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Abstract Long-term land carbon (C) cycle feedback to climate change is largely determined by dynamics
of soil organic carbon (SOC). However, most evaluation studies conducted so far indicate that global land
models predict SOC poorly. This study was conducted to evaluate predictions of SOC by the Community Land
Model with Carnegie-Ames-Stanford Approach biogeochemistry submodel (CLM-CASA’), investigate
underlying causes of mismatches between model predictions and observations, and calibrate model
parameters to improve the prediction of SOC. We compared modeled SOC to the SOC pools from a globally
gridded observation data product and found that CLM-CASA’ on average underestimated SOC pools by 65%
(r 2 = 0.28). We applied data assimilation to CLM-CASA’ to estimate SOC residence times, C partitioning
coefficients among the pools, and temperature sensitivity of C decomposition. The model with
calibrated parameters explained 41% of the global variability in the observed SOC, which was
substantial improvement from the initial 27%. The SOC and litter C feedback to changing climate
differed between models with original and calibrated parameters: after 95 years of climate change
(2006–2100), soils released 48 Pg C less in the calibrated than in the noncalibrated model and litter
released 6.5 Pg C less in the calibrated than the noncalibrated model. Thus, assimilating estimated soil
carbon data into the model improved model performance and reduced the amount of C released under
changing climate. To further reduce the uncertainty in the soil carbon prediction, we need to explore
alternative model structures, improve representation of ecosystems, and develop additional global
datasets for constraining model parameters.

1. Introduction

Soils contain a large fraction of ecosystem carbon (C) [House et al., 2002], which can be affected by climate
change [Kirschbaum, 1995]. Accurate prediction of soil organic C (SOC) content is important, as emission of
CO₂ from soils greatly depends on the amount of carbon stored in it [Luo and Zhou, 2006]. Being a green-
house gas, naturally and anthropogenically emitted CO₂ likely leads to climate warming [Houghton et al.,
2001], which may further stimulate net release of soil carbon, forming a positive feedback loop between
carbon cycle and climate warming [Friedlingstein et al., 2006; Luo, 2007; Melillo et al., 2002; Oechel et al., 2000;
Rustad et al., 2001]. Analysis of the output generated by 11 Earth system models (ESMs) participating in the
fifth Coupled Model Intercomparison Project (CMIP5) [Taylor et al., 2011] illustrates the uncertainty in the
simulated SOC, which, despite the similarities in model structures, varies sixfold among the models with the
estimates ranging from 510 to 3040 Pg C [Todd-Brown et al., 2013]. Only six out of 11 model estimates were
within the range of the Harmonized World Soil Database (HWSD) estimate of 1260 Pg C (with a 95% confi-
dence interval (CI) of 890–1660 Pg C), and none of the models’ correlation coefficients for the grid-based
comparisons between modeled and empirical SOC estimates exceeded 0.4 [Todd-Brown et al., 2013].

A few other studies that evaluated ESM’s simulation of soil C stocks and dynamics indicated great differences
between simulated and observed SOC stocks. Kucharik et al. [2000] evaluated the SOC stocks modeled by the
Integrated Biosphere Simulator (IBIS) to be 1408 Pg C, which was lower than the estimate generated by
International Geosphere-Biosphere Programme-Data and Information System (IGBP-DIS) (1567 Pg) [Group,
2000]. IBIS underpredicted soil C stocks by up to 8 kg C/m2 in deserts, open shrublands, polar regions, and
tropical forests and overpredicted soil C stocks by up to 11 kg C/m2 in tundra regions. The second
version of the IBIS model did not yield a better soil C fit [Delire et al., 2003]. Thum et al. [2011] evaluated
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SOC in two global models: CBALANCE-JSBACH-ECHAM5-Model (Cba-JEM) [Raddatz et al., 2007; Roeckner
et al., 2003] and Yasso07-JSBACH-ECHAM5-Model (Y07-JEM) [Liski et al., 2005; Raddatz et al., 2007;
Roeckner et al., 2003]. The total global SOC simulated by Cba-JEM was 2853 Pg C and was higher
than IGBP-DIS and HWSD estimates, whereas Y07-JEM simulated 1477 Pg C, which was lower than IGBP-
DIS estimate, but within the range of the HWSD estimates [Group, 2000; Todd-Brown et al., 2013]. Both
models overpredicted soil C in the northern conifer forests, tropical forests, grasslands, and savannas
and underpredicted soil C in taiga regions. These differences in simulated SOC pools are likely
propagated in the ESMs and cause substantial uncertainties in modeled carbon climate feedback
[Friedlingstein et al., 2006].

ESM structures for simulating terrestrial carbon cycle are highly similar: they partition the photosynthetically
fixed C among the live and dead carbon pools, from which C escapes via autotrophic or heterotrophic
respiration [Todd-Brown et al., 2013; Weng and Luo, 2011]. Todd-Brown et al. [2013] showed that the
differences in simulated SOC stocks among the models are mainly caused by their parameterizations.
Parameter calibration is a commonly practiced procedure in model development, and parts of global land
models have been calibrated with the site level data [Kuppel et al., 2012; Wang et al., 2007]. Calibration of
land models against global data sets has not been widely implemented largely due to computational cost
and methodological difficulty. For example, because of the lengthy spin-up, calibration of ESM parameters
associated with soil carbon pools is computationally costly [Rayner et al., 2005]. Methodological difficulty
arises from the fact that soil C content is a convoluted product of net primary productivity (NPP), C
partitioning coefficient from plant litter to soil C pools, and SOC residence time [Luo et al., 2003; Xia et al.,
2013; Zhou and Luo, 2008]. Even with the fixed NPP, same SOC content can be achieved by many combi-
nations of C partitioning coefficients from plant litter to soil pools and SOC residence times (see Figure S1 in
the supporting information). In a model with three soil C pools and nine other C pools (plant and litter) that
contribute to the soil pools, it is difficult to identify the right set of parameters to adjust so as to make the
simulated SOC stocks match closely to the observed ones.

Data assimilation techniques for parameter estimation have been successfully applied in the carbon cycle
research at ecosystem, regional, and global scales.Wu et al. [2009] demonstrated significant improvement
in modeled net ecosystem exchange (NEE) after applying conditional inversion method to the flux-based
ecosystem model (FBEM) to integrate observed NEE data into FBEM at Harvard forest. At the same site,
Keenan et al. [2012] assimilated 15 carbon pool and flux data sets into Forest Biomass, Assimilation,
Allocation, and Respiration (FoBAAR) model to constrain 42 model parameters using adaptive multiple
constraints Markov chain Monte Carlo optimization and were able to significantly reduce the forecast
uncertainty of the C pool dynamics. Xu et al. [2006] used Bayesian Markov chain Monte Carlo technique to
assimilate six carbon data sets from Duke Forest into the Terrestrial Ecosystem model to constrain C resi-
dence times and partitioning coefficients, producing good prediction of soil respiration, foliage biomass,
and woody biomass.

On the regional scale, Zhou and Luo [2008] successfully constrained ecosystem residence times against
regional data of biomass, net primary production (NPP), litter and soil C across the continental USA by using
genetic algorithm to find the best parameters. Zhou et al. [2009] and Ise and Moorcroft [2006] presented
global constrained SOC temperature sensitivities resulting from assimilating global soil C data [Group, 2000]
into C cycle models. Smith et al. [2013] developed a fully data-informed C cycle model and generated C cycle
projections with the parameter and structural uncertainties propagated in time.

Despite the obvious advantages to data assimilation for calibrating model parameters, not much research
has been carried out with global land models due to their complexity. Meanwhile, the modeling
community still focuses on including more processes into ESMs to represent the C cycle as realistically
as possible [Koven et al., 2009, 2011; Lawrence et al., 2011; Luo et al., 2009; Oleson et al., 2008]. It is
equally important to develop the capacity to calibrate models to improve their predictive ability. In this
study we take advantage of Bayesian Markov chain Monte Carlo (MCMC) to (1) calibrate the C cycle
component of CLM-CASA’, (2) identify the regions with the highest uncertainty in SOC, (3) gain insight
about the model structure through maximum likelihood parameter estimates and their correlations, (3)
generate data-constrained estimates of C residence time, and (4) generate uncertainties of SOC change
under climate change.

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002535

HARARUK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 404



2. Methods
2.1. CLM-CASA’ and Its C-Only Version for Data Assimilation

In this study we calibrated Community Land Model coupled with Carnegie-Ames-Stanford Approach
biogeochemistry submodel (CLM-CASA’) [Oleson et al., 2004, 2008; Parton et al., 1993]. CLM-CASA’ consists of
biogeophysics and biogeochemistry submodels. Biogeophysics submodel simulates solar and longwave
radiation dynamics in vegetation canopy and soil; momentum and turbulent fluxes from canopy and soil;
heat transfer in soil and snow layers; hydrology of canopy, soil, and snow; stomatal physiology, and photo-
synthesis (more details can be found in [Oleson et al., 2004, 2008]). Biogeochemistry submodel simulates
carbon transfer among various plants, litter, and soil pools (Figure 1) [Parton et al., 1993]. Change in carbon
content in each pool is determined by a balance between influx into and efflux from the pool. Carbon influx
into the ecosystem is defined by NPP, which is partitioned among three live biomass pools. Carbon efflux is
heterotrophic respiration (autotrophic respiration in CLM-CASA’ is assumed to be 50% of gross primary product)
as determined by decomposition rate of organic C in each pool. Heterotrophic respiration is influenced by
environmental conditions (specifically, temperature and soil moisture) as well as soil texture, tissue lignin, and
tissue available nitrogen content.

Based on the theoretical analysis, carbon cycle components of any landmodels can be represented by a matrix
equation (i.e., a set of carbon input-output equations) [Luo and Weng, 2011; Luo et al., 2003; Xia et al., 2013] as

dX tð Þ
dt

¼ Aξ tð ÞCX tð Þ þ BU tð Þ (1)

where dX tð Þ
dt is the change in C pools at each time step; ξ(t) is the diagonal matrix of environmental scalars,

which represents the influence of climate on mortality or decomposition rate of organic C in each pool in a
grid cell (the elements of ξ(t) for all nonlive pools are the same); A is a matrix of partitioning coefficients
among C pools, which is influenced by soil texture, lignin, and tissue lignin to nitrogen ratio; C is the diagonal

Figure 1. CLM-CASA’model structure and global parameter averages. Carbon enters the system through photosynthesis and is partitioned
among three live pools. From the live pools carbon is transferred to the five litter pools, and from the litter pools it is transferred to the three
soil pools. Values in the boxes are pool residence times; values outside the boxes are partitioning coefficients (values in blue are initial model
values, values in red are results of parameter optimization). After data assimilation, soil passive C residence time increased by 36 years,
whereas slow C residence time decreased by 2.1 years; compared to initial values, more C was transferred to soil C pools from soil litter and
less C is transferred to soil C from surface litter.
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matrix of baseline C exit rates at a given temperature (25°C in CLM-CASA’); X(t) is a vector of C pools; B is the
vector of partitioning coefficients of NPP to the three live biomass pools; and U(t) is NPP.

Based on equation (1), we extracted the carbon cycle component of CLM-CASA’ into a set of equations that
described carbon transfer among pools, solved the steady state solution for the set of equations, and
encoded them into MATLAB to perform data assimilation. Steady state solution for each grid cell was calcu-
lated as proposed by Xia et al. [2012]:

Xss ¼ � A ξ C
� ��1

B U (2)

where ξ, B, and U were long-term averages of the environmental scalars, C partitioning among the three live
pools, and NPP correspondingly. Before proceeding to data assimilation we verified the MATLAB version
of CLM-CASA’ by comparing its simulated soil C content with that of the original model. As illustrated in
Figure S2, steady state soil C simulated by the original CLM-CASA’model matched closely to that produced by
the MATLAB version despite that the latter used the semianalytic spin-up approach [Xia et al., 2012].
Extracting the carbon component from the original model for data assimilation saved computational time
and made it easier to fit our data assimilation workflow.

2.2. Data Assimilation for Parameter Estimation

To calibrate parameters associated with soil C we used Bayesian probabilistic inversion, which states that
posterior probability density functions of parameters can be obtained from prior knowledge about the
parameters and the error between model and observations. According to Mosegaard and Sambridge [2002],
Bayesian inversion can be summarized by the following equation:

p c ZÞ ¼ vc � p Z cÞ � p cð Þjðjð (3)

where p(c|Z) is posterior probability density function of model parameters c; p(Z|c) is a likelihood function of
parameters c; p(c) is prior probability density function of parameters c; vc is a normalization constant. We
assumed that the prediction errors were normally distributed and uncorrelated, hence, the likelihood
function, p(Z|c), was calculated as follows:

p Zjcð Þ ¼ vL � exp �
X k

i¼1

Zi � Xið Þ2
2σ2

i

( )
(4)

where Zi is soil C reported by IGBP-DIS at ith grid cell, Xi is soil C simulated by CLM-CASA’ at a corresponding
grid cell; σ2i is the variance of a measurement at a grid cell; k is the total number of grid cells; and vL is a
constant. The issue of uncertainty in the global-gridded data products is much understudied, and IGBP-DIS
database, like many other global-gridded data products, does not include the uncertainty estimates. In light
of the absent uncertainties we employed a concept used in Harmon and Challenor [1997] and assumed a
standard deviation of 30% of a reported value at each grid cell, which we then used to calculate the variance.

To generate the posterior distributions we first specified the priors of the parameters to be uniformly distri-
buted over the intervals specified in Table 1. We put constraints on parameters based on the literature, edu-
cated guess, and hypothesis testing. For instance, temperature sensitivity was varied between 1, assuming that
respiration was insensitive to temperature, and 3 (average temperature sensitivity calculated from the global
soil respiration database) [Bond-Lamberty and Thomson, 2012]. The minima for maximum turnover rates in slow
and passive pools were within the reported range [Parton et al., 1993, 2010]; however, because the maximum
turnover rates for slow SOC pool in CLM-CASA’ was the highest reported, we made upper limits in this study
2.5 times the original value to test whether themaximum turnover rate could be higher on the global level than
those reported to date. The upper limit for the passive SOC turnover rate was set at 0.005 years� 1, which was
higher than the rate used in Parton et al. [1993] by 0.0005 years� 1. Literature search yielded no information
about the range for the other 17 parameters from Table 1, therefore, we assigned the limits to the parameters so
that they would preserve the original relationship with the dependent variables (e.g., soluble fraction, structural
lignin, clay, and sand), but adjust the degree of influence of the dependent variables on a C partitioning coef-
ficient. As an additional constraint, C partitioning coefficients had to be a value between 0 and 1, and the sum of
partitioning coefficients for C efflux from the same pool could not be larger than 1.

Oncewe specified parameter ranges, we used adaptiveMetropolis (AM) algorithm [Haario et al., 2001], a Markov
chainMonte Carlomethod, to sample from the posterior parameter distribution. To generate a parameter chain,
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we ran AM algorithm in two steps: proposing step and a moving step. In the proposing step, a new
parameter set cnew was generated from a previously accepted parameter set ck� 1 through a proposal
distribution (cnew|ck� 1). In the moving step, a probability of acceptance P(ck� 1|cnew) was calculated as in
the following [Marshall et al., 2004]:

P ck�1
��cnew� � ¼ min 1;

p Z cnewjð Þp cnewð Þ
p Z ck�1jð Þp ck�1ð Þ

� �
(5)

The value of P(ck� 1|cnew) was then compared with a random number U from 0 to 1. Parameter set cnew was
accepted if P(ck� 1|cnew)≥U, otherwise ck was set to ck� 1.

The AM algorithm requires an initial parameter covariance matrix, which we generated from a test run of
50,000 simulations using a uniform proposal distribution following the example in Xu et al. [2006]:

cnew ¼ ck�1 þ r � cmax � cmin

D
(6)

where cmax and cmin are upper and lower parameter limits, r is a random number between �0.5 and 0.5, and
D=5. Out of 50,000 simulations, the test run accepted about 2500 updated samples. We constructed a covariance
matrix C0 on the basis of the test run and modified the proposal step to be

cnew ¼ N ck�1; Ck
� �

(7)

Ck ¼
C0 k ≤ k0

sdCov c0;…; ck�1ð Þ k > k0

�
(8)

where k0 = 2000 and sd ¼ 2:38=
ffiffiffiffiffi
20

p
[Gelman et al., 1996].

We made five parallel runs starting at dispersed initial points in the parameter space, each run contained
1,000,000 simulations. During each simulation we solved equation (2) with newly proposed parameters and
proceeded to themoving step. We discarded the first half of the simulations (as burn-in phase) and tested the
second half for convergence to stationary distributions with Gelman-Rubin diagnostics [Gelman and Rubin, 1992].

Table 1. CLM-CASA’ Parameter Characteristicsa

Parameter Description Symbol

Prior

MLE
× 10

� 3
G-R

Lower 95%
Bounds × 10

� 3
Upper 95%
Bounds × 10

� 3
Minimum

×10
� 3

Maximum
×10

� 3
Value
× 10

� 3

Exit rate from slow pool, (years
� 1

) c(11,11) 100 500 200 400 1.00 287 488
Exit rate from passive pool, (years

� 1
) c(12,12) 1 5 4.5 1 1.00 1.04 2

Temperature sensitivity of C decomposition Q10 1000 3000 2000 1837 1.00 1751 1989
Labile C fraction effect on C partitioning from leaves to surface

metabolic litter
w1 0 1000.1 1000 503 1.00 120 920

Labile C fraction effect on C partitioning from roots to soil
metabolic litter

w2 0 1000.1 200 75 1.00 13 366

Partitioning from surface structural to surface microbial pool if
no lignin in surface structural litter

l1 350 2300 400 461 1.00 369 811

Lignin effect on partitioning from surface structural litter to surface
microbial litter

l2 0 700 400 462 1.00 166 674

Lignin effect on partitioning from surface structural litter to soil slow pool l3 0 800 700 59 1.00 11 302
Partitioning from soil structural to soil microbial pool if no lignin in soil

structural litter
l4 400 700 450 648 1.00 573 695

Lignin effect on partitioning from soil structural litter to soil microbial pool l5 0 900 450 135 1.00 23 557
Lignin effect on partitioning from soil structural litter to soil slow pool l6 0 900 700 654 1.00 334 875
C partitioning from soil microbial pool to slow pool if no sand or clay t1 19 750 169 655 1.00 527 741
Clay effect on C partitioning from soil microbial pool t2 0 30 5.44 25 1.00 17 30
Sand effect on C partitioning from soil microbial to slow pool t3 0 1000 678 343 1.00 57 844
Combined effect of sand and clay on C partitioning from soil

microbial pool
t4 0 100 22 67 1.00 34 96

C partitioning from soil microbial to passive pool if no sand or clay t5 0.1 0.8 0.51 0.39 1.00 0.14 0.73
Sand effect on C partitioning from soil microbial to passive pool t6 0 30 2.04 9 1.00 3.26 21
Clay effect on C partitioning from slow pool to passive pool t7 0 700 4.05 22 1.00 11 52
C partitioning from slow to passive pool if no clay t8 0 20 14 1 1.01 0.11 3
C partitioning from slow to soil microbial pool if no clay t9 300 700 449 384 1.00 314 599

aMLE is maximum likelihood estimate, and G-R is the result of Gelman-Rubin chain convergence diagnostics.
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2.3. Parameters to be Estimated

Soil C content is determined by soil C influx (proportional to NPP) and its residence time, or the inverse of the
turnover rate [Luo et al., 2003]. The point-by-point comparisons of the NPP produced by CLM-CASA’ and the
observed NPP from Ecosystem Model Data Intercomparison Initiative data set [Olson et al., 2001] showed
good agreement between modeled and observed NPP [Randerson et al., 2009]. Due to this good agreement
we used modeled NPP to drive the CASA’ biogeochemistry submodel and focused on improving the SOC
through calibrating the parameters associated with turnover rates of carbon pools and C partitioning coef-
ficients among pools as influenced by climate, tissue lignin, available nitrogen, and soil texture. Specifically,
we calibrated the baseline C exit rates from slow and passive C pools (these two parameters strongly regu-
lated SOC pool size due to their long residence times), temperature sensitivity of heterotrophic respiration
(Q10), and the parameters in (i.e., elements of) matrix A, which we described in the following equations:

a 4; 1ð Þ ¼ w1* lf (9)

a 5; 1ð Þ ¼ 1� a 6; 3ð Þ (10)

a 6; 3ð Þ ¼ w2* lf (11)

a 7; 3ð Þ ¼ 1� a 6; 3ð Þ (12)

where a(4,1) is the partitioning coefficient from leaves to surface metabolic litter; a(5,1) is the partitioning
coefficient from leaves to surface structural litter; a(6,3) is the partitioning coefficient from roots to soil
metabolic litter; a(7,3) is the partitioning coefficient from roots to soil structural litter; lf is the labile C fraction
in leaves and roots at a given grid cell; and w1 and w2 are empirical coefficients.

a 9; 5ð Þ ¼ l1 � l2 * sl (13)

a 11; 5ð Þ ¼ l3 * sl (14)

a 10; 7ð Þ ¼ l4 � l5 * sl (15)

a 11; 7ð Þ ¼ l6 * sl (16)

where a(9,5) is C partitioning coefficient from surface structural litter to surface microbial pool; a(11,5) is C
partitioning coefficient from surface structural litter to soil slow pool; a(10,7) is C partitioning coefficient
from soil structural litter to soil microbial pool; a(11,7) is C partitioning coefficient from soil structural litter to
soil slow pool; sl is structural lignin content in the structural litter pools in a given grid cell expressed as a
fraction of 1; and l1 through l6 are empirical parameters.

a 11; 10ð Þ ¼ t1 � t2* clayþ t3* sand� t4 * clay * sand (17)

a 12; 10ð Þ ¼ t5 þ t2* clayþ t6* sand� t4 * clay * sand (18)

a 12; 11ð Þ ¼ t8 þ t7 * clay (19)

a 10; 11ð Þ ¼ t9 � t7 * clay (20)

where a(11,10) is C partitioning coefficient from soil microbial to soil slow pool; a(12,10) is C partitioning
coefficient from soil microbial to soil passive pool; a(12,11) is C partitioning coefficient from soil slow to soil
passive pool; a(10,11) is C partitioning coefficient from soil slow to soil microbial pool; clay and sand are the
soil clay and sand fractions in a given grid cell; and t1 through t9 are empirical parameters. Those parameters
together with their prior values are listed in Table 1.

2.4. Database

IGBP-DIS database provides a high-resolution (5 × 5 arc min) global map of soil C for the top 1 m of soil. The
map is the result of linking the pedon records from the extensive Global Pedon Database [Batjes, 1995], which
contains soil texture classes, terrain slopes, and 106 soil units, and FAO/UNESCO Digital Soil Map of the world
(containing the above mentioned data in addition to pH, organic C and nitrogen, bulk density, cation
exchange capacity, etc. [FAO, 1995]) by statistical bootstrapping. The database features data on soil bulk
density, field capacity, thermal capacity, soil carbon, and nitrogen density. Many studies used the soil carbon
data from this data set to produce new data sets [House et al., 2002], as an assessment of terrestrial C uptake
[Freibauer et al., 2004], to evaluate models [Delire et al., 2003; Kucharik et al., 2000], and to improve models
[Ise and Moorcroft, 2006; Smith et al., 2013; Zhou et al., 2009]. Prior to using the data set in the data assimilation
routine, we randomly separated all the grid cells into halves similar to Smith et al. [2013]. One half of grid cells
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was used for model calibration and the second group—for validation to avoid overfitting. All further discussion
about the fit of modeled data to observed data will refer to the validation subsample of the data.

In this study, for the purpose of estimation of the parameters related to carbon processes, soil C in the IGBP-DIS
database was assumed to be in a steady state. This assumption could not be verified at present because of the
lack of time series data over the globe. However, Zhou and Luo [2008] researched parameter uncertainty
resulting from the steady state assumption by calibrating parameters two times: with equilibrium SOC values
and with SOC reduced 40% from the equilibrium values. Their finding was that the parameters obtained with
the equilibrium assumption were within the margin of error of the parameters obtained after 40% reduction in
soil C (except for the C partitioning coefficients from the soil pools), therefore, even with equilibrium assump-
tion we were likely to constrain the parameters at their true values. Moreover, 40% from the steady state soil C
content represents extreme cases as most of the disturbances do not cause such big changes in soil C. The
steady state assumption made our MATLAB model version particularly effective for data assimilation as it used
averaged values of environmental responses (scalars) to repeated environmental forcing [Xia et al., 2012].

The litter lignin content was in CLM-CASA’ by default: the plant-functional-type-level estimates of lignin were
applied to Moderate Resolution Imaging Spectroradiometer-derived distribution of plant-functional types
used in CLM [Lawrence and Chase, 2007; Oleson et al., 2007]. Labile C pool fraction in roots was estimated by
the CLM-CASA’ model from the lignin to nitrogen ratio, and the latter, similar to litter lignin content, was by
default assigned to each plant-functional type in CLM-CASA’. The maps of soil sand and clay content were
originally developed by the International Geosphere-Biosphere Programme [Group, 2000] and were provided
as a part of CLM-CASA’ package.

2.5. Forward Analysis of Carbon Dynamics With Original and Optimized Parameters

After parameter calibration we ran forward simulations with the original and calibrated parameters and
examined the change in ecosystems’ responses to increasing temperature and atmospheric CO₂ concentra-
tions. We used the Community Earth System Model (CESM) output for the Representative Concentration
Pathway 8.5 (RCP8.5) experiment (specifically, temperature and live pool sizes) to drive the litter and soil C
pools in CLM-CASA’ with original and calibrated parameters. The CESM model output was provided as a part
of Coupled Model Intercomparison Project Phase 5 (CMIP5) and could be accessed at (http://pcmdi9.llnl.gov).
Over 95 years, CESM simulated a 3.5 K increase in mean global temperature and atmospheric CO₂ increase to
1150 ppm by the year 2100 [Keppel-Aleks et al., 2013]. We ran the CASA’model forward in time starting from
the year 2006 to 2100, using the average live pools, their residence times, and temperatures for the years
2006–2010 to generate initial litter and soil C pools using the semianalytical spin-up [Xia et al., 2012].

IGBP-DIS soil C

Figure 2. IGBP-DIS soil carbon distribution. Soil carbon varies from 0 kg/m
2
in deserts to 60 kg/m

2
in the northern regions.
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3. Results
3.1. Evaluation and Improvements of Modeled SOC

We estimated SOC pool sizes at steady states (equation (2)), which we then compared to observed SOC pools
provided by IGBP-DIS global-gridded product (Figure 2b) [Group, 2000]. CLM-CASA’ explained 27% of spatial
variability in the observed data (Figures 3a and 3b). The model on average underestimated soil C pools by
8.8 kg/m2 with the largest deviations in the northern regions, where soil C was underestimated by more than
30 kg/m2 (Figure 3a). The root-mean-square error (RMSE) of CLM-CASA’ was 11.34 kg/m2.

3.2. Constrained Parameters Related to Soil Carbon Dynamics

All estimated parameters converged to stationary distributions as indicated by the Gelman-Rubin diagnostics
[Gelman and Rubin, 1992] (Table 1). Assimilation of SOC data set into CLM-CASA’ model resulted in tight
constraints on temperature sensitivity of heterotrophic respiration (Q10) and clay effect on C partitioning from
slow to passive pool (t7) (Figure 4). Sharp posterior distributions indicated that model predictions were highly
sensitive to changes in those parameters, which agreed with the findings of Post et al. [2008]. Sand effect on C
partitioning from soil microbial to passive pool (t6) was also constrained within the prior values, however, its
distribution was not as sharp as distributions of Q10 and t7. Many posterior parameters were skewed against
their assignedmaximum orminimum values. This was especially the case for baseline passive C exit rate, which
was skewed against its minimum value, suggesting that residence time of passive SOC under optimum envi-
ronmental conditions was larger than 1000 years. Parton et al. [2010] assigned passive pool residence times up
to 5000 years in DayCent model (a model with similar carbon submodel to CLM-CASA’). However, in the same
study, they presented the improved model version, ForCent, which had the highest value of 1000 years, hence
we did not increase the maximum boundary for baseline passive pool’s residence time above 1000 years.

Many parameters associated with soluble fraction, structural lignin, and soil texture effects on C partitioning
coefficients were skewed against their boundaries. For instance, posterior distribution of t8, was skewed
against its minimum (Figure 4), indicating increased effect of clay on C partitioning from slow to passive pool
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Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002535

HARARUK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 410



as lower fraction would be transferred to passive pool in soils with low clay content (equation (20)). Skews of t1
and t2 against their maxima indicated that more C was transferred from fast to slow pool under low clay and
sand content, and clay effect on C transfer from fast to slow and passive pools was larger than modeled
originally (equations (17) and (18)). Skew of l3 against its minimum indicated either no relationship between
structural lignin and C partitioning between surface structural and slow pools, or very low C transfer between
these pools (equation (14)). Similarly, calibration revealed the absence of relationship between labile C fraction
and C transfer from roots to soil litter pools as indicated by the skew in w2, however, it could also mean that
under the given model formulation, all C from roots had to go to soil structural litter to reproduce spatial
patterns of SOC. Some of the parameter skews pointed at limitations of the model formulation, for instance,
skews of l1 and l2 were pushing a(9,5) to negative values, and skew in l6 pushed a(11,7) to be larger than one,
which was unrealistic. Lastly, observed SOC contributed little information for C partitioning from leaves to
surface metabolic litter (w1) and C partitioning from soil microbial to passive pool if no sand or clay content (t5).

After parameter calibration temperature sensitivity, Q10, decreased from 2 to 1.84 (with 95% CI of 1.75–1.99);
clay effects on partitioning coefficients were increased, whereas the effects of lignin and labile C fractions
were decreased (Table 1). Less carbon reached slow pool from surface litter and soil litter (Figure 1), which, in
combination with the decreased optimum slow pool’s residence time, decreased the size of the slow pool
from 361 Pg to 275 Pg (95% CI 205–459 Pg). Soil microbial and passive pools, on the contrary, increased. Soil
microbial pool increased from 10.6 Pg to 11.8 Pg (95% CI 9.2–18.1 Pg) due to higher partitioning coefficient
from soil litter and lower Q10. Passive pool increased from 346 Pg to 865 Pg (95% CI 735–1047 Pg), and the
change was due to increase in its residence time (Figure 1) and decrease in Q10.

Calibrated parameters also showed that, compared to original parameters, a higher fraction of the fine root
carbon was allocated to the structural litter, and a lower fraction was allocated to the metabolic litter (Figure 1).
Increase in the abovementioned C allocation coefficient to soil structural litter together with lowerQ10 led to an
overall increase in soil litter pool due to longer C residence time in the soil structural than soil metabolic litter
pool. In accordancewith C cycle theory [Luo and Zhou, 2006], larger soil litter pool contributedmore C to the soil
pool, which in combination with lower C partitioning from surface litter to soil led to a shift in importance
of C inputs from surface and belowground litter for SOC pool formation. For instance, the initial ratio of soil

Parameter values

Fr
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nc

y

Figure 4. Frequency distributions of 20 calibrated parameters. The most constrained parameters were temperature sensitivity of hetero-
trophic respiration (Q10), clay effect on C partitioning from slow to passive pools (t7), and sand effect on C partitioning from soil microbial
to passive pool.
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structural litter to surface structural litter
inputs into soil slow pool was 0.66, and
after parameter optimization the ratio be-
came 6.69. Thus, soil litter contribution to
slow soil C pool formation was more im-
portant than that modeled originally. The
implication of more root inputs rather
than shoot inputs into soil C pool is
supported by long-term experimental
[Kätterer et al., 2011] and meta-analysis
[Rasse et al., 2005] studies.

3.3. Parameter Correlations

We used the posterior distributions to cal-
culate correlations among the model pa-
rameters (Table 2). Out of 190 parameter
pairs, three pairs had strong correlations.
The strongest positive correlations were
between passive C pool turnover, c(12,12),
and clay effect on partitioning from slow to
passive pool, t7; and between sand effect
on C partitioning from soil microbial to
passive pool, t6, and t7. The strongest neg-
ative correlation was between t6 and sand
effect on C partitioning from soil microbial C
pool to slow pool, t3.

3.4. Improvement of Soil Carbon
Estimation With Data Assimilation

After parameter calibration, the fitness be-
tween observed and modeled SOC im-
proved substantially (Figures 3b and 3c):
calibrated model explained 41% of the
variability in the observed SOC whereas
uncalibrated model explained 27%. The
model with calibrated parameters also
reduced the magnitude of the average
underprediction to 2.1 kg/m2 and
decreased RMSE by 38%. Using
posterior parameter distributions we
generated the standard deviations of SOC
for each grid cell to illustrate the uncer-
tainty in the estimated SOC. The regions
with the highest uncertainties were located
in the northern latitudes and tropics
(Figure 3d). Global SOC content in CLM-
CASA’ increased from 762 Pg to 1205 Pg
(with 95% CI of 1150–1293 Pg) after data
assimilation. The global SOC range was
within the 95% CI of the observed HWSD
SOC estimates presented by Todd-Brown
et al. [2013], however, it was still lower
than global observed soil C content
in IGBP-DIS.Ta
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3.5. Carbon Pool Responses to
Environmental Change

To illustrate the impact of parameter cali-
bration, we performed the forward runs
using a climate change scenario (RCP8.5).
Over 95 years, soils in the calibrated model
released 48 Pg C less than soils in the
original model (Figure 5a). Similarly, car-
bon loss from litter decreased by 6.5 Pg in
the calibrated model, compared to the
original model (Figure 5b). The decreases
in the C loss rates in litter and soil C pools
were caused by reduction in temperature
sensitivity. The decreased soil C loss was
also caused by the decrease in the
calibrated passive pool’s turnover rate.
We also generated the uncertainties of
changes in C pools from the posterior
parameter distributions to gain perspec-
tive about the magnitude of the range for
the cumulative C change after 95 years
(gray lines in Figure 5). The uncertainty
ranges were quite large: from 15 to 100 Pg
for cumulative soil C loss, and from �30 to
+5 Pg for cumulative litter C change. The
magnitude of uncertainties was caused
mostly by the uncertainties in maximum
turnover rates and Q10, as soil C dynamics
was most sensitive to those parameters
[Post et al., 2008].

4. Discussion
4.1. Current Status of Soil
Carbon Modeling

Currently, most carbon cycle models are
similarly formulated: they partition the photosynthetically fixed C among the live and dead carbon pools,
from which C is released via autotrophic or heterotrophic respiration [Todd-Brown et al., 2012;Weng and Luo,
2011]. Despite the conceptual similarity of the models, their estimates of global soil C range from 514 to 3046
Pg with poor spatial correlation with the empirical estimates (up to r2 = 0.16) [Todd-Brown et al., 2012]. While
the C influx is an important determinant of the C pool size, the capacity and sustainability of a C sink (e.g., soil
C sink) under changing environmental conditions are strongly regulated by the C sink’s residence time [Luo
et al., 2001, 2003], hence, it is important to calibrate the parameters regulating it.

Since the start of global soil C map production in 1982 [Post et al., 1982], to our knowledge, only very few
studies have made an attempt to use global soil C distributions to constrain global soil C residence times. For
example, Zhou et al. [2009] and Ise and Moorcroft [2006] used the IGBP-DIS data set [Group, 2000] to constrain
global soil C temperature sensitivities, and Smith et al. [2013] developed the C cycle model constrained with
multiple data streams. This study showed that the poor model performance in simulating soil C could be
substantially improved via parameter calibration against the observed soil C data. To model the C cycle as
realistically as possible, we not only need to incorporate more processes into ESMs as the modeling com-
munity currently focuses on [Koven et al., 2009; Koven et al., 2011; Lawrence et al., 2011; Luo et al., 2009] but
also need to develop our capacity to calibrate parameters effectively against the observed data.
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Figure 5. Change in CLM-CASA’s (a) soil and (b) litter carbon under RCP 8.5
climate change scenario. Blue lines are projections of the model with original
parameters, red lines,modelwithmaximum likelihoodparameters, andgray lines are
projections of themodels with parameter samples from the posterior distributions
(sample size=2000), representing the uncertainties of projections. Soils released
45 Pg C less in themodel with calibrated parameters than themodel with original
parameters. Similarly, litter released 6.5 Pg C less in the calibrated model’s pro-
jections than in the original model’s projection. Despite the differences in models’
projections, the original model’s projections were within the uncertainty range.
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4.2. Improvement of Soil Carbon
Modeling

Our results showed that applying data
assimilation could greatly reduce the
mismatches between modeled and
observed soil C. This error reduction was
achieved largely due to increase in the
soil C residence times. The implication
that residence time in the original model
was too low was in agreement with
literature. For instance, Rumpel and
Kögel-Knabner [2011] reported isotope-
derived passive C pools’ residence times
for the top meter of different soil types
ranging from 1026 years to 3030 years
with samples from South America,
Australia, Eurasia, and Africa. In compar-
ison, the original model underestimated
passive pool C residence time by 42–
2046 years, whereas the calibratedmodel

produced an estimate closer to the reported values (global average C residence time of passive pool was 2627
years with 95% CI 1583–3581 years).

To generate the estimates comparable to the ones in Todd-Brown et al. [2013], we calculated global weighted
averages of soil residence time as the ratio of soil C pool to NPP. After parameter calibration, soil C residence
time increased from 14 to 26 years (with 95% CI 25–28 years), which was within the range of observed soil C
residence times reported in Todd-Brown et al. [2013]. We then calculated soil C residence time as the ratio of
soil C pool to soil heterotrophic respiration and observed that global mean residence time increased from
32.3 years to 51 years (95% CI 45–61 years). The posterior estimates were too high compared to a global soil
residence time of 32 years reported in Raich and Schlesinger [1992]. However, in the above mentioned study,
soil residence time was obtained with the assumption that 30% of soil respiration originated from roots,
which was lower than the average global estimate derived from Bond-Lamberty and Thomson [2010] (54%).
We corrected the assumption in Raich and Schlesinger [1992] and SOC residence time became 48.6 years,
which was within the 95% CI for our calibrated estimate. Combining more up-to-date range of estimates for
SOC [Todd-Brown et al., 2013] and global soil respiration [Bond-Lamberty and Thomson, 2010], we obtained a
range for global soil residence times of 16.5 to 41 years, which was outside of our posterior 95% CI. Such
spread in the observed estimates highlights the need for data sets with better confidence.

We tested how new residence times affected C flux predictions by comparing the modeled soil heterotrophic
respiration to the observed values from Bond-Lamberty and Thomson [2010, 2012]. The global observed
range for soil heterotrophic respiration (calculated from soil respiration) was 41–54 Pg/year. Both model
predictions were within the observed estimates: original model simulated soil heterotrophic respiration at
46 Pg/year and calibrated model predicted 40 Pg/year with 95% CI 36–52 Pg/year. The spatial predictions of
the calibrated model were significantly different from the original model (P< 0.05), and although there was
no improvement in the explained variability of the observed data after calibration, RMSE reduced by 10%
(Figure 6). The decrease of soil respiration was a logical outcome of the decrease in Q10 and maximum
turnover rate of soil passive pool although the latter is somewhat offset by the increase of maximum turnover
rate in slow pool. The lack of large improvement in prediction of the observed soil heterotrophic respiration
may be due to interannual variability of the observations, which was not accounted for as we assumed
equilibrium conditions for the purpose of parameter calibration; differences in scale (model grid was around
2.8 by 2.8°, whereas the observation was a point on a grid); and limitations in model structure, which was also
indicated by parameters approaching unrealistic values by skewing against their maxima or minima.

The large role of chemical stabilization in soil C pool formation illustrated by increase in clay effect on C
partitioning to more recalcitrant pools has been supported by the observations and is described in the
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literature [Krull et al., 2003; Paul et al., 2008; Torn et al., 1997]. Parameter calibration also revealed a larger
regulation of soil C by soil litter inputs than surface litter inputs, which was also supported by experimental
results [Kätterer et al., 2011; Rasse et al., 2005]. Hence, through model calibration we were able to not only
improve the fitness between modeled and observed soil C but also gain insights into the C cycle processes.

4.3. Uncertainty in Future C Projections

With the prospect of global warming it is important to constrain the magnitude of SOC feedback (which
depends on SOC residence time) as fast CO2 release from soils may accelerate the increases in temperature.
We discussed earlier that parameter calibration decreased both the maximum turnover rate and temperature
sensitivity of SOC. Our maximum likelihood temperature sensitivity was within the range of the estimates
constrained against the atmospheric CO2 concentrations by Jones and Cox [2001] (2.1 ± 0.7 and 0.91 ± 0.4);
higher than the average global Q10 reported in Zhou et al. [2009] (1.72); and higher than the estimate in Ise
and Moorcroft [2006] (1.37). The Q10 from Ise in Moorcroft [2006], however, was likely underestimated as
authors used NPP rather than C influx from litter for SOC input. According to Figure S1, a higher input would
decrease residence time for the same SOC under equilibrium conditions. The range in the posterior SOC
residence times caused large uncertainties in the cumulative soil C change (a 15–100 Pg loss), which was
within the range reported in Smith et al. [2013] (from a 138 Pg C loss to a 82 Pg C gain). The smaller uncer-
tainty range in this study did not indicate better constraint, it was most likely due to the lower number of
parameters: the uncertainties in Smith et al. [2013] resulted from parameters regulating soil C dynamics as
well as parameters regulating plants’ carbon fixation. The large uncertainty ranges clearly indicated the need
for additional data sets to further constrain model parameters.

5. Conclusion

We calibrated a global land model against the global observed soil C data set using Bayesian MCMC approach.
By adjusting parameters that influenced residence times of C pools, we were able to substantially improve
the fitness between observed and modeled soil C. After parameter calibration we discovered that the regions
with the highest uncertainty in soil C were located in the northern latitudes and tropics, indicating that we need
to put more efforts in model soil C dynamics in those regions. When propagated over time under RCP8.5
scenario posterior parameter uncertainties resulted in 15–100 Pg C loss from soils over 95 years; however, the
maximum likelihood C loss (40 Pg) was 53% lower than SOC loss predicted with original parameters. Similarly,
maximum likelihood litter loss decreased 53% from the original predictions, but the range of changewas from a
30 Pg C loss to a 5 Pg C gain.

As we show in this study, data assimilation is a useful tool for gaining insights into carbon cycle modeling,
identifying regions that need additional data collection and more research to improve representation of
ecosystem carbon processes, as well as for uncertainty analysis of the model projections. More global level C
cycle data (e.g., litter pools, litter residence times, soil C residence times, live C pools, and their residence
times) along with their uncertainties are needed to constrain the processes in carbon cycle. Assimilating the
data into the model at global level will constrain C cycle feedback and provide more confidence in the future
carbon budget, which will facilitate more effective management of the natural resources.
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