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Abstract. Leguminous tree plantations at phosphorus (P)
limited sites may result in excess nitrogen (N) and higher
rates of nitrous oxide (N2O) emissions. However, the ef-
fects of N and P applications on soil N2O emissions from
plantations with N-fixing vs. non-N-fixing tree species have
rarely been studied in the field. We conducted an experimen-
tal manipulation of N and/or P additions in two plantations
with Acacia auriculiformis(AA, N-fixing) and Eucalyptus
urophylla (EU, non-N-fixing) in South China. The objective
was to determine the effects of N or P addition alone, as
well as NP application together on soil N2O emissions from
these tropical plantations. We found that the average N2O
emission from control was greater in theAA (2.3± 0.1 kg
N2O–N ha−1 yr−1) than inEU plantation (1.9± 0.1 kg N2O–
N ha−1 yr−1). For theAA plantation, N addition stimulated
N2O emission from the soil while P addition did not. Ap-
plications of N with P together significantly decreased N2O
emission compared to N addition alone, especially in the
high-level treatments (decreased by 18 %). In theEU plan-
tation, N2O emissions significantly decreased in P-addition
plots compared with the controls; however, N and NP addi-
tions did not. The different response of N2O emission to N
or P addition was attributed to the higher initial soil N status
in theAA than that ofEU plantation, due to symbiotic N fix-
ation in the former. Our result suggests that atmospheric N
deposition potentially stimulates N2O emissions from legu-
minous tree plantations in the tropics, whereas P fertiliza-

tion has the potential to mitigate N-deposition-induced N2O
emissions from such plantations.

1 Introduction

Nitrous oxide is a powerful greenhouse gas that is 298 times
more potent than carbon dioxide (CO2) over a 100 yr lifespan
(IPCC, 2007), and contributes to stratospheric ozone (O3)

depletion (Ravishankara et al., 2009). Atmospheric N2O con-
centration has been increasing by 0.2–0.3 % yr−1 over the
last 250 yr (Stocker et al., 2013). N2O is naturally produced
by bacterial metabolism during nitrification and denitrifi-
cation processes in many environments, particularly soils
(Barnard et al., 2005). Tropical forest soils are an important
source for N2O emission, accounting for 14 % to 23 % of
current global N2O budget (IPCC, 2007). The major factors
of controlling N2O emission are soil N availability, dissolved
organic C (DOC), soil temperature, moisture, and pH value
(Rowlings et al., 2012).

Anthropogenic activities have great impact on the global
and regional N cycles, thereby enhancing the mobility of re-
active N within ecosystems (Vitousek et al., 1997). Atmo-
spheric N deposition has increased dramatically during re-
cent decades due to intensive agricultural production, fos-
sil fuel combustion, and cultivation of N-fixing plants (Gal-
loway et al., 2008). Worldwide N deposition is projected to
increase by 50 % to 100 % in 2030 relative to 2000, with
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the greatest increases occurring in tropical regions such as
Southeast Asia and Latin America (Reay et al., 2008). In
China, the rate of N deposition has increased since the 1980s
and is projected to increase in the coming decades (Liu et al.,
2013). N2O emissions have often been found to be elevated
from the forest soils exposed to high N inputs including N
deposition, fertilization, or biological N fixation via legumi-
nous trees (Venterea et al., 2003; Zhang et al., 2008; Arai et
al., 2008).

In contrast to temperate forests, primary production in
many tropical forests is limited by P rather than by N avail-
ability (Vitousek et al., 2010). Previous studies found that
P-limited forests could emit more N2O than the N-limited
forests after N fertilization. Hall and Matson (1999) mea-
sured N2O emission after adding N in two tropical rainforests
in Hawaii (USA), and found that N2O emission from a P-
limited site was 54 times greater compared with that from
a N-limited site. Martinson et al. (2013) also found lower
N2O emissions when N and P were applied together com-
pared to N application alone in tropical montane forests. This
is because the poor P availability of tropical forests may de-
crease N uptake and immobilization and hence cause higher
N2O emission (Hall and Matson, 1999; Martinson et al.,
2013). However, most studies have been carried out in nat-
ural forests while very few in tropical plantations (Martinson
et al., 2013; Mori et al., 2013).

According to the Food and Agriculture Organization of the
United Nations (FAOUN, 2010), plantations occupy about
264 million hectares worldwide. The total area of plan-
tations in China is 62 million ha, accounting for approxi-
mately 32 % of the total forest area (available data from
the seventh national forest resources inventory survey of
China: http://www.forestry.gov.cn/main/65/content-326341.
html). The percentage of forest land cover in South China
increased from 26 % in 1979 to 56 % in 2005 (Peng et al.,
2009). In this region, most planted tree species areAcacia
spp.,Eucalyptusspp., and some native species (Chen et al.,
2011), especially on eroded and degraded lands. Leguminous
tree plantations at P-limited sites may result in higher rates
of N2O emissions, if excess N easily promotes N2O emis-
sion from P-limited soils (Arai et al., 2008; Konda et al.,
2008). Fertilization of N and/or P is a common practice to
improve productivity in plantation management in the trop-
ical and subtropical regions. However, direct evidence of N
and P addition on soil N2O emissions in tropical forests is
still rare (Hall and Matson, 1999; Koehler et al., 2009), es-
pecially from plantations with N-fixing vs. non-N-fixing tree
species (Mori et al., 2013).

In this study, the main objective was to determine the dif-
ferent effects of N or P addition alone, and their interaction
on N2O emissions from tropical plantations with N-fixing
(Acacia auriculiformis, AA) vs. non-N-fixing tree species
(Eucalyptus urophylla, EU) and clarify the underlying mech-
anisms of N2O production. We hypothesized the following:
(i) N addition would enhance N2O emissions more in theAA

plantation due to its relatively higher initial soil N availabil-
ity compared to theEU plantation, because of additional N
input into the former via biological N fixation by legumi-
nous trees; (ii) P addition would decrease N2O emissions in
both plantations due to stimulated uptake and/or immobiliza-
tion of N by the alleviation of P limitation; and (iii) N and P
interaction would reduce N-addition-induced N2O emission
from the soils of both plantations.

2 Materials and methods

2.1 Site description

This study was conducted at the Heshan National Field Re-
search Station of Forest Ecosystems (112◦50′ E, 22◦34′ N),
which is located in the middle of Guangdong Province, South
China. The region has a tropical monsoon climate with a
distinct wet and dry season. The average annual precipi-
tation and air temperature were 1295 mm and 21.7◦C, re-
spectively (Chen et al., 2011). N deposition in rainfall was
43.1± 3.9 kg N ha−1 yr−1, with almost equal contributions
from oxidized and reduced forms (unpublished data, mea-
sured from July 2010 to June 2012). Plantations with N-
fixing and non-N-fixing tree species (located 500 m apart)
were used in this experiment. The dominant species in the
canopy layer wasAcacia auriculiformisin theAAplantation,
andEucalyptus urophyllain theEU plantation. As a result of
long-term disturbances, the soil in this area has eroded, lead-
ing to vast areas of degraded lands. TheAA andEU planta-
tions are commonly used for promoting forest restoration on
the degraded lands in this region. Indices of the tree structure
of both plantations are given in Supplement Table S1. The
soils in both sites are classified as lateritic soils (Chen et al.,
2011), and soil bulk density is 1.2 and 1.1 g cm−3 for theAA
andEU stand, respectively.

2.2 Experimental design

An experimental manipulation of nutrient additions was con-
ducted with a complete randomized block design. Three
blocks (three replicates) were established per plantation in
July 2010. Each block had seven treatments which were
randomly assigned to 10 m× 10 m plots. Each plot was
surrounded by a 10 m buffer strip to the next plot. The
treatments included control (C, without N and P addi-
tion), medium N (MN, 50 kg N ha−1 yr−1), high N (HN,
100 kg N ha−1 yr−1), medium P (MP, 50 kg P ha−1 yr−1),
high P (HP, 100 kg P ha−1 yr−1), medium NP (MNP,
50 kg N ha−1 yr−1

+ 50 kg P ha−1 yr−1), and high NP (HNP,
100 kg N ha−1 yr−1

+ 100 kg P ha−1 yr−1). Ammonium ni-
trate (NH4NO3) and sodium biphosphate (NaH2PO4) were
applied as N and P source, respectively. The additions were
weighed and dissolved in 10 L water for each plot. The solu-
tions have been sprayed monthly onto the forest floor using
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a backpack sprayer since August 2010. Each control plot re-
ceived 10 L water simultaneously with each treatment event.

2.3 Field sampling and measurements

2.3.1 N2O flux measurements

From August 2010 to July 2012, N2O fluxes were mea-
sured biweekly using a static chamber method. The chamber
design and the measurement procedure were adopted from
Zhang et al. (2012). Gas samples were collected at 0, 15 and
30 min intervals after the chamber closure. N2O concentra-
tions were analyzed within 24 h using a gas chromatograph
(Agilent 5890 D, USA) equipped with an electron capture
detector (ECD). Fluxes were calculated from the linear rate
of change in gas concentration, chamber volume, and soil
surface area (Holland et al., 1999), and adjusted for the field-
measured air temperature and atmospheric pressure.

2.3.2 Soil sampling and analyses

Soil samples were collected in July 2011 and July 2012
for analyzing properties. Three soil cores (3.5 cm diameter)
were collected randomly from each plot at 0–10 cm depth
and combined to one composite sample. The samples were
passed through a 2 mm sieve and divided into two parts. One
part of fresh soil was used for the analysis of ammonium
(NH+

4 ), nitrate (NO−

3 ), microbial biomass C (MBC), and mi-
crobial biomass N (MBN) contents. The other part was air
dried at room temperature (25◦C) for the estimation of other
chemical parameters.

Soil NH+

4 and NO−

3 contents were determined by extrac-
tion with 2 M KCl solution followed by colorimetric analysis
on a flow-injection autoanalyzer (Lachat Instruments, Mil-
waukee, USA). Total N (TN) content was determined by the
micro-Kjeldahl digestion (Bremner and Mulvaney, 1982),
followed by detection of NH+4 with a UV-8000 Spectropho-
tometer (Metash Instruments Co., Shanghai, China). Soil or-
ganic carbon (SOC) was determined by wet digestion with
a mixture of potassium dichromate and concentrated sulfu-
ric acid (Liu et al., 1996). Soil pH was measured in a 1 : 2.5
soil–water suspension using a pH meter (HM-30G, TOA Co.,
Japan). Available P was extracted with 0.03 M ammonium
fluoride and 0.025 M hydrochloric acid and analyzed colori-
metrically (Anderson and Ingram, 1989). Gravimetric water
content was determined through oven drying at 105◦C for
48 h.

Both soil MBC and MBN were estimated by chloroform
fumigation–extraction method (Vance et al., 1987). In brief,
fresh soil samples were fumigated with chloroform (CHCl3)

vapor for 24 h at 25◦C then extracted with 0.5 M K2SO4. Si-
multaneously, subsamples for non-fumigated soil were also
extracted with the same method. Soil MBC and MBN were
calculated as the difference in extractable C and N between
fumigated and non-fumigated soils. The conversion factors

of 0.33 and 0.45 were used for calculating soil MBC and
MBN, respectively (Cabrera and Beare, 1993; Tu et al.,
2006).

From 1 to 31 July 2012, soil net N mineralization and ni-
trification were measured using an intact core incubation.
Six soil cores (3.5 cm diameter) were sampled from each
plot. Three cores were brought to the lab for extraction (2 M
KCl) of inorganic N contents, and the others were returned
to the plot for in situ incubation. Nitrification rate was cal-
culated from the difference between extractable NO−

3 con-
tents before and after incubation, and net N mineralization
rate was calculated as the accumulation of total inorganic N
over the incubation (Zhu and Carreiro, 1999). The data were
expressed as mg N kg−1 dry weight soil month−1.

2.3.3 Litterfall

Two litterfall traps (1.0 m× 1.0 m with a mesh size of 1 mm)
were established in each plot. Litter was collected monthly.
The samples were oven-dried at 65◦C for 48 h and weighed
to determine litter mass. Subsamples of dried litter were
grounded and analyzed for N and P concentrations using
H2SO4–H2O2 digestion followed by colorimetric analysis
(Dong et al., 1996).

2.3.4 Soil temperature and moisture

Air temperature (inside chamber), soil temperature (5 cm
depth), moisture (0–10 cm depth), and atmospheric pres-
sure were measured simultaneously with each gas sampling
event. Temperature was measured using a digital thermome-
ter (TES-1310, Ltd., China). Atmospheric pressure was mea-
sured at sampling site using an air pressure gauge (Model
THOMMEN 2000, Switzerland). Soil moisture (0–10 cm
depth) was detected using an ADR-probe (Amplitude Do-
main Reflectometry, Model Top TZS-I, China), and con-
verted to WFPS as the following formula:

WFPS= Vol/(1− SBD/2.65), (1)

where WFPS is water-filled pore space (%), Vol is volumetric
water content (%), SBD is soil bulk density (g cm−3), and
2.65 is the soil particle density (g cm−3).

2.4 Statistics

Repeated measures analysis of variance (ANOVA) was used
to examine the effect of nutrient additions on N2O fluxes, soil
temperature and WFPS, as well as soil properties from Au-
gust 2010 to July 2012. Two-way ANOVA was performed to
analyze the difference in mean N2O emissions, soil proper-
ties, MBC, MBN, and litter mass among treatments of each
plantation. Multiple regression analysis was performed to
evaluate the relationships of N2O emissions with soil tem-
perature, WFPS and soil parameters. All statistical analyses
were conducted using SPSS 16.0 for windows (SPSS Inc.,
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Chicago, IL, USA). Statistically significant difference was
set atp ≤ 0.05. Mean values±1 standard error were reported
in the text.

3 Results

3.1 Soil nutrients and pH

The variations of soil properties were depended on nutrient
addition levels and plantation types. Soil available N (NO−

3
and NH+

4 ), TN, and SOC contents of the control plots were
greater in theAA plantation than inEU stand (Supplement
Table S2;t test,p < 0.05). In contrast, soil pH value ofAA
was marginally significant lower than that ofEU plantation
(Supplement Table S3;p = 0.06 for both years).

During the 2 years, N addition significantly influenced soil
available N (NH+4 and NO−

3 ) and TN contents of theAAplan-
tation (Table 1 and Supplement S2). For theEU plantation,
N addition significantly increased soil NO−3 content, while
NH+

4 and TN contents had no changes in the first year (Ta-
ble 1 and Supplement S2). N addition did not change soil pH
of theEU stand; however, a marginally significant decrease
in pH value with N addition was observed in theAA plan-
tation (Table 2;p = 0.07 for the two experimental years).
After 2 years of N application, there were no changes in soil
available P of each plantation (Table 1 and Supplement S2).
However, there were significant increases of soil available
P contents following P addition in both plantations (Table
1). In the second experimental year, soil NO−

3 content de-
creased significantly following P addition in theEU planta-
tion (p = 0.05), but not significantly in theAAstand (Table 1
and Supplement S2;p = 0.4). Soil pH values of HP were
significantly higher than that of HN treatments in theAA
plantation, while theEU site did not (Supplement Table S3;
p < 0.05). Multiple regression analysis indicated that there
were no significant relationships between N2O emissions and
TN or SOC contents of both plantations.

Applications of NP together significantly increased soil
available P in both plantations (Table 1 and Supplement S2).
For theAAplantation, soil available N slightly increased fol-
lowing NP addition (Table 1 and Supplement S2). The in-
teractions of N× P addition on soil available N (NO−3 and
NH+

4 ) were found in theAA plantation (Table 1). There was
an interactive effect of N× P addition× year on soil NO−3 in
the AA plantation (Table 1). For theEU plantation, the in-
teraction of N× P addition on soil NO−3 contents was also
found (Table 1).

3.2 Nitrification and net N mineralization

In the AA plantation, N addition significantly increased the
rates of nitrification (Fig. 1a;p = 0.03), which were from
11± 3 in the controls to 23± 3 mg N kg soil−1 month−1

in HN-treatment plots. The rates of net N mineralization

Figure 1. The rates of net N mineralization and nitrification in the
0–10 cm mineral soil of(a) Acacia auriculiformisand(b) Eucalyp-
tus urophyllaplantation. The field incubation was conducted in July
2012 (the second year after nutrient additions). The error bars de-
note± 1 SE. Different letters represent statistically significant dif-
ferences atp < 0.05.

also significantly increased following N treatment levels
(Fig. 1a; p = 0.04). The average rates of net N miner-
alization were from 12± 3 in the controls to 14± 2 and
19± 2 mg N kg soil−1 month−1, respectively for the MN and
HN treatments. However, P addition or NP addition did not
significantly change the rates of nitrification and net N min-
eralization (Fig. 1a).

For theEU plantation, N addition slightly increased the
rates of nitrification and net N mineralization (Fig. 1b).
On the contrary, P addition tended to marginally decrease
the rates of nitrification and net N mineralization (Fig. 1b;
p = 0.07 and 0.06, respectively for nitrification and net N-
mineralization rate). Accordingly, the rate of nitrification in
HP-treatment plots (5± 1) was significantly lower than that
in HN (17± 6) and HNP (14± 4 mg N kg soil−1 month−1)

treatment plots (Fig. 1b;p < 0.05). Similarly, the significant
differences of net N-mineralization rate between the HP and
HN or HNP treatments were found in the field incubation
experiment (Fig. 1b;p< 0.05).

3.3 Soil microbial biomass and litterfall mass

In the AA plantation, soil MBC tended to decrease with N
application, but there was no significant difference between
N-addition plots and the controls (Supplement Table S3).
Meanwhile, a marginal increase in soil MBN following N
treatment levels was found in the first year (Supplement Ta-
ble S3;p = 0.07). NP addition increased soil MBC only in
the first year, but did not change MBN (Supplement Table
S3). P addition changed neither soil MBC nor MBN through-
out the 2 years (Supplement Table S3). For theEU plantation,
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Table 1. Results of repeated measures ANOVA for responses of N2O fluxes, soil properties, soil MBC and MBN to N addition, P addition
and year.

N2O NO−

3 NH+

4 TN SOC C : N Av. P MBC MBN pH

N < 0.01 < 0.001 < 0.001 0.45 0.80 0.07 0.19 0.52 0.67 0.27
P 0.75 0.16 0.98 0.02 0.35 0.03 < 0.001 0.01 0.93 0.02
Y 0.843 < 0.001 < 0.001 < 0.001 < 0.001 0.02 0.17 0.01 0.02 0.63

AA N × P 0.05 0.04 0.01 0.10 0.47 0.08 0.08 0.66 0.56 0.80
N × Y 0.06 0.41 0.52 0.79 0.86 0.73 0.34 0.11 0.57 0.17
P× Y 0.06 0.79 0.46 0.99 0.39 0.56 0.001 0.12 0.93 0.07

N × P× Y 0.17 0.02 0.95 0.48 0.79 0.63 0.33 0.16 0.47 0.94

N 0.08 < 0.001 0.04 0.11 0.53 0.93 0.38 0.06 0.83 0.86
P 0.86 < 0.01 0.03 0.22 0.07 0.64 < 0.001 0.09 0.62 0.77
Y 0.11 < 0.001 < 0.001 0.45 < 0.001 < 0.01 0.68 0.10 < 0.01 0.49

EU N × P 0.35 0.001 0.54 0.08 0.52 0.49 0.60 0.23 0.47 0.52
N × Y 0.82 0.30 0.45 0.66 0.66 0.89 0.73 0.96 0.680.03
P× Y 0.04 0.04 0.10 0.92 0.47 0.86 < 0.01 0.98 0.82 0.21

N × P× Y 0.57 0.33 0.51 0.33 0.86 0.55 0.58 0.75 0.540.06

The data were from high N and P treatment (HN, HP, HNP additions) plots.p values smaller than 0.05 and 0.10 are in bold and italic, respectively. N, N
addition; P, P addition; Y, year, the first year (from August 2010 to July 2011) and the second year (from August 2011 to July 2012) after nutrient
additions.AA, Acacia auriculiformisplantation;EU, Eucalyptus urophyllaplantation. TN, total nitrogen; SOC, soil organic carbon; C : N , SOC : TN ratio;
Av. P, soil available P; MBC, soil microbial biomass C; MBN, soil microbial biomass N.

Table 2.Regression analysis between N2O fluxes and soil temperature and WFPS in the controls ofAAandEU plantations.

AA (n = 108) EU (n = 108) AA+ EU (n = 216)

Soil temperature (T in ◦C)

R2 0.32*** 0.35*** 0.30***
p < 0.001 < 0.001 < 0.001
f (T ) 1.34T + 2.28 1.43T + 7.44 1.34T − 2.05

Soil moisture (M, WFPS, %)

R2 0.19*** 0.26*** 0.23***
p < 0.001 < 0.001 < 0.001
f (M) 0.49M + 3.70 0.56M − 5.58 0.55M − 2.38

Multiple linear regression analysis (T andM)

R2 0.38*** 0.43*** 0.39***
p < 0.001 < 0.001 < 0.001
f (T ,M) 1.11T + 0.31M − 9.56 1.12T + 0.35M − 18.50 1.06T + 0.38M − 15.05

Gas samples, soil temperature and soil moisture were collected simultaneously.∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
AA, Acacia auriculiformisplantation;EU, Eucalyptus urophyllaplantation;f , N2O flux; T , soil temperature;M, soil
moisture (water-filled pore space, WFPS).

there were no changes in soil MBC and MBN following nu-
trient additions (Supplement Table S3).

There were no differences in annual total litter mass be-
tween the controls of both plantations (Supplement Table S3;
t test, allp > 0.05). The quantity of litter mass among nutri-
ent treatment plots in each plantation was also not signifi-
cantly different (Supplement Table S3). Multiple regression
analysis showed that there was a weak relationship between
litter mass and N2O emission. Leaf litter N concentrations
were significantly increased by any nutrient additions in the

EU plantation, especially in each high-level treatment (Sup-
plement Table S3). In theAA plantation however, there were
no changes in leaf litter N concentrations following nutri-
ent additions (Supplement Table S3). The fertilization with P
alone, as well as NP together, strongly increased P concentra-
tions of leaf litter, especially in high-level treatments for both
plantations (Supplement Table S3; allp < 0.05). N : P ratios
of leaf litter significantly decreased by P addition, as well as
NP together (Supplement Table S3; allp < 0.05). The N : P
ratio of leaf litter from the controls ofAA was significantly
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Figure 2. Average N2O emission rates for each treatment of
(a) Acacia auriculiformisand(b) Eucalyptus urophyllaplantations
in the first and second year after nutrient additions. The error bars
denote± 1 SE. Different letters represent significant differences at
p < 0.05. Yr 1: the first year (from August 2010 to July 2011); Yr
2: the second year (from August 2011 to July 2012).

higher than that ofEU plantation (Supplement Table S3;t

test,p < 0.01).

3.4 Soil temperature and WFPS

There were clear seasonal patterns of soil temperature and
WFPS in the controls of both plantations, which followed
the seasonal patterns of air temperature and rainfall (Supple-
ment Fig. S1). In the control plots, the mean soil tempera-
tures were 20.5± 0.7◦C and 20.9± 0.6◦C for AA and EU
plantation. The average WFPS was 53 and 49 % for theAA
and EU stand, respectively. Monthly means of soil WFPS
and temperature were similar between theAA andEU plan-
tations (t test,p > 0.05). There were no differences between
treatments and the controls in each plantation, in terms of soil
temperature (p = 0.7 and 0.6, respectively for theAAandEU
plantation) and WFPS (p = 0.9 for both plantations). In our
study, N2O fluxes showed positive linear relationships with
soil temperatures (R2

= 0.3 and 0.4) and WFPS (R2
= 0.2

and 0.3, respectively forAA and EU plantation) (Table 2).
Stepwise multiple linear regression analysis indicated that
soil temperature and WFPS are the significant variables ex-
plaining the variability of N2O emissions (Table 2).

3.5 N2O emissions from the controls

During the 2 years of experimental period, the soils of
both plantations were a net source of N2O (Fig. 2).
Average N2O emission from the controls of theAA
plantation (2.3± 0.1 kg N2O–N ha−1 yr−1) was significantly
greater (t test, p = 0.007) than that of theEU plantation
(1.9± 0.1 kg N2O–N ha−1 yr−1). TheAA plantation showed

more and higher N2O peaks compared to theEU plantation
(Supplement Fig. S2). N2O emissions of both plantations
tended to be higher in summer (June to August) than in win-
ter (November to January of next year) (Supplement Fig. S2;
p < 0.05 for both plantations).

3.6 Effects of nutrient additions on N2O fluxes

In theAA plantation, N2O emissions significantly increased
following N applications (Fig. 2a; allp < 0.05), however,
did not change following P addition relative to the controls
(Fig. 2a; allp > 0.05). During the 2 years of experimental
period, the MN and HN treatments significantly increased
soil N2O emissions by 16 % and 36 %, respectively (Fig. 2a;
p = 0.05 and 0.04, respectively for the MN and HN treat-
ment). The NP addition significantly increased N2O emission
in the first year, especially for HNP treatments (increased by
33 %) compared with the controls (Fig. 2a;p = 0.04), but did
not in the second. The average N2O emission rate of HNP
plots was significantly decreased by 18 % compared to that
of HN treatments in the second year (Fig. 2a;p = 0.04). Re-
peated measures analysis indicated that there was a signif-
icant interaction of N× P addition on N2O emissions from
AAplantation soil (Table 1).

For theEU plantation, nutrient additions had no significant
effects on soil N2O emissions in the first year (Fig. 2b; all
p > 0.05). However in the second year, soil N2O emissions
significantly decreased by 23 % and 27 % for MP and HP
treatments compared with the controls (Fig. 2b;p = 0.05 and
0.04, respectively for the MP and HP treatment). There was
a significant interactive effect of P addition× year on N2O
emission (Table 1).

4 Discussion

4.1 Comparisons of N2O emission

The rates of N2O emission observed from the controls of
AA andEU plantations (1.9 to 2.3 kg N2O–N ha−1 yr−1) are
comparable with previous reports in (sub)tropical regions of
southern China (2.0 to 4.8 kg N2O–N ha−1 yr−1) (Zhang et
al., 2008; Zhu et al., 2013a), and also within the range of
published results (1.2–2.6 kg N2O–N ha−1 yr−1) from other
tropical forests (Werner et al., 2007; Gharahi Ghehi et al.,
2012). Higher rates of N2O emissions (3.7–7.5 kg N2O–
N ha−1 yr−1) than our study were also reported from tropi-
cal forests (Keller and Reiners, 1994; Kiese and Butterbach-
Bahl, 2002). However, our result is above the reported av-
erage N2O emissions of 0.1 to 0.7 kg N2O–N ha−1 yr−1 for
pine forests in southwestern China (Wang et al., 2010), prob-
ably due to the higher pH values of these pine forest soils.

TheAAplantation had significantly higher N2O emissions
than those of theEU stand, which was consistent with our ex-
pectation. Our result supports the notion that leguminous tree
plantations in tropics and subtropics may potentially emit
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more N2O (Arai et al., 2008; Konda et al., 2008). The pres-
ence of leguminous trees resulted in higher soil N availabil-
ity, including higher rates of net N mineralization and nitrifi-
cation than in theEU stand, which was considered to be the
main reason for the higher rate of N2O emission from theAA
plantation, as also found by Dick et al. (2006). Leguminous
trees can not only supply N via their unique ability of N-
fixing but also increase soil C content (Li et al., 2012). The
higher SOC and fertility in theAA plantation compared to
EU plantation may also partly explain the higher N2O emis-
sion from theAA plantation. Additionally, soil pH of theAA
plantation was 0.5–0.7 lower than that of theEU site, which
might directly or indirectly increase N2O emission from the
AAstand (Liu et al., 2010).

4.2 Effects of N application on N2O emission

Consistent with our hypothesis, the soil ofAA plantation re-
sponded to N addition greater than theEU stand, with a large
and immediate loss of N2O emission. The increase of soil
N2O emissions following NH+4 or NO−

3 addition was ob-
served in many N-rich ecosystems (Butterbach-Bahl et al.,
1998; Hall and Matson, 1999; Koehler et al., 2009). In the
present study, the result fromAA plantation is consistent
with the reported results that N additions could increase N2O
emissions from N-rich forest soils (Venterea et al., 2003;
Zhang et al., 2008). Whereas the result from theEU site is
more comparable to the findings from N-poor forests (Mat-
son et al., 1992; Zhang et al., 2008), where N addition did
not enhance N2O emissions.

There are several factors causing the different responses
of soil N2O emissions to N addition between theAAandEU
plantations. The initial soil N status between both plantations
contributed to the different responses of N2O emissions to N
addition. TheAAplantation was abundant in symbiotic N fix-
ers (Azotobacter), which act to incorporate large amounts of
N into the soil (Hedin et al., 2009). Therefore, theAA plan-
tation presents an initial N-rich soil, while theEU plantation
dominated byEucalyptusspp. did not. Moreover, the rates
of net N mineralization and nitrification in theAA plantation
were significantly increased following N applications. This
might be another potential cause of the different responses.
For theEU plantation, the fast growing trees ofEucalyptus
spp. may have strong competition with microbes (e.g., nitri-
fying and denitrifying bacteria) for N uptake (Forrester et al.,
2006), which was proved by the increase in N concentrations
of leaf litter following N addition. The changes of soil MBC
and MBN contents following N applications were not found
in theEU plantation, so the vegetation sink for N would be
a buffer and provide the resistance in preventing N losses
as N2O emission (Attiwill et al., 2001). There was also no
evidence for the changes in soil MBC and MBN of theAA
plantation, which might be caused by adequate N availability
for plants and microbes in this ecosystem.

A lower soil C : N ratio ofAA plantation with N addition
was likely the other cause of the different response. Multiple
regression analysis indicated the variations of C : N had a po-
tential contribution to N2O fluxes. The decrease in soil C : N
ratio following N addition resulted in a “hotspot” for nitrifi-
cation and/or denitrification of theAA plantation (Barnard et
al., 2005). Additionally, soil acidity has been reported to sup-
port high N2O emissions by denitrification (Liu et al., 2010).
A lower soil pH after N application might contribute to the
increase in N2O emission from theAA plantation. Further
works should be conducted to determine whether such a link
exists.

4.3 Effects of P application on N2O emissions

P addition promoted uptake of N by plants (Hall and Mat-
son, 1999), which could reduce N2O emission by decreasing
N substrate. Higher plant N uptake could lead to decrease N
availability for microbial nitrification and denitrification that
would be lost as N2O from the soil ofEU plantation. Sun-
dareshwar et al. (2003) also reported that P addition to sedi-
ment from a coastal salt marsh in South Carolina decreased
N2O emissions by increasing N immobilization. On the con-
trary, in an incubation experiment (excluded plant), Mori et
al. (2010) found that P addition increased N2O emissions
from soil underneath anAcacia mangiumplantation. They
suggested that the possible mechanism might be P addition
stimulated N cycling and relieved the P shortage for nitri-
fying and/or denitrifying bacteria; however, the competition
for N by plants was ignored. Falkiner et al. (1993) reported
that application of P increased soil net N mineralization of
a Eucalyptusspp. forest in Australian, but almost the entire
mineral N utilized by the vegetation. For ourEU plantation,
the significant increases in P concentrations and decreases in
N : P ratios of leaf litter proved that P addition increased P
uptake, leading to faster N uptake by plants as well. P ad-
dition did not change N2O emission from theAA plantation
soil. The reason for this is currently not clear. Further study is
necessary to identify causal relationships between N2O emis-
sion, N availability of leguminous tree plantations and nutri-
ent additions.

Additionally, Mori et al. (2010) reported that P addition
decreasing N2O emission could be associated with increased
other microbe immobilization of N after P addition, decreas-
ing the N substrate for nitrifying and denitrifying bacteria. In
the present study, net N-mineralization and nitrification rates,
as well as soil MBC and MBN contents, did not change fol-
lowing P applications. Therefore, it is unlikely that a micro-
bial immobilization mechanism would explain the trend in
our results.

4.4 Interaction of N and P on N2O emission

Application of N and P together tended to increase N2O
emissions from the soil ofAA plantation in the first year.
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Table 3.N2O emission factor.

Plantation type Treatments N2O emission N addition N2O emission
(kg N ha−1 yr−1) (kg N ha−1 yr−1) factor (%)

C 2.3(0.1) a 0
MN 2.6(0.2) ab 50 0.72 (0.17) ab

AA HN 3.1(0.1) b 100 0.81 (0.09) b
MNP 2.6(0.0) ab 50 0.64 (0.11) ab
HNP 2.7(0.1) ab 100 0.41 (0.04) a

C 1.9(0.1) 0
MN 1.9(0.1) 50 0.11 (0.03)

EU HN 2.0(0.2) 100 0.15 (0.04)
MNP 2.1(0.1) 50 0.34 (0.07)
HNP 2.1(0.0) 100 0.23 (0.04)

Gas samples were collected from August 2010 to July 2012. Values are presented as means with SE in parentheses
(n = 3). Different letters in the same column indicate significantly different mean values among treatments of each
stand (Tukey’s HSD test,p ≤ 0.05). N2O emission factor of a block was calculated as (annual N2O–N emission of
N-treatment plot – annual N2O–N emission of the control plot)/(total N applied in each year).AA, Acacia
auriculiformisplantation;EU, Eucalyptus urophyllaplantation.

The result was in line with the report that addition of NO−

3
with P together stimulated soil N2O emissions fromAcacia
mangiumplantation soil (Mori et al., 2013). The increase in
N2O emission was attributed to the fact that the added N in-
creased substrates (Xu et al., 2012), and the added P stimu-
lated nitrification and denitrification by relieving P shortage
for nitrifying and denitrifying bacteria (Minami and Fukushi,
1983). However, NP addition decreased N2O emission com-
pared to N addition in theAA plantation. The main cause of
this might be that most of added N was absorbed and utilized
by the vegetation after relieving the P shortage by applied P
together. Further study is necessary to identify nutrient com-
petition between soil microorganisms and plant growth after
nutrient applications in tropical leguminous tree plantations.

4.5 Effects of soil temperature and WFPS on N2O
emission

In the study, N2O fluxes showed positive linear relationships
with soil temperatures and WFPS, which were consistent
with tropical and subtropical forests (Butterbach-Bahl et al.,
2004; Zhang et al., 2008; Zhu et al., 2013a). There is a co-
variation between soil temperature and WFPS in the mon-
soon climate zone of southern China. The interaction of soil
temperature and WFPS may constrain the processes of ni-
trification and denitrification, which mainly control the pro-
duction of N2O emission (Barnard et al., 2005). Multiple lin-
ear regression analysis indicated that the variability of N2O
emissions is significantly related to the changes of soil tem-
perature (p = 6.1× 10−8 and 7.6× 10−8) and WFPS (p =

7.0× 10−5 and 9.2× 10−5 for the AA and EU stand, re-
spectively) of each stand (Table 2). The results showed that
when comparing to WFPS, soil temperature is a more im-
portant controlling factor for N2O emissions in the studied
plantations (p = 1.4× 10−12 and 2.6× 10−8 for soil tem-

perature and WFPS, respectively). N2O emission increases
with increasing soil temperature due to the fact that rates of
enzymatic processes generally increase with temperature as
long as other factors (e.g., substrate or WFPS) are not lim-
iting (Smith et al., 1998; Pilegaard et al., 2006). Increasing
soil moisture would increase soil microbial activities and
therefore N2O production (Rowlings et al., 2012). On the
other hand, increased soil moisture under warm conditions
could exponentially increase denitrification (Arah and Smith,
1989). There were no differences between treatments and the
controls in each plantation, which indicated that nutrient ad-
ditions did not change the relationships of N2O fluxes with
soil temperature or WFPS.

4.6 N2O emission factors

According to N-addition and NP-addition plots, N2O emis-
sion factors based on percentage of applied N ranged be-
tween 0.7 % to 0.8 % and 0.1 % to 0.3 % for treatment level
in AA and EU plantation, respectively (Table 3). The N2O
emission factor ofAA plantation was similar to the average
of 0.9 % for forest ecosystems (Liu and Greaver, 2009), and
the IPCC default factor (1 %) (IPCC, 2007). It is among the
lowest range of data from other tropical forests (1–9 %) (Hall
and Matson, 1999; Steudler et al., 2002). On the contrary,
Zhu et al. (2013b) reported that emission factors amounted
to 8–10 % of N deposition in subtropical forests of southern
China. In our study, the lower N2O emission factor might be
due to the short term of the experiment (2 yr), and the planta-
tions planted on eroded soils are relatively poor in nutrients
compared with natural forest soils. Compared to HN treat-
ment, HNP addition significantly decreased the N2O emis-
sion factor by 50 % in theAAplantation (Table 3;p = 0.04).
This result suggests that the combined application of N and P
together may probably mitigate N2O emission in comparison
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with N fertilization alone in tropical leguminous tree planta-
tions.

5 Conclusions

The responses of soil N2O emissions to nutrient additions
were studied in two tropical plantations with N-fixing and
non-N-fixing tree species. We found that leguminous tree
plantations in the study region may potentially emit more
N2O after N addition, due to its high initial soil N availabil-
ity. Application of N and P together decreased the rate of
N2O emission compared to N treatment alone in N-fixing
tree plantations, while application of P alone significantly
reduced N2O emission from non-N-fixing tree plantations.
The main cause of these might be that most of N was ab-
sorbed and utilized by the vegetation with P application in
these tropical plantations. As far as we know, this study is
among the first to investigate the effect of nutrient additions
on soil N2O emissions from tropical plantations with N-
fixing vs. non-N-fixing tree species. The results indicate that
the projected increase of atmospheric N deposition would po-
tentially increase soil N2O emissions from leguminous tree
plantations. Our findings also suggest that moderate fertil-
ization of P might eventually reduce N-deposition-induced
N2O emissions from leguminous tree plantations in the trop-
ical and subtropical regions.

The Supplement related to this article is available online
at doi:10.5194/bg-11-4941-2014-supplement.
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