios, especially
those operating at a local scale. Nevertheless, DA
may not improve prediction when ecological
processes are not well understood or never
observed (Luo et al. 2011), and so any projections
will always be contingent on model structure.

While DA has the potential to advance
predictive ecology, future DA applications have
to deal with several challenges, such as: combin-
ing multiple data sources, assimilating data
across diverse scales and process, complex model
structures, models with large numbers of param-
eters to be estimated, high computational de-
mands, and the need to expand applications into
complex social-ecological systems.

Models become more and more complex:
challenges and opportunities

One of the challenges to further advance
predictive ecology is related to complex model
structures. Terrestrial carbon models are contin-
uously being developed, driven by our evolving
understanding of terrestrial ecosystems. For
example, recent advances have incorporated
detailed descriptions of nutrient dynamics
(Zaehle et al. 2010), community dynamics
(Medvigy et al. 2009), and responses to distur-
bances (Prentice et al. 2011) in attempts to
simulate the carbon cycle in the real world as
realistically as possible. As a consequence,
models become more complex but less tractable.
DA with complex global models has become
infeasible, as most of DA methods are computa-
tionally expensive, unless innovative methods
are developed for DA or model structure
analysis.

In addition, complex models make it very
difficult to separate model structural error from
parameter error when using traditional model-
comparison approaches (Keenan et al. 2011).
Recent advances in theoretical analysis of model

structure have the potential to better identifymodel
structural and parameter errors (Xia et al. 2013).
Advances in the analysis of model uncertainty are
likewise allowing better identification of model
parameter error (Dietze et al. 2013, LeBauer et al.
2013). Although DA is not as easily applied to
complex models as a whole, key components of
models can be identified for targeted improvement.

Data become more and more available:
challenges and opportunities

The field of ecology is rapidly becoming data-
rich with new automated measurement devices,
wireless networking, and improved cyber infra-
structure greatly facilitate the collection of large
amounts of data. Current initiatives in continen-
tal-scale monitoring through ‘‘ecological obser-
vatories’’, such as NEON (http://www.neoninc.
org), ICOS (http://www.icos-infrastructure.eu),
FLUXNET (http:// www.fluxnet.ornl.gov; http://
www.fluxdata.org), and LTER (http://www.
lternet.edu), promise an even greater data deluge
in the future. As scientists deal with larger and
larger datasets, advanced techniques, such as
data mining (e.g., Moffat et al. 2010) and model
uncertainty analysis (e.g., Keenan et al. 2011), are
becoming more widely applied.

The integration of the newly available data
with ecological models is a clear direction
forward. It has been shown that using multiple
data streams reduces model uncertainty dispro-
portionate to simply the increase in sample size,
both for present–day model performance (Ri-
chardson et al. 2010) and for projecting ecosys-
tem function under future climate change
(Keenan et al. 2012). That said, not all data types
give an equivalent improvement in model
performance, and indeed some data streams are
redundant given the availability of others (Keen-
an et al. 2013). The true information content of
high frequency vs. low frequency observations
has also yet to be systematically assessed (e.g.,
Weng and Luo 2011). Despite challenges, it
becomes essential to use multiple constraints to
inform continental (Haverd et al. 2013) and
global (Smith et al. 2013) models.

Ecological issues become more complex
in coupled human-nature systems

Many of the most important biophysical
changes occurring today are substantially influ-
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enced by human decisions and actions, such as
changes in climate, land-cover, and species
composition. These ecological changes, in turn,
strongly affect society and its management of
natural resources. Future predictions are there-
fore best made in a social-ecological context,
recognizing the important feedbacks between the
human and ecological components of social-
ecological systems. Social scientists are generally
reluctant to forecast human actions, and there-
fore the biophysical consequences of these
actions, because people respond not only to past
events but also make decisions in response to
perceptions of potential future outcomes.

DA has been most successful in improving
predictions of the responses of ecological systems
to well-understood causes of variation. Building
on this experience, it is most likely to be useful
for predicting trajectories of rapidly changing
variables that follow predictable temporal pat-
terns and also respond predictably to events that
are difficult to anticipate. Tropical deforestation,
for example, responds predictably to road
construction in combination with other variables
(Geist and Lambin 2002), but the institutional
factors that precipitate road development are less
predictable. DA that tracks road construction
may therefore be a useful predictor of the
locations and rates of deforestation and associat-
ed declines in carbon sequestration and biodi-
versity. Stewardship, which involves shaping the
future of social-ecological systems to facilitate
ecosystem resilience and human well-being
(Chapin et al. 2011), would benefit from the use
of DA to track the trajectories of these systems
toward or away from critical transitions and
thresholds.

Real- or near-real-time predictions
To make predictions accessible for policy-

making, we need to develop real- or near-time
forecasting capability, i.e., use the most currently
available data to get updated predictions. Real-
time forecast has been successfully applied to
infectious diseases and should be valuable for
fire behavior to save human lives and thus have
immediate societal value. Near-time predictions
can have great economic and societal importance
for fisheries and carbon cycle, as their economic
values and societal benefits can also be realized
in long-term predictive estimates of ecological

processes. To realize the real- or near-time
prediction, we not only need informed datasets,
process-oriented models and DA but also cyber-
infrastructure to support data assimilation (Luo
et al. 2011, Dietze et al. 2013).
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