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a b s t r a c t

Although the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition has been widely
studied, the estimate substantially depends on the methods used with specific assumptions. Here we
compared several commonly used methods (i.e., one-pool (1P) model, two-discrete-pool (2P) model,
three-discrete-pool (3P) model, and time-for-substrate (T4S) Q10 method) plus a new and more process-
oriented approach for estimating Q10 of SOM decomposition from laboratory incubation data to evaluate
the influences of the different methods and assumptions on Q10 estimation. The process-oriented
approach is a three-transfer-pool (3PX) model that resembles the decomposition sub-model
commonly used in Earth system models. The temperature sensitivity and other parameters in the
models were estimated from the cumulative CO2 emission using the Bayesian Markov Chain Monte Carlo
(MCMC) technique. The estimated Q10s generally increased with the soil recalcitrance, but decreased
with the incubation temperature increase. Our results indicated that the 1P model did not adequately
simulate the dynamics of SOM decomposition and thus was not adequate for the Q10 estimation. All the
multi-pool models fitted the soil incubation data well. The Akaike information criterion (AIC) analysis
suggested that the 2P model is the most parsimonious. As the incubation progressed, Q10 estimated by
the 3PX model was smaller than those by the 2P and 3P models because the continuous C transfers from
the slow and passive pools to the active pool were included in the 3PX model. Although the T4S method
could estimate the Q10 of labile carbon appropriately, our analyses showed that it overestimated that of
recalcitrant SOM. The similar structure of 3PX model with the decomposition sub-model of Earth system
models provides a possible approach, via the data assimilation techniques, to incorporate results from
numerous incubation experiments into Earth system models.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Soil organic matter (SOM) is the largest carbon (C) pool in
terrestrial ecosystems (Schlesinger,1995). As a biochemical process,
the decomposition of SOM is sensitive to increased temperature
(Luo et al., 2001; Fang et al., 2005; Davidson and Janssens, 2006),
and consequently has critical impacts on global C cycle and climate
change (Cox et al., 2000; Schlesinger and Andrews, 2000). However,
SOM consists of many components with different kinetic properties
gy and Plant Biology, Univer-
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(Davidson and Janssens, 2006), leading to large uncertainty in
predicted soil C storage under future climate change (Friedlingstein
et al., 2006). Therefore, there is an increasing concern on how
temperature sensitivity (expressed as Q10, which measures the
change in decay rates for a 10 K warming) depends on the SOM
compounds and C qualities (Fang et al., 2005; Conant et al., 2008;
Xu et al., 2012). However, the Q10 estimation substantially relies
on the methods used, which usually have their respective as-
sumptions, leading to contradictory conclusions (Liski et al., 1999;
Fang et al., 2005; Rey and Jarvis, 2006; Conant et al., 2008). To
better understand the warming impacts on SOM decomposition, it
is important to evaluate these methods and the underlying
assumptions.

The direct calculation at specific incubation time has been used
to estimate the Q10 of SOM decomposition based on incubation data
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using an equation
�
R2
R1

� 10
T2�T1

, where T1 and T2 are the incubation

temperatures, and R1 and R2 are the CO2 emission rates at T1 and T2,
respectively (Rey and Jarvis, 2006). The estimate is usually an
apparent Q10 and likely underestimates the temperature sensitivity
after the initial incubation stage because greater decomposition
results in less substrate at high than low temperatures at the same
point of incubation time. To resolve this issue, a method that esti-
mates the apparent Q10 by comparing the times for respiring a
given amount of C at different temperatures (called the time-for-
substrate Q10) has been developed (Rey and Jarvis, 2006; Conant
et al., 2008). One important assumption of this method is that a
given amount of respired CO2 is from similar fractions of SOMwhen
the substrates are at the same level at different temperatures
(Conant et al., 2008).

In addition, first-order kinetic models have also been used to
estimate the Q10 (K€atterer et al., 1998; Rey and Jarvis, 2006). In
these models, the soil is usually treated as one or several discrete
fractions (or pools) based on the turnover times (K€atterer et al.,
1998; Rey and Jarvis, 2006). Through these models, the intrinsic
Q10 (defined as the temperature sensitivity of individual C pools
with similar turnover time) for each pool can be derived (Rey and
Jarvis, 2006). Generally, the multi-pool models fit the incubation
data very well (K€atterer et al., 1998; Rey and Jarvis, 2006). However,
these models do not include C transfers across pools which occur in
natural ecosystems (Rovira and Vallejo, 2002; Cheng et al., 2007).
On the other hand, although three conceptual pools with C trans-
fers among them have beenwidely used to describe SOM dynamics
in Earth system models (Parton et al., 1987; Jenkinson, 1990; Luo
et al., 2003), the three-transfer-pool model has never been used,
to our knowledge, to estimate temperature sensitivity of SOM
decomposition from soil incubation data. Moreover, although a
large amount of experimental studies have been conducted and
have improved our understanding of the temperature sensitivity of
SOM decomposition, the Q10 is usually set to be one single value
(usually around 2) in Earth system models. It is imperative to find
ways to use results from numerous incubation experiments to
improve these models.

In this study, we developed a new three-transfer-pool (3PX)
model to resemble the model structure of soil carbon dynamics in
Earth system models for estimating Q10 of SOM decomposition.
Thenwe compared four widely usedmethods: one-pool (1P)model
(Fig.1a), two-discrete-pool (2P) model (Fig.1b), three-discrete-pool
(3P) model (Fig. 1c), and time-for-substrate (T4S) (Fig. S1) with the
3PXmodel (Fig. 1d) for Q10 estimation using the same data set from
a laboratory soil incubation experiment. Parameters of these
models were estimated using the Bayesian Markov Chain Monte
Fig. 1. Model structures of one-pool (a), two-discrete-pool (b), three-discrete-pool (c),
and three-transfer-pool (d) models.
Carlo (MCMC) technique, which has recently been used to improve
parameterization of ecological models (Xu et al., 2006; Gaucherel
et al., 2008; Luo et al., 2011; Ahrens et al., 2014). In these models,
the intrinsic Q10 for each pool was estimated directly through
fitting the CO2 emission data and the apparent Q10 was calculated
from the estimated intrinsic Q10, pool size and decay rate of each
pool. The T4S method estimates temperature sensitivity by
comparing the times for decomposing a given amount of C at
different temperatures (Fig. S1) (Conant et al., 2008; Xu et al., 2010;
Haddix et al., 2011).
2. Materials and methods

2.1. Soil incubation data

The data used herewere from a published paper by Haddix et al.
(2011). The soil incubation data collected from a native grassland in
Indian Head, Saskatchewan, Canada (50.533 �N, 103.517 �W). The
mean annual temperature and precipitation are 2 �C and 421 mm,
respectively. Information about soil sampling and incubation was
described in detail in Haddix et al. (2011). Briefly, samples were
collected from three separated locations that were several meters
apart (field replicate n ¼ 3). Surface litter and aboveground vege-
tation were cleared away before sampling and soil from 0 to 20 cm
was collected. In the laboratory, rocks, surface litter and root ma-
terials were removed. The soil was homogenized and passed a 2-
mm sieve before incubation. Then the soil samples were incu-
bated at 15, 25, and 35 �C for 588 days (laboratory replicate n ¼ 4).
CO2 emission rates were measured daily during the first 2 weeks of
incubation, weekly for the next 2 weeks, and every 4 weeks
thereafter. Overall, there were 36 sampling times over the 588-day
incubation period. Data at all the 15, 25 and 35 �C were used in this
study to evaluate various methods as described below.
2.2. Model description

2.2.1. First-order discrete-pool models
Generally, first-order discrete-pool models have similar struc-

ture described in Eq. (1) (Stanford and Smith, 1972; Andr�en and
Paustian, 1987; K€atterer et al., 1998; Rey and Jarvis, 2006; Li et al.,
2013; Sch€adel et al., 2013):

Ccum ¼
Xn
i¼1

fiCtot

 
1� e�kit

!
(1)

where Ccum is the cumulative CO2eC emission at time t
(mg C g�1 soil), Ctot is the initial soil C content (mg C g�1 soil), fi and
ki are the initial fraction and decay rate of the ith pool. The sum of fis
is 1. The only difference of these models is the number of pools
(Fig. 1aec). It is generally assumed that the initial fractions of pools
are not affected by incubation temperature (Rey and Jarvis, 2006).
Hence, we fitted each of the models with the data at all the three
temperatures simultaneously using the data assimilation method
described below, and the fis were set to be independent of incu-
bation temperature.
2.2.2. First-order three-transfer-pool (3PX) model
In addition to the discrete-poolmodels described above, a three-

pool model with transfers among soil pools was developed. The
basic concept was derived from the CENTURY and TECO model
(Parton et al., 1987; Luo et al., 2003). In the model, SOM dynamics
are represented by the following first-order differential equation:



J. Liang et al. / Soil Biology & Biochemistry 80 (2015) 127e135 129
dCðtÞ
dt

¼ AKCðtÞ (2)

where A and K are matrices given by

A ¼
0@�1 f1;2 f1;3

f2;1 �1 0
f3;1 f3;2 �1

1A

K ¼ diagðkÞ ¼
0@ k1 0 0

0 k2 0
0 0 k3

1A
and C(t)¼ (C1(t)$C2(t)$C3(t))T is a 3� 1 vector describing soil C pool
sizes (Fig. 1d).

Matrix A is C transfers between individual C pools as described
by the arrows in Fig. 1d. The elements (fi,j) are C transfer co-
efficients, representing the fractions of the C entering the ith (row)
pool from the jth (column) pool. K is a 3 � 3 diagonal matrix rep-
resenting decay rates (the amounts of C per unit mass leaving each
of the pools per day). As in the above models, those parameters in
the 3PX model were also estimated using the data assimilation
approach below.
2.3. Data assimilation

We used probabilistic inversion approach described in Xu et al.
(2006) and Weng and Luo (2011) to estimate parameters in those
models from the soil incubation data. The approach is based on
Bayes' theorem:

PðqjZÞfPðZjqÞPðqÞ (3)

with which the posterior probability density function (PDF) P(qjZ)
of model parameters (q) can be obtained from the prior knowledge
of parameters represented by a prior PDF P(q) and the information
in the soil incubation data represented by a likelihood function
P(Zjq). The prior PDF were specified as the uniform distributions
over specific parameter ranges. The likelihood function P(Zjq) was
calculated with the assumption that errors between observed and
modeled values were independent from each other and followed a
multivariate Gaussian distribution with a zero mean:

PðZjqÞfexp

8<:�
X3
i¼1

X
t2obsðZiÞ

½ZiðtÞ � XiðtÞ�2
2s2i ðtÞ

9=; (4)

where Zi(t) and Xi(t) are the observed and modeled cumulative
respiration values, and si(t) is the standard deviation of
measurements.

The probabilistic inversion was carried on using the Metropo-
liseHastings (M�H) algorithm, which is a Markov Chain Monte
Carlo (MCMC) technique (Metropolis et al., 1953; Hastings, 1970), to
construct the posterior PDFs of parameters. Briefly, the M�H al-
gorithm repeats two steps: a proposing step and a moving step (Xu
et al., 2006). In the proposing step, a new point qnew is generated
based on the previously accepted point qold with a proposal dis-
tribution P(qnewjqold):

qnew ¼ qold þ dðqmax � qminÞ
D

(5)

where qmax and qmin are the maximum and minimum values in the
prior range of the given parameter, d is a random variable
between �0.5 and 0.5 with a uniform distribution, and D is used to
control the proposing step size and was set to 10 in the current
study. In the moving step, the new point qnew is tested against the
Metropolis criterion (Xu et al., 2006) to examine if it should be
accepted or rejected. Because the initial accepted samples are in the
burn-in period (Gelman and Rubin, 1992), the first half of accepted
samples were discarded and only the rest were used to generate
posterior PDFs (Figs. S2eS5). The M�H algorithmwas formally run
5 replicates and 500,000 times for each replicate for statistical
analysis of the parameters.

It is guaranteed for the Markov chain generated by the M�H
algorithm to converge to a unique stationary distribution. In the
current study, the convergence of the sampling chains was tested
by the GelmaneRubin (GeR) diagnostic method to ensure that the
within-run variation (Wi, Eq. (6)) is roughly equal to the between-
run variation (Bi, Eq. (7)) (Gelman and Rubin, 1992).

Wi ¼
1
K

XK
k¼1

s2k (6)

Bi ¼
N

K � 1

XK
k¼1

�
p:;k � p:;:

�2
(7)

where K is the number of replicates, N is the number of accepted
iterations after burn-in period, p:;k and sk are the mean and stan-
dard deviation of the specific parameter in the kth replicate, and p:;:

is the mean of the specific parameter over the five replicates. When
the Markov chain reaches convergence, the GRi (Eq. (8)) is equal to
one.

GRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WiðN � 1Þ=N þ Bi=N

Wi

s
(8)

In this study, GRs of all the parameters of all the models were
approximately one (Table S1).
2.4. Q10 calculations

In this study, we estimated three types of temperature sensi-
tivity (Q10): Q10 of bulk soil, intrinsic Q10 for each of the SOM pools,
and apparent Q10 at different times of soil incubation. Bulk soil Q10
at 15 �Cwas estimated by dividing CO2 emission rate at 25 �C by the
rate at 15 �C at the first incubation day with the assumption that
soil compounds and microbial community were the same at the
two temperatures. Similarly, the bulk soil Q10 at 25 �C was esti-
mated by dividing CO2 emission rate at 35 �C by the rate at 25 �C at
the first incubation day.

Intrinsic Q10 of the ith pool was estimated using Eq. (9):

Qi
10 ¼

�
kiðT2Þ
kiðT1Þ

� 10
T2�T1

(9)

where T1 and T2 are the incubation temperatures, ki(T1) and ki(T2)
are the inherent decay rates of the ith pool at the incubation
temperatures. In the current study, T1 and T2 are 15 and 25 �C for
the Q10 calculation at 15 �C, and are 25 and 35 �C for the Q10
calculation at 25 �C. In other words, the intrinsic Q10 was calculated
by ki(25)/ki(15) and ki(35)/ki(25) at 15 and 25 �C, respectively.

Apparent Q10 is dependent on the intrinsic Q10 and the size of
each C pool in the soil. It was calculated using soil CO2eC emission
rate at T2 divided by that at T1 at specific substrate levels and
fractions of SOM pools:



Table 1
Maximum likelihood estimates (MLEs) of parameters, P values, R2 values and Akaike information criterion (AIC) values in the one-pool (1P), two-discrete-pool (2P), three-
discrete-pool (3P) and three-transfer-pool (3PX) models simulated to the same soil incubation data. Please see Table S2 for the values of transfer coefficients in the 3PX model.

Model Initial pool size (%) Decay rate at 25 �C Q10 at 15 �C Q10 at 25 �C P R2 AIC

Active Slow Passive Active (10�3) Slow (10�4) Passive (10�5) Active Slow Passive Active Slow Passive

1P e e e 0.22 e e 1.64 e e 1.43 e e <0.001 0.955 �80.1
2P 5.76 e e 8.68 0.74 e 2.06 4.52 e 1.25 2.11 e <0.001 0.999 �260.5
3P 4.65 14.53 e 9.75 3.79 1.37 2.12 3.07 3.53 1.22 1.76 2.67 <0.001 0.999 �256.2
3PX 10.65 19.90 e 8.84 2.57 1.38 2.35 3.33 3.62 1.26 2.00 2.87 <0.001 0.999 �241.3
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Qa
10 ¼

Pn
i¼1RiðT2ÞPn
i¼1RiðT1Þ

¼
Pn

i¼1

h
kiðT2Þ � Ci � fc;i

i
Pn

i¼1

h
kiðT1Þ � Ci � fc;i

i (10)

where ki is the inherent decay rate of the ith pool at T1 and T2, Ci is
the C content (pool size) of the ith pool, fc,i is the transfer coefficient
from the ith pool to CO2. fc,i is 1 in the discrete-pool models (i.e., all
C comes from the ith pool becomes CO2 as assumed), and is the
difference between 1 and transfer coefficients from ith pool to the
other two pools in the 3PXmodel (e.g., fc,1 ¼1� f2,1 � f3,1). T1 and T2
are 15 and 25 �C for the Q10 calculation at 15 �C, and are 25 and
35 �C for the Q10 calculation at 25 �C.

Besides, T4S Q10 is comparing the times for decomposing a given
amount of soil C at different temperatures (Conant et al. 2008;
Fig. S1):

Q10 ¼ tT1
�
tT2 (11)

where tT1 and tT2 are the times required at T1 and T2, respectively.
The Q10 values for labile and recalcitrant SOM were determined
using times taken to respire the first and last 0.5% of initial soil C,
Fig. 2. Observed and modeled cumulative CO2 releases (R) from individual and total pools at
discrete-pool (2P), three-discrete-pool (3P) and three-transfer-pool (3PX) models.
respectively. T1 and T2 are 15 and 25 �C for the Q10 calculation at
15 �C, and are 25 and 35 �C for the Q10 calculation at 25 �C.

2.5. Akaike information criterion (AIC)

The goodness of fit relative to the number of model parameters
was evaluated by AIC (Akaike,1974; Burnham and Anderson, 2004):

AIC ¼ a ln

 P ðb3iÞ2
n

!
þ 2b (12)

where a is the number of data points, b3i is the estimated residual of
each data point, and b is the total number of estimated model pa-
rameters. The model with a smaller AIC value is more parsimonious
(Saffron et al., 2006).

3. Results

The estimated Q10s from all the methods were greater at 15 �C
than that at 25 �C (Table 1). The multi-pool models fitted the in-
cubation data better than the single-pool model (Table 1; Fig. 2).
all the three incubation temperatures (i.e., 15, 25, and 35 �C) in the one-pool (1P), two-



Fig. 3. Simulated dynamics of active pool size against cumulative CO2 emission at all the three incubation temperatures in the two-discrete-pool (2P), three-discrete-pool (3P) and
three-transfer-pool (3PX) models.
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Although all the multi-pool models described SOM dynamics
adequately, the estimated parameters were different (Table 1,
Table S2). The estimated initial active pool size was greater in the
3PX model than that in the 2P and 3P models. Additionally, the
decay rate of the slow pool was smaller in the 2P model than those
in the 3P and 3PX models. The 1P model can only generate one Q10
at each of the temperatures of 15 and 25 �C. In the multi-pool
Fig. 4. Simulated contributions of individual pools to CO2 emission rate at all the three incu
transfer-pool (3PX) models.
models, the Q10 increased with SOM recalcitrance. Although the
fit of all the multi-pool models were highly significant (all P < 0.001
and R2 > 0.99), the 2P model had the lowest AIC value followed by
the 3Pmodel. The AIC value of the 3PXwas larger than both of these
but smaller than that of the 1P model (Table 1).

During the incubation period, the active pool size declined
rapidly (Fig. 3). In all the multi-pool models, the remaining active C
bation temperatures in the two-discrete-pool (2P), three-discrete-pool (3P) and three-
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wasmore at higher than that at lower temperatures when the same
amount of C was respired, especially in the late incubation period
(Fig. 3). In addition, the modeled active pool size was smaller in the
2P and 3P models than that in the 3PX model. In the meantime, the
contribution of the active pool to CO2 emission rate reduced quickly
with the incubation progress, while the contributions of the slow
and passive pools increased (Fig. 4). The modeled contributions of
the active pool to CO2 emission at all the incubation temperatures
were greater in the 3PX model than those in the 2P and 3P models.
Correspondingly, the modeled contributions of the slow and pas-
sive pools were smaller in the 3PX model over the incubation
period (Fig. 4).

Although the temperature sensitivity generally increased with
the SOM recalcitrance (Table 1), the estimates were dependent on
the methods used (Fig. 5). It seemed that the estimated Q10 of bulk
soil from all the methods was within the 95% confidence range of
the direct calculation at the first incubation day at 15 �C (Fig. 5a),
while only the T4S method estimated the Q10 of bulk soil at 25 �C
appropriately (Fig. 5c). In addition, the difference of the estimated
Q10s among these methods changed with the incubation progress
(Fig. 5b and d). The only Q10 value estimated from the 1P model
cannot represent the dynamics of temperature sensitivity with the
change in SOM compounds. The discrete-pool models generated
higher apparent Q10 than the 3PXmodel at both 15 and 25 �C when
the active pool size diminished as the SOM decomposition pro-
gressed (Fig. 5b and d). The estimated apparent Q10 of the recalci-
trant SOM by the T4S calculation was significantly greater than
those by all the models at the end of the incubation at 25 �C
(Fig. 5d). In addition, the apparent Q10 decreasedwith the increased
contribution of the active pool to CO2 emission rate, and increased
Fig. 5. Estimated Q10s from the one-pool (1P), two-discrete-pool (2P), three-discrete-pool (
Panel (a) and (c) show the estimated Q10s of bulk soil from different methods (mean ± 95% CI
incubation day at 15 (a) and 25 �C (c), respectively. Panel (b) and (d) show the dynamics o
with the increase in the contributions of the slow and passive pools
to CO2 emission rate (Fig. 6).

4. Discussion

4.1. Comparison of the models

Generally, the estimated Q10 increased with SOM recalcitrance
and decreased with the increase in the incubation temperature,
which is in accord with the Arrhenius equation and many previous
studies (Knorr et al., 2005; Davidson and Janssens, 2006; Conant
et al., 2008; Haddix et al., 2011; Xu et al., 2012). However, the es-
timations substantially rely on the methods used and their
respective assumptions. The 1Pmodel assumes the soil as a single C
pool (Stanford and Smith, 1972; K€atterer et al., 1998; Rey and Jarvis,
2006). Compared with the multi-pool models, it does not fit the
data well enough (K€atterer et al., 1998; Rey and Jarvis, 2006). In
addition, it cannot represent the dynamics of temperature sensi-
tivity with the changes in SOM compounds. Therefore, the 1P
model is not adequate for describing the dynamics of SOM
decomposition in general and estimating the temperature sensi-
tivity in particular. All the 2P, 3P and 3PX models fitted the incu-
bation data adequately (R2 > 0.99, P < 0.001), but the modeled
decay rates of the slow pool in the 2P model were smaller than
those in the 3P and 3PX models. It is mainly because the slow pool
in the 2P model conceptually amounts to the sum of slow and
passive pools in the three-pool models.

In this study, the Bayesian MCMC technique provided the dis-
tributions of estimated parameters for each model (Figs. S2eS5). In
the four models, the goodness of the parameter constraint
3P) and three-transfer-pool (3PX) models, and the time-for-substrate calculation (T4S).
). The gray areas are the 95% confidence ranges of Q10 from direct calculation at the first
f estimated apparent Q10s with SOM respiration.



Fig. 6. Relationships of the modeled apparent Q10 and the modeled contributions of the active (a, d), slow (b, e) and passive (c, f) pools to the instantaneous CO2 emission rate in the
two-discrete-pool (2P), three-discrete-pool (3P) and three-transfer-pool (3PX) models.
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decreased with the increase in the parameter number. In the 1P
model, although the parameters were constrained perfectly, the AIC
analysis demonstrated that it is the worst model. In the other three
models, the AIC analysis indicated that the 2P model is the most
parsimonious model, followed by the 3P model. The 3PX model
seems to have an overfitting issue when it is used to simulate the
CO2eC emission data alone. However, in the 3PX model, the
transfers from slow and passive pools can alleviate the rapid con-
sumption of active pool, leading to greater active pool size and its
contribution to CO2 emission rate than that in the discrete-pool
models. Because the apparent Q10 decreased with the increased
contribution of the active SOM to CO2 emission rate (Fig. 6), the
estimated apparent Q10s in the 2P and 3P models were higher than
that in the 3PX model after the early incubation period.

4.2. Correlations between parameters

Strong correlations between some parameters were observed in
all the four models (Table S3). In these models, the values of k at
25 �C and the corresponding Q10 at 25 �C of the active pool are
usually negatively correlated, meaning when the decay rate at the
25 �C incubation temperature is high, low Q10 values are needed to
match the data at the 35 �C incubation temperature. In contrast, the
values of k at 25 �C and the corresponding Q10 at 15 �C of the active
pool are usually positively correlated, meaning when the decay rate
at the 25 �C incubation temperature is high, high Q10 values are
needed to match the data at the 15 �C incubation temperature. In
the multi-pool models, the high initial fraction of the labile pool is
accompanied by the low decay rate, mainly because the two pa-
rameters are constrained by the information of CO2 emission from
the labile pool synchronously. As a result, there is a trade-off be-
tween them. In the 3PX model, the positive correlation between f1
and f2,1 means when more C is allocated to labile pool, more pro-
portion of the labile pool would transfer to the slow pool.

The strong correlations between parameters partly indicate that
the models are overparameterized with the available data
(Braakhekke et al., 2013). However, the inherent correlations of
parameters due to the model structures may be another important
reason. For example, the only existed three parameters in the
simplest 1P model are the decay rate (k) and Q10s at 15 and 25 �C.
The Q10s themselves, measure the responses of the decay rate to
temperature. As a result, they are highly correlated with each other
(Fig. S3).

4.3. Estimated Q10 from the T4S method

The T4S Q10 calculation assumes that the respired CO2 is from
similar SOM fractions at different temperatures at the same sub-
strate levels (Conant et al., 2008). However, the current and many
previous studies have indicated that the recalcitrant SOM is more
temperature sensitive (Knorr et al., 2005; Craine et al., 2010; Karhu
et al., 2010; Xu et al., 2012). As a result, when the same amount of
SOM is decomposed, the proportion of emitted CO2 from the slow
and passive pools would be more at high than that at lower tem-
peratures. The results in the current study confirmed that the active
pool size increased with the increased incubation temperature
when the same amount of CO2 was respired in all the multi-pool
models (Fig. 3). Because the decay rate of the active pool is much
greater than that of the slow and passive pools, the CO2 emission
rate at the higher temperatures should be greater than assumed by
the method. In other words, the time for respiring a given amount
of C was less than assumed. Moreover, the difference between the
active pools at different temperatures increased with SOM
decomposition (Fig. 3), indicating that the assumption of this
method causes little bias for short-term incubation, but it would
lead to overestimation of Q10 of the recalcitrant SOM decomposi-
tion when applying to long-term incubation experiments. This is
supported by the results that the estimated Q10 of recalcitrant SOM
from the T4S method was significantly greater than that from the
other methods (Fig. 5d).

4.4. Potential implication of 3PX model

Multi-discrete-pool models assume soil C can be divided into
several discrete pools (Andr�en and Paustian, 1987; K€atterer et al.,
1998; Rey and Jarvis, 2006; Li et al., 2013; Sch€adel et al., 2013).
However, in natural ecosystems there are likely C transfers among
soil SOM pools (Rovira and Vallejo, 2002; Cheng et al., 2007) and
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the transfers are included in Earth system models (Parton et al.,
1987; Jenkinson, 1990; Luo et al., 2003). Although the discrete-
pool models can fit the soil incubation data well, the estimated
Q10 and other parameters with those models could not be directly
used to improve Earth systemmodels. The 3PX model, on the other
hand, represents different soil pools and transfers among the pools
to resemble ecosystem carbon cycle models. Thus, the 3PX model
can facilitate knowledge transfer from soil incubation studies to
Earth system modeling.

Although the structures of the terrestrial decomposition sub-
model may be different in different Earth system models, the
3PX-type model and data assimilation techniques could provide an
effective approach to incorporate the incubation data into these
large-scale models with minor adjustment of the model structure.
For example, the 3PXmodel in the current study corresponds to the
CENTURY and TECO model (Parton et al., 1987; Luo et al., 2003).
Instead of the traditional way that giving the parameters specific
values, the 3PX model can provide constrained values and the
uncertainties from experimental data (Fig. S5). However, because
there is little information for the C transfers in the data with CO2
emission alone, none of the five parameters relative to the C
transfers are well constrained. Therefore, data relative to the C
transfers should be gathered together with CO2 emission and used
for the estimates of these parameters. For example, isotope mea-
surements have recently been used to constrain the transfer coef-
ficient from the active to slow pool (Ahrens et al., 2014).

4.5. Conclusions

The results in our study indicate that temperature sensitivity
estimated from soil incubation data strongly depends on the
methods used. The 1P model is not adequate for Q10 estimate. The
2P model is the most parsimonious one and can fit data well with
all parameters commendably constrained. The 3P model can esti-
mate the C release and its temperature sensitivity of the passive
SOMwith a minor decrease in the model parsimony. The estimated
Q10 of the soil with less labile C from the 3PX model is smaller than
that from the 2P and 3P models due to considering the transfers
among pools. The T4S method is effective to estimate Q10 of the
labile SOM, but would overestimate that of the recalcitrant SOM.
The 3PX model structure offers a possible approach to facilitate the
transfer of knowledge learned from soil incubation data into Earth
system models.
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