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Abstract

Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this estimate has not been

directly deduced from studies of terrestrial ecosystems themselves, but inferred from atmospheric and oceanic data.

This raises a question: to what extent is the terrestrial carbon cycle intrinsically predictable? In this paper, we investi-

gated fundamental properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a

suite of future research directions to improve empirical understanding and model predictive ability. Specifically, we

isolated endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. The internal

processes share five fundamental properties (i.e., compartmentalization, carbon input through photosynthesis, parti-

tioning among pools, donor pool-dominant transfers, and the first-order decay) among all types of ecosystems on the

Earth. The five properties together result in an emergent constraint on predictability of various carbon cycle compo-

nents in response to five classes of exogenous forcing. Future observational and experimental research should be

focused on those less predictive components while modeling research needs to improve model predictive ability for

those highly predictive components. We argue that an understanding of predictability should provide guidance on

future observational, experimental and modeling research.
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The need to advance our predictive understanding

of the terrestrial carbon cycle

Terrestrial ecosystems play a crucial role in the global

carbon cycle and in the regulation of climate change.

Anthropogenic CO2 emissions increased from 2.4 Pg C

in 1960 to 8.7 Pg C per year in 2008 while terrestrial

ecosystems absorbed roughly 30% during that period

(Le Quere et al., 2009). If that absorption capacity were

to change, in either direction, it would have a large

impact on atmospheric CO2 concentrations, resulting in

a strong feedback effect on climate (Friedlingstein et al.,

2006; Denman et al., 2007). It is, therefore, imperative to

accurately predict dynamics of the terrestrial carbon

cycle in order to accurately predict future changes in

the Earth’s climate. Here, we examine the current state

of the art of predictive modeling of the global carbon

cycle, and outline how an understanding of the intrin-

sic predictability of its components can be used to

guide future experimental research and develop the

next generation of carbon cycle models.

To date, the magnitude of the terrestrial carbon sink

has been deduced indirectly: combining analyses of

atmospheric carbon dioxide concentrations with ocean

observations to infer the net terrestrial carbon flux

(Denman et al., 2007; Ballantyne et al., 2012). In con-

trast, when knowledge about the terrestrial carbon

cycle is integrated into different terrestrial carbon mod-

els they make widely different predictions and fit

observations poorly (Schaefer et al., 2012; Todd-Brown

et al., 2013). For example, none of the 11 earth system

models (ESM) participating in the 5th Climate Model

Intercomparison Project (CMIP5) could accurately pre-

dict patterns of soil carbon (the largest terrestrial car-

bon pool) across the global land surface (Todd-Brown

et al., 2013) (Fig. 1). Similarly regional evaluation of 26

models against estimated gross primary production

(GPP) at 39 eddy covariance flux tower sites across the

United States and Canada shows poor matches of mod-

eled with estimated GPP within observed uncertainty

(Schaefer et al., 2012). These problems have been

known for more than a decade (Cramer et al., 2001;

Mcguire et al., 2001) and obstruct our ability to
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adequately inform policy and decision makers about

the probable consequences of anthropogenic emissions

and land use change scenarios.

The modeling community has adopted a variety of

different approaches to improve the terrestrial carbon

models in ESMs, none of which, unfortunately, has led

to significant reductions in the variation between model

predictions. A common approach has been to incorpo-

rate an increasing number of processes known to influ-

ence the carbon cycle, to make the models as realistic as

possible. However, the more processes the models

incorporate, the more complex and less tractable the

models are, making it practically impossible to under-

stand why different models make different predictions.

Model intercomparisons have been effective at reveal-

ing the extent of the differences between model predic-

tions (Schwalm et al., 2010; Keenan et al., 2012; Kauwe

et al., 2013) but have typically provided limited insights

into its origins. Benchmark analyses have provided

assessments of model performance against standard

datasets (Luo et al., 2012), but so far been restricted to

processes occurring over short time-scales (Randerson

et al., 2009) (e.g. days to years). Data assimilation meth-

ods have been applied to directly constrain simple

models or model components with observations (Smith

et al., 2013) yet less extensively to global models (Hara-

ruk et al., 2014).

Many research programs, involving observations and

experiments, are underway to improve understanding

of the terrestrial carbon cycle (Kao et al., 2012). Obser-

vations to characterize carbon cycle components over

all continents on Earth are usually carried out by satel-

lites or research networks (Baldocchi, 2008). These have

generated various regional and global data products,

such as global maps of gross and net primary produc-

tion (GPP and NPP) (Running et al., 2004; Jung et al.,

2011), and regional and global distributions of soil car-

bon content and soil respiration (Tarnocai et al., 2009).

These data products have been extremely useful for

improving of our understanding of the processes and

properties underpinning patterns in terrestrial carbon

cycle components (Zhou et al., 2009; Jung et al., 2010).

Experimental studies are also implemented to manipu-

late factors that are expected to vary as a consequence

of climate change, such as elevating CO2 concentra-

tions, increasing ambient temperature, and altering pre-

cipitation rates (Rustad, 2008). This enables direct

insights into how ecosystems respond to such perturba-

tions and have revealed some important new mecha-

nisms, such as acclimation and adaptation of the

carbon cycle to climate change (Niu et al., 2012). Never-

theless, they have yet to lead to better-constrained pre-

dictions of the terrestrial carbon cycle.

The lack of progress in improving the predictive abil-

ity of the models raises a question: to what extent is the

terrestrial carbon cycle intrinsically predictable by its

own nature? By intrinsic predictability we mean the

degree to which a system’s state and dynamics can be

predicted given knowledge about initial conditions,

external forcing and internal properties. If the intrinsic

predictability of the terrestrial carbon cycle is low, then

we should expect further research to make limited

improvements in the accuracy of model projections

despite improving our understanding. However if its

intrinsic predictability is high, then why do the projec-

tions from state of the art models continue to differ so

Fig. 1 Modeled vs. observation-based soil carbon densities. The

modeled soil carbon densities (kg m�2) represent 1995–2005

means from the historical simulations of the Climate Model In-

tercomparison Project 5 by 11 Earth system models. The obser-

vation-based soil carbon density in the top 1 m of soil from the

Harmonized World Soil Database (HWSD). All of the models

had difficulty representing soil carbon at the 1° scale. Despite

similar overall structures, the models do not agree well among

themselves or with empirical data on the global distribution of

soil carbon although data themselves have great uncertainty.

CCSM4 is US Community Climate System Model, NorESM1 is

Norwegian Earth System Model, BCC-CSM1.1 is Beijing Climate

Center model, HadGEM2 is UK Met Office Climate model,

IPSL-CM5 is French Institut Pierre Simon Laplace model,

GFDL-ESM2 is US Geophysical Fluid Dynamics Laboratory

model, CanESM2 is Canadian Earth System Model, INM-CM4

is Russian Institute for Numerical Mathematics model, MIROC-

ESM is Japan Earth System Model, MPI-ESM-LR is Germany

Max Plank Institute model, and GISS-E2 is US Goddard Insti-

tute for Space Studies model. (Replotted from data of Todd-

Brown et al., 2013).
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widely? The concept of predictability has been studied

in detail in other fields (Heisenberg & Maclachlan,

1958; Grace & H€utt, 2013). For example, intrinsic pre-

dictability is famously limited in chaotic systems,

where an extreme sensitivity to differences in initial

conditions and imperfect knowledge of the system state

combine to fundamentally constrain how accurate

future projections can be (Lorenz, 1969; Smith, 2007). In

the case of terrestrial carbon cycling, the theoretical lim-

its to predictability have yet to be addressed.

In this article, we investigate the predictability of the

terrestrial carbon cycle. We first examine its internal

properties, which largely determine and constrain its

dynamics everywhere on the Earth. Those properties

also form the basis upon which intrinsic predictability

should be analyzed. We then identify five key classes of

external forcing, and discuss how each influences the

predictability of the terrestrial carbon cycle. Together,

these classes encompass almost all possible scenarios

that terrestrial ecosystems experience. We then present

empirical and quantitative evidence to argue that some

aspects of the terrestrial carbon cycle appear to be

highly predictable while others less predictive. The key

benefit from understanding predictability is allowing

sources of uncertainty to be targeted for improvement

through further research. With that, we then highlight

key areas for empirical research to improve predictive

understanding and outline strategies to realize the pre-

dictability in terrestrial carbon models. Our analysis

here does not extend to assessing how confidently

Earth System Models as a whole might be able to pre-

dict the terrestrial carbon sink, but we hope that it can

provide guidance for where future carbon model devel-

opment is needed to improve that confidence.

Fundamental properties of the terrestrial carbon

cycle

Phenomenologically, the dynamics of the terrestrial car-

bon cycle appear very rich, exhibiting fluctuations,

directional changes, and tipping points (Scheffer et al.,

2001; Cox et al., 2004; Hirota et al., 2011; Baudena & Ri-

etkerk, 2012). These occur because multiple environ-

mental forcing variables interact with internal carbon

cycle processes to cause diverse dynamics over differ-

ent temporal and spatial scales. However, the internal

processes are in fact relatively simple, and their

responses to external forcing variables, as described in

the next section, can be highly predictable once the

forcing variables are sufficiently well-characterized.

(a) (b)

(c)(d)

Fig. 2 A generalized model for predictability analysis of the terrestrial carbon cycle The basic carbon cycle processes are represented

by five fundamental properties for all terrestrial ecosystems (see text) (a). The five properties have been incorporated into all terrestrial

carbon cycle models with a pool-and-flux structure (b). The structure is typically encoded using very similar sets of balance equations

with carbon input into and output from each pool [Eqn (1)] (c). The balance equations in all terrestrial carbon cycle models can be con-

verted to a matrix equation [Eqn (2)] (d). Thus, the matrix equation can be considered as a general system of equations for the terrestrial

carbon cycle and has a specific structure that restricts the set of possible behaviors and thus offers insights into its intrinsic predictabil-

ity under different environments.
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The internal processes of the terrestrial carbon

cycle are compartmentalized into distinct pools. The

dynamics of carbon within each pool can be largely

characterized by the differences between the rates of

carbon input and output. The vast majority of the

input of carbon into an ecosystem is through photo-

synthesis (Schlesinger & Bernhardt, 2013) (Fig. 2a)

while we usually ignore minor inputs from migra-

tory heterotrophs, lateral flows and carbonate

exchange. Carbon is then partitioned among pools,

principally leaves, stems and roots. Subsequent car-

bon transfers are then donor-pool dominated, with

input rates to litter and soil pools being dependent

on the output rates of their donor pools. The output

rates from these pools, predominantly the decay of

organic matter in litter and soils, are well-approxi-

mated using simple first-order kinetics (Olson, 1963;

Meentemeyer, 1978; Adair et al., 2008; Zhang et al.,

2008): in the absence of inputs, the pool size of litter

or soil organic carbon decays exponentially through

time. Carbon in the ecosystem is then, ultimately,

released back into the atmosphere through respira-

tion. These internal carbon processes are universal

although their rates vary with ecosystems and envi-

ronments over space and time. Some processes, such

as photodegradation in arid and semi-arid lands

(Austin & Vivanco, 2006) and anaerobic decomposi-

tion in peatlands (Bridgham & Richardson, 1992),

may be ecosystem-specific but ultimately result in

modifications to the rates of output processes. Over-

all, understanding common characteristics of these

processes is central to predicting carbon cycling in

any ecosystem.

The internal carbon cycle processes can thus be

characterized by five fundamental properties: (i) com-

partmentalization of carbon within distinct pools; (ii)

photosynthesis as the dominant carbon input; (iii)

partitioning of that photosynthetic input between the

various pools; (iv) donor pool-dominated carbon

transfers between pools; and (v) the first-order decay

of litter and soil organic matter to release CO2 via

respiration (Zhang et al., 2008; Harmon et al., 2009;

Luo & Weng, 2011; Davidson et al., 2012; Sch€adel

et al., 2013). These fundamental properties are com-

mon to all ecosystems on Earth, although their rates

vary. This representation of the terrestrial carbon

cycle has been utilized for decades in models and

still forms the backbone to the structure of most ter-

restrial carbon models (Luo & Weng, 2011; Todd-

Brown et al., 2013; Xia et al., 2013).

Over time, many elaborations to this structure

have been investigated, most notably assessing the

importance of various internal feedbacks. Examples

include nitrogen and phosphorus cycling (Domin-

gues et al., 2010; Wang et al., 2010; Zaehle et al.,

2010), which modify the rates of processes but do

not change dynamic patterns of the terrestrial carbon

cycle over different space and timescales. Positive

feedbacks between leaf biomass and photosynthesis

rate can occur when leaf area index (LAI) is rela-

tively low: LAI increases with leaf biomass allowing

more photosynthesis per unit ground area (Williams

et al., 2005). However, over timescales of years to

decades this feedback is of minor importance

because LAI reaches maximum potential relatively

fast. Recently, various nonlinear microbial models

have been developed (Weintraub & Schimel, 2003;

Allison et al., 2010; Wieder et al., 2013). These mod-

els introduce various feedbacks that could theoreti-

cally generate more complex dynamics (e.g.

oscillations) than just first order decay of carbon

(Wang et al., 2014), but there is no evidence for such

complex behavior in empirical data from natural

ecosystems.

What has been missing to date is an understanding

of how the structure of the terrestrial carbon cycle itself

determines our ability to predict it in the first place

given various sources of uncertainty in external forcing

and initial conditions. Such understanding can be

obtained through studies focused on analysis of intrin-

sic predictability.

The intrinsic predictability of the terrestrial carbon

cycle

We evaluate the predictability of the terrestrial carbon

cycle primarily based on empirical evidence and con-

straints from its five fundamental properties. One of

the most widely observed properties of terrestrial car-

bon dynamics is that the total carbon tends to converge

over time to some form of equilibrium, if it starts from

a carbon content distant to that equilibrium (e.g. after

disturbances) (Matamala et al., 2008; Yang et al., 2011).

Carbon models conforming to the five fundamental

properties always predict this behavior (Mcguire et al.,

2001), which can be explained very simply: the rate of

carbon input is relatively independent of the vegetation

carbon content (there is typically a weak feedback

between photosynthesis and foliage biomass carbon;

Williams et al., 2005) whereas the rate of output

increases with carbon content. Therefore, the carbon

content adjusts until the rate of carbon losses becomes

equal to the rate of carbon inputs. This universal behav-

ior implies that the rate of approach to equilibrium,

and the equilibrium itself, is relatively predictable

given knowledge about carbon input rates, loss rates,

the initial conditions, and governing environmental

constraints.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1737–1751
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Intrinsic predictability under five classes of external
forcing

Evaluation of the intrinsic predictability of the terres-

trial carbon cycle requires an understanding of how

sensitive carbon cycle components are to known

sources of external forcing because a range of environ-

mental factors perturb terrestrial ecosystems over dif-

ferent space and time scales. Below we discuss how

five classes of forcing, encompassing almost all possible

environmental change scenarios experienced by terres-

trial ecosystems on the Earth, likely influence the intrin-

sic predictability of the carbon cycle (Table 1).

First, some external variables exhibit cyclic

changes; most important are the daily and seasonal

cycles of light, temperature, and other environmental

factors. These typically cause the carbon flux rates,

such as photosynthesis and respiration, to vary with

the same period as the forcing (Table 1). The magni-

tude of the carbon response in different pools

depends on the residence times – the duration of

carbon staying in an ecosystem from entrance via

photosynthesis to release via respiration. Pools with

residence times of the same order as the cycle of

the forcing (e.g. leaf carbon and seasonal cycles)

tend to have larger amplitudes of responses than

those with residence times much longer than the

cyclic period of the forcing. The cyclic patterns of

photosynthesis have long been well-predicted using

a commonly used set of equations that capture leaf-

level responses to light, temperature, and water sta-

tus (Farquhar et al., 1980). Similarly, most carbon

cycle models can adequately simulate the response

of respiration to short-term environmental variability

if the model parameters are well-calibrated (Fox

et al., 2009). This implies that the responses of ter-

restrial carbon to daily and seasonal cyclic forcing

should be highly predictable. However, interannual

variability in the terrestrial carbon cycle, as reflected

in eddy-flux measurement (Yuan et al., 2009) and

variations in the growth rate of atmospheric CO2

(Keeling et al., 1995), is less known for its underpin-

ning mechanisms (Zeng et al., 2005; Keenan et al.,

2012; Wang et al., 2013), making it difficult at pres-

ent to evaluate its predictability.

The second class of forcing is disturbance events,

such as wildfire and climate extremes (Foley et al.,

2005; Running, 2008; Bowman et al., 2009; Mack

et al., 2011; Reichstein et al., 2013). During such

events, relatively large amounts of carbon are

removed rapidly, mostly from the aboveground bio-

mass and organic layers of litter (Mack & D’antonio,

1998). Recovery then occurs over the subsequent

years and decades following the monotonic response

pattern described above (Odum, 1969; Yang et al.,

2011; Williams et al., 2012). Simple pulse-recovery

response patterns such as these are general phenom-

ena having been observed in hundreds of studies on

carbon dynamics during the secondary forest succes-

sion (Yang et al., 2011) and grassland restoration

(Matamala et al., 2008). The recovery dynamics fol-

lowing a disturbance then appear to be highly pre-

dictable given adequate knowledge of the carbon

influx rates, the residence times, and the pool sizes

following disturbance (Weng et al., 2012) (Table 1).

Moreover, these three sets of parameters can be esti-

mated by analysis of time series data, either by

direct calibration or though data-assimilation (Luo

et al., 2003). The disturbance events themselves,

however, have an inherent random component (e.g.

chances of a hurricane) making the precise predict-

ability of individual events relatively low. Likewise,

the severity of disturbance impacts on carbon cycle

is not very predictable, either. Even so, the typical

frequency of disturbance events over a landscape

can be used to constrain the probability of distur-

bance events themselves. Moreover, there is evidence

that some ecosystems may recover to an alternative

steady state following disturbance (Suding & Hobbs,

2009). Our lack of understanding of why this occurs

limits our assessment of its consequences for carbon

cycle predictability.

The third class of external forcing is directional

trends in environmental variables, including rising

atmospheric CO2 concentrations, climate warming,

altered precipitation, and nitrogen deposition. These

climate change factors cause disequilibrium in terres-

trial carbon pools though their influences on carbon

influx rates, residence times and pool sizes (Denman

et al., 2007). For example, rising atmospheric CO2 con-

centrations directly stimulate photosynthesis and thus

increase ecosystem carbon influx (Franks et al., 2013).

Most of the direct effects of climate changes on the ter-

restrial carbon cycle can be predicted via relatively sim-

ple response functions in ESMs (Reynolds & Acock,

1985; Burke et al., 2003). Those functions are usually

based on experimental and observational studies and

incorporated into models (e.g., environmental scalars)

to translate environmental changes to changes in car-

bon processes. However, climate change also causes

indirect effects on the terrestrial carbon cycle (Korner

et al., 2005; Cernusak et al., 2013), such as changes in

plant species composition (Higgins & Scheiter, 2012),

microbial priming (Kuzyakov et al., 2000), and respira-

tory acclimation (Luo et al. 2001). The indirect effects

are much less well-understood, making it currently

unclear just how predictable they are (Table 1). More-

over, climate change may induce shifts in disturbance

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 1737–1751
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regimes and changes in ecosystem states as discussed

below (Westerling et al., 2011).

The fourth class of external forcing is changes in dis-

turbance regimes at decadal, centennial and longer time

scales (Hu et al., 2010). Each region of the Earth natu-

rally has its own disturbance regime, typically deter-

mined by stochastic processes such as hurricanes and

fires (Arora & Boer, 2005; Frolking et al., 2009; Vander-

wel et al., 2013). Disturbance regimes can be quantified

by joint probabilistic distributions of disturbance fre-

quency and severity (Weng et al., 2012). This can be

used in modeling studies to investigate its conse-

quences for terrestrial carbon dynamics (Mcguire et al.,

2001). Long-term datasets are needed to characterize

frequency and severity of the prevailing disturbance

regime in a region (Grace et al., 2014), which, in turn,

can be used to generate a probability distribution of

ecosystem carbon storage. The mean of the probability

distribution determines the realizable carbon storage

capacity under a given regime, reflecting the mean car-

bon storage capacity over a sufficiently long-time per-

iod or over a sufficiently large area (Luo & Weng,

2011). This mean carbon storage capacity could thus be

predictable. However, we do not have enough knowl-

edge to predict when the disturbance regime changes

by direct (e.g., slash and burn agricultural expansion)

or indirect (e.g., climate change) anthropogenic forcing

(Westerling et al., 2011). We need to understand how

the conditional probability distributions of disturbance

frequency and severity respond to such changes

before the consequences for the carbon cycle can be

characterized.

The fifth class comprises changes in ecosystem

states, usually induced by shifts in climate and dis-

turbance regimes (Scheffer et al., 2001; Hirota et al.,

2011; Staver et al., 2011; Higgins & Scheiter, 2012).

Ecosystem state change is usually considered as a

response of ecosystems to external forcing but we

treat it as type of external forcing here. This is

because ecosystem state changes usually result from

vegetation state and/or soil structure changes rather

than the five fundamental properties of the terres-

trial carbon cycle as described in section Fundamen-

tal properties of the terrestrial carbon cycle. For

example, land use and land cover changes directly

result in ecosystem state changes, such as from for-

ests or grasslands to croplands, through human

activities (Houghton et al., 2012). Woody encroach-

ment into grassland usually results from shifted fire

regimes, climate change, and human activities (Hig-

gins & Scheiter, 2012). In certain arid ecosystems

there can be multiple alternative equilibrium states,

such as grasslands and woodlands, due to interac-

tions among biomass accumulation, fire, and estab-

lishment (Baudena & Rietkerk, 2012; Higgins &

Scheiter, 2012; Staver & Levin, 2012). When ecosys-

tem states change, carbon cycle dynamics within

and between the plant, litter, and soil carbon pools

also change. Dynamic vegetation models usually

simulate ecosystems state changes and quantitate

their consequences on carbon cycle through different

sets of carbon cycle parameters for vegetation types.

Given the change in vegetation structures and

corresponding parameters, a consequent change in

carbon cycle is quantifiable. However, while vegeta-

tion state changes have been studied (Chapin et al.,

1995; Hirota et al., 2011), their relationships

with those carbon cycle parameters remains poorly

understood.

Overall, there is ample evidence to indicate that some

components of the terrestrial carbon cycle are intrinsi-

cally predictable. However, the terrestrial carbon cycle

becomes less predictable when climate change induces

indirect effects via changes in species composition and

disturbance regimes, leading to ecosystem state

changes. Even within a stationary disturbance regime,

individual disturbance events usually occur stochasti-

cally and thus their impacts on the carbon cycle are less

predictable.

Mathematical analysis of predictability

The predictability of a system can be mathematically

analyzed if the system model can be defined. We first

highlight that the terrestrial carbon cycle can be repre-

sented by a matrix equation. Its mathematical properties

restrict the set of possible behaviors the terrestrial carbon

cycle can exhibit and, thus, defines its predictability.

All of the terrestrial carbon models embedded in

ESMs adopt a pool-and-flux structure. The structure

well-represents the five fundamental properties of the

terrestrial carbon cycle (Fig. 2a and b) (Luo & Weng,

2011). Such structured models simulate the flow of car-

bon through different pools from its entrance via pho-

tosynthesis to its release via respiration, obeying the

law of mass conservation. The majority of carbon flows

in one direction, from entrance to release, with a rela-

tively small fraction being recycled through microbial

growth, death, and decomposition (Xia et al., 2013). The

rate of input into the pool is normally independent of

the pool size but its output rate depends, in part, on

how much carbon it contains (Luo et al., 2003). This

input-output relationship can be represented as a set of

linked carbon balance equations (Fig. 2c). In reference

to the model structure in Fig. 2b, the set of balance

equations are:
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dX1ðtÞ
dt

¼ b1UðtÞ � nðtÞc1X1ðtÞ
dX2ðtÞ
dt

¼ b2UðtÞ � nðtÞc2X2ðtÞ
dX3ðtÞ
dt

¼ b3UðtÞ � nðtÞc3X3ðtÞ
dX4ðtÞ
dt

¼ nðtÞ½c1a41X1ðtÞ þ c3a43X3ðtÞ � c4X4ðtÞ�
dX5ðtÞ
dt

¼ nðtÞ½c1a51X1ðtÞ þ c2X2ðtÞ þ c3a53X3ðtÞ

�c5X5ðtÞ�
dX6ðtÞ
dt

¼ nðtÞ½c4a64X4ðtÞ þ c5a65X5ðtÞ

þc7a67X7ðtÞ þ c8a68X8ðtÞ � c6X6ðtÞ�
dX7ðtÞ
dt

¼ nðtÞ½c5a75X5ðtÞ þ c6a76X6ðtÞ � c7X7ðtÞ�
dX8ðtÞ
dt

¼ nðtÞ½c6a86X6ðtÞ þ c7a87X7ðtÞ � c8X8ðtÞ�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where Xi(t), i = 1, 2, . . ., 8, is carbon stock at time t,

respectively, in leaf, root, wood, metabolic litter, struc-

tural litter, active, slow, and passive pools; bi, i = 1, 2, 3,

is partitioning coefficients of photosynthetic carbon

input to leaf, root and wood, respectively; U(t) is photo-

synthetic carbon input; ξ(t) is an environmental scalar

to represent temperature and moisture effects on carbon

processes; ci, i = 1, 2, . . ., 8, is carbon exit rate, respec-

tively, from leaf, root, wood, metabolic litter, structural

litter, active, slow, and passive pools; aj,I is transfer coef-

ficient of exited carbon from ith pool to jth pool.

Similar carbon balance equations have been encoded

in all ESMs despite variations in the number of equa-

tions. The set of balance equations can be summarized

by a matrix equation (Luo et al., 2003; Luo & Weng,

2011) (Fig. 2d) as:

dXðtÞ
dt

¼ BUðtÞ � nðtÞACXðtÞ

Xðt ¼ 0Þ ¼ X0

8<
: ð2Þ

where X(t) is a vector of pool sizes, B is a vector of par-

titioning coefficients, U(t) is photosynthesis rate, ξ(t) is
an environmental scalar, A is a matrix of transfer coeffi-

cients, C is a diagonal matrix of exit rates, and X0 is ini-

tial values of pool sizes. Thus, matrix Eqn (2) can

describe carbon transfers among pools within all types

of terrestrial ecosystems as described by balance

Eqn (1).

The matrix equation has long been used to examine

carbon balance in and transfers among pools (Bolin &

Eriksson, 1958; Emanuel et al., 1981) and can be argued

to represent internal processes that drive carbon

cycle toward equilibrium for all types of terrestrial

ecosystems on the Earth (Bolker et al., 1998; Luo &

Weng, 2011). It has been recently used to derive a semi-

analytic solution to accelerate the computationally

expensive spin up of the land models (Xia et al., 2012)

and to establish a traceability framework to facilitate

model intercomparisons, benchmark analyses, and data

assimilation (Xia et al., 2013).

As a general system of equations for the terrestrial car-

bon cycle, the matrix equation describes a system that,

under constant environments, all pools converge mono-

tonically toward their equilibriums through time, regard-

less of their initial states. This implies that equilibrium

carbon pool sizes are highly predictable anywhere on the

global land surface where carbon influx and residence

times can be estimated. Initial states, even if unknown,

influence the trajectory of convergence toward the equi-

libriums for the duration that is a function of residence

time (Bolker et al., 1998; Luo &Weng, 2011).

The matrix equation can also be used to analyze the

predictability of the terrestrial carbon cycle under the

five classes of forcing as in Table 1 although these for-

mal studies still need to be conducted. First, the cyclic

environmental forcing directly influences photosyn-

thetic carbon input, U(t), and respiration through the

environmental scalar, ξ(t), in the matrix equation. Thus

if the forcing can be known with confidence, then this

implies that the carbon cycle responses to the cyclic

environmental variation should be highly predictable.

Second, disturbance events usually remove carbon in

different pools, which corresponds to the reduction of

pool sizes, X (t = t0), in the matrix equation. Once the

initial pools after disturbance are known, the equation

can be used to predict a recovery trajectory unless the

system shifts to a new equilibrium state. Third, direct

responses of the terrestrial carbon cycle to global change

can be predicted by linking global change factors of

temperature and precipitation to the carbon cycle via

the scalar, ξ(t), or atmospheric CO2 concentrations via a

photosynthesis model. Fourth, the impacts of shifts in

disturbance regimes on carbon can be predicted by

quantifying the joint probability densities of disturbance

frequency and severity (Weng et al., 2012). Fifth, ecosys-

tem state changes are usually simulated by dynamic

vegetation models and linked to carbon cycle with dif-

ferent sets of parameters for different vegetation types

to the carbon balance equations. Thus their impacts on

carbon cycle could be predictable if those sets of param-

eters are known with sufficient confidence.

The terrestrial carbon cycle is one example of a com-

plex system whose dominant dynamics can be

explained using relatively simple principles. This is

similar to a case famously revealed by Dr. Robert May

in a sense that simple models can lead to complex

dynamics (May, 1976). However, the simplest nonlinear
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models in May’s case can lead to chaotic population

dynamics with low predictability. The terrestrial carbon

cycle is different in that its internal processes imply it

has much higher predictability, even given the effects

of multiple environmental forcing variables. Unlike

chaotic systems, where small perturbations to an initial

state grow over time, the internal properties of the ter-

restrial carbon cycle cause any deviations from equilib-

rium to decay monotonically over time. From a

dynamical systems perspective this may make the ter-

restrial carbon cycle seem rather uninspiring! However,

from the perspective of those aiming to improve mod-

els of the terrestrial carbon cycle this is really impor-

tant: it gives us the confidence that we should indeed

be able to improve the models significantly.

Future research to improve predictive ability

Although the above analysis indicates that we should

expect high intrinsic predictability for some compo-

nents of the terrestrial carbon cycle, the accuracy of pre-

dictions of current ESMs is highly limited. Our analysis

has also identified components of the terrestrial carbon

cycle whose predictability we presently have limited or

no knowledge about (Table 1). Future observational

and experimental research should aim to improve pre-

dictive understanding of those less known components.

For those components with high predictability, it is

urgent to develop strategies to narrow the gaps

between the expected and actual predictive ability of

terrestrial carbon models. Below we highlight future

research directions, for both empirical and theoretical

research, to improve our ability to predict responses of

the terrestrial carbon cycle to climate change (Table 2,

Fig. 3).

Future empirical research directions

Ecosystem state and its transition. Ecosystem transitions

are probably the least understood process in terrestrial

carbon dynamics over decadal to centennial timescales

but potentially have the most profound impacts on the

global carbon cycle (Cox et al., 2000; Scheffer et al.,

2001; Higgins & Scheiter, 2012). Examples include the

respiration of vast stores of organic carbon from thaw-

ing permafrost, predominantly in polar regions (Schuur

et al., 2009), the fixation of new carbon in such regions

with vegetation transitions from shrublands to forests

(Starfield & Chapin, 1996), and the dieback of the Ama-

zon forests in response to changing precipitation which

would release stores of carbon held in standing wood

(Cox et al., 2000, 2004; Hirota et al., 2011). Such transi-

tions can occur through progressive changes (e.g.

warming) or stochastic events (e.g. sudden drought)

(Chapin et al., 1995; Mack & D’antonio, 1998). Ecosys-

tem transition redefines the expected equilibrium car-

bon state. That equilibrium is predictable if we know

how carbon cycle parameters change with ecosystem

states. Unfortunately, our knowledge is poor on ecosys-

tem state changes, their predictability, and subsequent

influences on carbon cycle processes. Future studies are

therefore needed to address our critical knowledge

gaps about how directional climate changes, stochastic

events of disturbances, and internal mechanisms

Table 2 Proposed roadmap of improving terrestrial carbon cycle models

Roadmap Description

State of the art Many essential processes understood

Understanding improvement through further observations, experiments and modeling

Global models synthesizing current understanding make widely diverging predictions

Intrinsic predictability poorly understood

Research needs Identify and fill critical understanding gaps

Identify critical uncertainties

Understand intrinsic predictability

Improve predictive skill

Recommendations Integrated analysis to identify critical traceable components and achieve systemic understanding

Identify key sources of uncertainty in critical components through

Data-model fusion

Benchmark analyses

Model intercomparisons

Develop new generation of data, theory, and models

Future state of the art Intrinsic and achieved predictability quantified

Key sources of uncertainty well-characterized

Evolving holistic understanding of knowledge gaps

Key data, model and understanding deficiencies targeted
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interact to influence the likelihood of ecosystem state

change and its predictability.

States of and shifts in disturbance regimes. Disturbance

regimes represent long-term and regional characteris-

tics of disturbance frequency and severity (Pickett &

White 1985) (Fig. 4). They largely determine the statisti-

cal probability for the degree of carbon-cycle disequilib-

rium in any ecosystem (Hu et al., 2010). A global

understanding of different disturbance regimes is thus

essential to quantitate the degrees of disequilibrium

across the global land surface. Ideally, global terrestrial

carbon models should be initialized (or spun up) to

reflect the degrees of disequilibrium at prevailing dis-

turbance regimes. Presently our understanding of dis-

turbance regimes at the global scale is minimal and

even less so for their conditional probability distribu-

tions on natural and anthropogenic variables to

describe their shifts with climate change. Without char-

acterization of states of disturbance regimes, both at a

particular time and their shifts over time, it is impossi-

ble to accurately quantitate carbon dynamics in terres-

trial ecosystems.

Disturbance events and recovery trajectories. Disturbance

events can result in the direct emission of a large

amount of carbon into the atmosphere (Mack et al.,

2011). Following disturbance events, ecosystems typi-

cally recover to predisturbance states over time

(Yang et al., 2011). Individual disturbance events alter

the carbon cycle on yearly and decadal time scales

but only have long-term effects if the ecosystem

recovers to an alternative state. It is therefore critical

to characterize the recovery trajectories of different

ecosystems, and to examine whether they recover to

initial or alternative states. In the former case, we

need to quantitate initial values of carbon pools, car-

bon influx, and residence times to realize the poten-

tially high predictability of carbon dynamics during

the disturbance-recovery processes. In the latter case,

we have to characterize the conditions under which

ecosystems do not return to their initial state follow-

ing disturbances.

Response functions. Response functions relate the rates

of different carbon cycle processes to environmental

variables and are thus crucial for predicting carbon

cycle dynamics under global change (Burke et al.,

2003). Presently, our knowledge of response functions

is still insufficient to effectively improve our predictive

ability. Terrestrial carbon models use a variety of

response functions to predict ecosystem responses to

various global change factors (Adams et al., 2004; Adair

et al., 2008; Smith et al., 2013). New experiments and/or

new analyses of existing observations are needed to

characterize response functions and their variations

under different conditions and over time so that they

can realistically reflect ecosystem responses to environ-

mental changes in the future. Highly nonlinear

response functions, such as a sudden decrease in soil

decomposition rates or sudden increase in tree

mortality rates at high ambient temperatures, are likely

to be especially important for understanding the pre-

dictability of the carbon cycle because small differences

in environmental conditions could lead to large differ-

ences in carbon cycle responses (Adair et al., 2008;

Smith et al., 2013). Understanding the variations of

Fig. 3 Proposed roadmap for the future development of terres-

trial carbon models. Terrestrial carbon cycle research is cur-

rently carried out through observation, experimentation, and

modeling. Benchmark analysis should be promoted to measure

model performance against data from observation and experi-

ments. Theoretical understanding of the terrestrial carbon cycle

has not been advanced but has the potential to evaluate essen-

tial structural components across all carbon models. Ideally,

data, theory, and model need to be infused together to guide

future data collection, theory development, and model improve-

ment. Integrated analyses should eventually narrow the gap

between the intrinsic and achieved predictability with major

sources of uncertainty well-characterized.
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response functions among carbon processes, ecosystem

types, and climate regimes, will help to characterize a

range of possible dynamics the carbon cycle might

exhibit under climate variation.

Improvements to the predictive ability of terrestrial
carbon models

At present, the predictive ability of terrestrial carbon

cycle models appears to fall far short of the intrinsic pre-

dictability (Fig. 1) for components for which we have

plenty of data and knowledge. Transparent practices for

model development, evaluation, and improvements are

therefore needed if terrestrial carbon cycle models are to

achieve high predictive ability. We therefore recommend

the following measures to improve the predictive ability

of terrestrial carbon models (Table 2; Fig. 3).

Model tractability. The biggest impediment to model

evaluation and improvement at present is model intrac-

tability. The more processes incorporated, the more

difficult it becomes to understand or evaluate model

behavior. As a result, uncertainty in predictions among

models cannot be easily diagnosed and attributed to its

sources (Friedlingstein et al., 2006; Schwalm et al., 2010;

Keenan et al., 2012; Raczka et al., 2013). It is essential to

understand the common core elements among terres-

trial carbon models (Fig. 2) and to identify and charac-

terize those traceable components so as to improve

model tractability (Xia et al., 2013) (Fig. 5a). Developing

such a traceability framework would consequently help

improve the comparability of models and data, evalu-

ate impacts of additional model components (Fig. 5b),

facilitate benchmark analyses, model intercomparisons

(Fig. 5c), and data-model fusion (Fig. 5d); and improve

model predictive power. The predictability of the core

elements can then be clearly characterized under

different sources of variation (e.g. external forcing and

uncertainty in process understanding) (Fig. 5a) and

compared to the achieved predictive ability. The trace-

ability framework enables diagnosis of where carbon

models are clearly lacking predictive ability and

(a)

(d) (e) (f)

(g) (h)

(c)(b)

Fig. 4 Probability of occurrence for eight forest disturbance agents, across the eastern United States (1995–2011). Disturbances are

defined according to the most recent census of 47 723 Forest Inventory and Analysis plots and as events that damage or kill at least

25% of trees across an area at least one acre (0.405 ha) in size since the last plot measurement (Vanderwel et al., 2013).
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evaluation of the relative benefit of adding more com-

ponents to the models.

Origin of model uncertainty. We need to identify sources

of uncertainty in model predictions so as to pinpoint

those components most in need of improvement. The

dynamics of the carbon cycle can be fully defined by

Eqn (2) if parameters related to carbon influx, resi-

dence time, and initial values are specified. Inconsis-

tency among model predictions must arise from

uncertainty and discrepancy among those parameters

and forcing given the fact that model structures are

similar. Indeed, as shown by Todd-Brown et al. (2013),

initial values of carbon pool sizes differ by 5.9-fold,

carbon influx by 2.6-fold, and residence times by 3.6-

fold among 11 terrestrial carbon models used in

CMIP5. Those differences in initial pool sizes and

parameter values all propagate in the forward model-

ing to generate considerable uncertainty in predicted

carbon-climate feedbacks among models. The identifi-

cation and improvement of processes that generate

large differences in those parameters among models

should substantially reduce uncertainty in model pre-

dictions.

Parameterization and model-data fusion. With similar car-

bon balance equations encoded in global land models

(Fig. 2c and d), future trajectories of carbon dynamics

can be fully defined at given forcing if the coefficients

of the carbon balance equations are well-constrained by

observations. However, it is still challenging to parame-

terize ESMs to capture the heterogeneity of global vege-

tation and soil carbon processes. It is therefore essential

to identify processes, databases, and modeling tech-

niques that can help substantially improve representa-

tion of carbon processes in the models. In particular,

we need to examine variations of coefficients of the car-

bon balance equations and estimate them against best

(a) (b)

(c) (d)

Fig. 5 Improvements to model predictive ability. The fundamental properties of the terrestrial carbon cycle, and their representation in

shared structures among existing models, enable key traceable elements to be identified and characterized (a). This traceability will

make all terrestrial carbon models more tractable and attribute model uncertainty in model intercomparison projects to its sources (b)

and help evaluate impacts of adding new components into an ESM on carbon cycle (c) so as to pinpoint parts of models for improve-

ment via model-data fusion (d). The traceability framework in panel A was developed to decompose modeled ecosystem carbon stor-

age capacity (Xss) to (i) a product of net primary productivity (NPP) and ecosystem residence time (sE). The latter sE can be further

traced to (ii) baseline carbon residence times ðs0EÞ, which are usually preset in a model according to vegetation characteristics and soil

types; (iii) environmental scalars (ξ), including temperature and water scalars; and (iv) environmental forcing (Xia et al., 2013). Panel

(b) shows that model intercomparison traced differences in ecosystem carbon storage capacity to differences in parameter settings in

Community Land Model 3.5 (CLM3.5) and CABLE leading to substantial differences in baseline carbon residence times ðs0EÞ. Panel (c)
shows the impacts of incorporating nitrogen processes into the Australian Community Atmosphere Biosphere Land Exchange (CABLE)

model on the ecosystem carbon storage capacity (open symbols) as determined by NPP and the carbon residence time (sE) in compari-

son with carbon-only simulations (filled symbols). Panel (d) shows that parameter adjustment via data assimilation substantially

improved data-model fitting for soil carbon density in CLM3.5 (Hararuk et al., 2014).
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available observations via model-data fusion (Raupach

et al., 2005; Keenan et al., 2013; Smith et al., 2013; Hara-

ruk et al., 2014) (Fig. 5d). There are presently technical

difficulties in applying model-data fusion techniques to

large, complex models. By isolating model components

under a framework of traceability, these techniques can

be successfully applied (Hararuk et al., 2014). This will

not only improve model predictive performance but

will also allow the identification of aspects of the car-

bon cycle where more empirical data are needed.

A new generation of models. Our analysis indicates that

some components of the terrestrial carbon cycle appear

to be highly predictable whilst our knowledge is

limited on predictability of interannual variability, dis-

turbance regime shifts, and indirect effects of climate

change. It is practically feasible to constrain structures

and parameters of model components for which we

have solid theoretical and empirical understanding

(predictive ability meets our understanding of predict-

ability), whilst allowing structural variations for those

components for which we have limited understanding

of their predictability. In the latter components, alterna-

tive hypotheses should be explored. For example, we

have limited observations on changes in disturbance

regimes, vegetation dynamics, and ecosystem states

under climate change despite potentially important

consequences for the terrestrial carbon balance (Run-

ning, 2008). In the absence of adequate knowledge, dif-

ferent hypotheses on the response of the carbon cycle to

these changes have been postulated in models. The

new generation of models must have the capacity to

compare the relative influences of the alternative

hypotheses in greater detail than can be done at pres-

ent, thus allowing identification of the aspects of our

understanding in need of improvement.

Conclusions

In this article, we investigated fundamental properties

of the terrestrial carbon cycle, examined its intrinsic

predictability, and proposed a suite of future research

directions to improve empirical understanding and

model predictive ability of the carbon cycle. Specifi-

cally, we isolated endogenous internal processes of the

terrestrial carbon cycle from exogenous forcing vari-

ables. The internal processes share five fundamental

properties among all types of ecosystems on the Earth,

which are (i) compartmentalization of carbon with dis-

tinct pools in an ecosystem; (ii) photosynthesis as the

dominant carbon input; (iii) partitioning of input car-

bon between the various pools; (iv) donor pool-domi-

nated carbon transfers between pools; and (v) the first-

order decay of litter and soil organic matter to release

CO2 via respiration. The five properties together result

in an emergent constraint that carbon pools tend to con-

verge monotonically over time to some form of equilib-

rium. We used this constraint to evaluate the

predictability of various components of the terrestrial

carbon cycle in response to five classes of exogenous

forcing. We categorize these components into five

groups of high, medium, low, less known, and

unknown predictability.

Future observational and experimental research

should be focused on those components for which we

have a poor understanding of their predictability, such

as ecosystem state and its transition, states of and shifts

in disturbance regimes, disturbance events and recovery

trajectories, and response functions. Modeling research

also needs to improve model predictive ability for the

highly predictable components. To achieve that, it is

essential to cope with complexity and gain tractability of

ESMs. Then we can effectively evaluate impacts of add-

ing model components, facilitate benchmark analyses,

empower model intercomparisons, and enable data-

model fusion. Overall, we suggest that characterizing the

intrinsic predictability of different components of the ter-

restrial carbon cycle can help identify the major priorities

for the research community.
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