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Summary

� Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation

carbon storage if increased net primary production causes increased long-lived biomass.

Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation

and turnover processes are represented.
� We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to

evaluate representations of allocation and turnover in 11 ecosystem models.
� Observed eCO2 effects on allocation were dynamic. Allocation schemes based on func-

tional relationships among biomass fractions that vary with resource availability were best able

to capture the general features of the observations. Allocation schemes based on constant

fractions or resource limitations performed less well, with some models having unintended

outcomes. Few models represent turnover processes mechanistically and there was wide vari-

ation in predictions of tissue lifespan. Consequently, models did not perform well at predicting

eCO2 effects on vegetation carbon storage.
� Our recommendations to reduce uncertainty include: use of allocation schemes constrained

by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and

turnover data in terms of model parameters. Data from intensively studied ecosystem manip-

ulation experiments are invaluable for constraining models and we recommend that such

experiments should attempt to fully quantify carbon, water and nutrient budgets.

Introduction

Since the industrial revolution, burning fossil fuels and land-use
change have driven an increase of c. 44% in the atmospheric con-
centration of carbon dioxide ([CO2]) (Le Qu�er�e et al., 2013).
Current projections from coupled climate–carbon models suggest

that the concentration may reach anywhere between c. 490 and
1370 ppm by 2100 (Moss et al., 2010). Elevated [CO2] (eCO2)
stimulates plant photosynthesis, which has the potential to
increase net primary productivity (NPP) of vegetation (Kimball,
1983; Norby et al., 2005). Many studies have investigated this
NPP response, both experimentally using large-scale CO2
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enrichment facilities, and also with ecosystem models (Oren
et al., 2001; Luo et al., 2004; McCarthy et al., 2010; Norby et al.,
2010; Drake et al., 2011; Reich & Hobbie, 2012; Zaehle et al.,
2014).

Ultimately, however, the effect of eCO2 on NPP by itself is
not as important as its consequences for key ecosystem properties,
such as leaf area index (LAI) and vegetation carbon (C) storage.
LAI is an important ecosystem property, with consequences for
surface temperature and water balance. Vegetation C storage is a
major component of the C cycle; c. 360 Pg C, or c. 20% of all
terrestrial C, is stored in live forest biomass (Bonan, 2008; Pan
et al., 2011). Rising NPP due to CO2 fertilisation may lead to
increased biomass C storage, which creates a strong negative feed-
back on rising atmospheric [CO2] (Canadell et al., 2007; Le
Qu�er�e et al., 2009). Increased NPP can also lead to increased
input of plant detritus into the soil system, potentially increasing
C storage in long-lived soil pools (Iversen et al., 2012).

In order to predict changes in these ecosystem properties, we
need to understand not only how eCO2 affects NPP, but also
how it affects the allocation of the assimilated C to plant tissues.
The effects of eCO2 on plant C storage will differ considerably if
the C is allocated towards long-lived plant tissue (i.e. woody
components), where it remains sequestered over long time peri-
ods; or alternatively, if cycling of C through the system is
increased via increased allocation to short-lived tissues or reduced
tissue lifespan (Luo et al., 2003; Korner et al., 2005). Similarly,
the effects of eCO2 on LAI depend on changes in NPP but also
on changes in the fraction of C allocated to foliage vs other plant
components.

Currently, global vegetation models predict that eCO2 will
lead to increasing C sequestration in both the biomass and soil
(Cox et al., 2000; Cramer et al., 2001; Friedlingstein et al., 2006;
Lenton et al., 2006; Schaphoff et al., 2006; Thornton et al.,
2007; Arora et al., 2013), but the simulated C-store (live biomass
and soils) diverges considerably between simulations. Jones et al.
(2013) showed a large spread in the simulated change in the land
C-store of between c. �250 and 400 Pg C by 2100 from a series
of model simulations run as part of the Coupled Model Inter-
comparison Project (CMIP5). There are many possible causes for
this among-model variability, but one important difference
among models is the representation of C allocation and pool
turnover patterns. The choice of model allocation scheme has
been shown to have significant consequences for predicted bio-
mass responses. For example, Friedlingstein et al. (1999) showed
that the CASA model would predict a 10% reduction in global
biomass by replacing fixed empirical constants with a dynamic C
allocation scheme based on resource availability (light, water and
nitrogen (N)). Similarly, Ise et al. (2010) found large variability
(up to 29%) among model estimates of woody biomass caused
by different assumptions about C allocation coefficients. Weng
& Luo (2011) evaluated the TECO model at the Duke site and
found that partitioning to woody biomass to be the most sensi-
tive parameter governing predictions of ecosystem carbon stor-
age. Most recently, Friend et al. (2014) attributed uncertainty in
multi-model predictions of the future vegetation store to differ-
ent residence times in models.

In order to understand why models differ in their predictions
of C sequestration, and to reduce this uncertainty, we need to
identify the assumptions made in different models and examine
how these assumptions impact on model predictions. Experimen-
tal data can then be used to help distinguish the best model
assumptions. We applied a series of 11 ecosystem models to data
from two temperate forest free-air CO2 enrichment (FACE) sites.
In previous papers we used this assumption-centred modelling
approach to examine model assumptions related to NPP and
water use (De Kauwe et al., 2013; Zaehle et al., 2014; Walker
et al., 2014) . In this paper, we focus on the processes of alloca-
tion and turnover. We document how each of the 11 models rep-
resent these processes. We then quantify how these process
representations affect predictions of vegetation C storage and
LAI, and compare the models against measurements at the two
sites in order to understand which process representations have
the capacity to capture observed responses.

In the absence of a mechanistic understanding of the processes
controlling C allocation at the whole-plant level, models either
follow empirical or evolutionary-based approaches (Franklin
et al., 2012). Empirical approaches include fixed coefficients, al-
lometric scaling or functional balance approaches, while evolu-
tionary-based approaches include optimisation, game-theoretic
approaches and adaptive dynamics (Dybzinski et al., 2011;
Franklin et al., 2012; Farrior et al., 2013). The set of models used
in this model intercomparison employed all of these approaches,
with the exception of game theory and adaptive dynamics, which
have not yet been widely employed in ecosystem models. We
were therefore able to probe differences in the predicted CO2

responses of allocation processes among the most commonly
employed model approaches.

Materials and Methods

Terminology

The terminology used to describe C allocation processes within
the literature is rather ambiguous. Litton et al. (2007) proposed a
series of definitions to standardise usage in experimental studies.
Unfortunately, these definitions do not correspond directly to the
way that processes are represented within most ecosystem models,
which typically consider C allocation in terms of available NPP
rather than Gross Primary Production (GPP). In this paper,
therefore, we use terms that are defined according to typical eco-
system model structure. Many ecosystem models are based
around differential equations for biomass, which can be most
simply expressed as:

dBi=dt ¼ aiNPP� uiBi Eqn 1

(i, ith plant component; Bi, biomass of that component (kg m�2);
ai, fractions summing to 1; ui, turnover rates of each component
(yr�1)). We considered the plant components to be foliage, wood
(including stem, branch and coarse roots), fine roots and repro-
duction. We defined ‘allocation coefficients’ to mean the fractions
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ai that determine the division of NPP among the plant compo-
nents. We also defined ‘biomass fractions’ to mean the fraction of
total plant biomass present in each component at a given time. As
can be seen from Eqn (1), the biomass fractions depend both on
the allocation coefficients and turnover rates.

Experimental data

Models were applied to two experimental sites, both of which
have been extensively described elsewhere (Norby et al., 2001;
McCarthy et al., 2010; Walker et al., 2014). The Duke FACE site
was situated in a loblolly pine (Pinus taeda) plantation in North
Carolina, USA (35.97°N, 79.08°W). The Duke experiment was
initiated in 1996, when trees were 13 yr old. By the end of the
experiment (2007), there was a significant hardwood understorey
in addition to the overstorey pines. Data used in this paper refer
to the forest stand as a whole, thus including both pines and
hardwoods, because fine root production data were not separated
by species. Six 30-m diameter plots were established, and CO2

treatments were initiated in August 1996. Three of these plots
tracked ambient conditions and three plots received continuous
enhanced CO2 concentrations of +200 lmol mol�1 (mean c.
542 lmol mol�1).

The ORNL FACE site was located in Tennessee, USA, at the
Oak Ridge National Laboratory (35.9°N, 84.33°W) and is a
sweetgum (Liquidambar styraciflua) plantation, established in
1988 on a former grassland. Treatment began at Oak Ridge in
1998 with two elevated rings (c. 25 m diameter) with an average
growing season [CO2] of 547 lmol mol�1 and three ambient
CO2 (aCO2) rings (c. 395 lmol mol�1).

Detailed measurements were collected during the experiments
at both sites. Data used in this study included biomass, litterfall
and NPP of each component (foliage, wood and fine root), and
total leaf area index (LAI). NPP at both sites was calculated as the
sum of woody biomass increment (estimated from allometric
relationships between biomass and tree diameter and height),
foliage productions (from litter traps), and fine-root production
(from minirhizotron observations), as fully described by Norby
et al. (2005) and references cited therein. At Duke FACE, obser-
vations of growth and litter components were only available from
1996 to 2005, whereas at ORNL FACE observations were avail-
able from 1998 to 2008. In this study we analysed model results
for the corresponding periods for which we had observations, that
is, 1996–2005 at Duke and 1998–2008 at Oak Ridge. These
data are described in detail elsewhere, for Duke in McCarthy
et al. (2007, 2010) and for Oak Ridge in Norby et al. (2001,
2004), and Iversen et al. (2008). These datasets are available at:
http://public.ornl.gov/face/index.shtml.

From these data we calculated annual allocation coefficients
for the foliage, wood, fine roots (growth of coarse roots was
included in the wood component) and reproduction over the
whole experiment. Allocation coefficients were calculated as NPP
of individual components divided by total NPP. Turnover coeffi-
cients were calculated on an annual basis as the annual sum of
litter divided by the annual maximum of each biomass compo-
nent (foliage, wood and fine roots). The lifespan of each

component is defined as the inverse of the turnover coefficients.
In addition, we calculated whole-canopy specific leaf area as LAI
divided by foliage biomass.

Model simulations

The 11 models applied to the two FACE sites include stand
(GDAY, CENTURY, TECO), age/size-gap (ED2, LPJ-GUESS),
land surface (CABLE, CLM4, EALCO, ISAM, O-CN) and
dynamic vegetation models (SDGVM). A detailed overview of
the models is given in Walker et al. (2014), and detailed analyses
of the water and N cycle responses are provided by De Kauwe
et al. (2013) and Zaehle et al. (2014) respectively.

Each model was used to run simulations covering 1996–2008
at the Duke FACE site and 1998–2009 at the ORNL FACE site.
Modellers were provided with general site characteristics, meteo-
rological forcing and CO2 concentration data. Most models sim-
ulated the Duke FACE site as a coniferous evergreen canopy,
although ED2 and LPJ-GUESS included a hardwood fraction.
All models simulated the ORNL FACE site as a broadleaf decid-
uous canopy (Walker et al., 2014). Models output a variety of C,
N and water fluxes at their appropriate driving resolution (hourly
or daily).

Analysis approach

We deliberately did not statistically evaluate any of the models
against observations, because models can easily yield quantita-
tively good responses for incorrect reasons; thus such an approach
typically does not correctly diagnose model deficiencies (Medlyn
et al., 2005; Abramowitz et al., 2008; Walker et al., 2014). Fur-
thermore, at both sites a series of storm events introduced tran-
sient system responses which are not accounted for in the models,
complicating direct point comparisons. Instead, we assessed the
model performance qualitatively by attempting to understand the
predictions made based on the underlying assumptions relating
to allocation and turnover processes. In assessing model perfor-
mance, a ‘good’ model is one that captures the processes underly-
ing response of the system to eCO2, although it may not
explicitly match the temporal dynamics observed at individual
sites.

We first documented how the allocation process is represented
in each of the 11 models. For some models, the sum of annual
plant growth does not exactly equal total photosynthesis less res-
piration in each year, due to the presence of a nonstructural labile
carbon pool. The modelled size of this pool varies among models
depending on how transfer from storage to growth is represented,
but within a model remains relatively constant over the course of
the experiment (see Supporting Information Notes S1, Fig. S1a,
b). Because there are no estimates of this pool size for either
experiment, we could not evaluate the modelled labile C pool
against data. In what follows, therefore, we focus on the alloca-
tion of carbon used for growth among different plant tissues. We
calculated the allocation coefficients ai from model outputs of
annual growth of each plant component, and compared the mod-
elled allocation coefficients at aCO2 and elevated CO2 (eCO2) at

� 2014 The Authors

New Phytologist� 2014 New Phytologist Trust
New Phytologist (2014) 203: 883–899

www.newphytologist.com

New
Phytologist Research 885



the two sites against the observed values. The results for the allo-
cation coefficients were interpreted in terms of the underlying
model representation of allocation.

We then examined the models’ predicted CO2 responses of
leaf area index (LAI, representing canopy cover) and C sequestra-
tion in woody biomass. Predicted LAI depends on specific leaf
area (SLA), the ratio of leaf area to leaf mass, as well as allocation
coefficients. Therefore, we also documented how the models rep-
resented SLA. Similarly, predicted C sequestration also depends
on tissue turnover, so we documented how the models repre-
sented turnover. Finally, we analysed how the representations of
these processes combined to determine the model predictions.

Model representations of allocation

We classified the ways that C allocation is implemented in the
models into four general classes: (1) fixed coefficients; (2) func-
tional relationships; (3) resource limitations; and (4) optimisa-
tion. In fixed-coefficient models, a fixed fraction of NPP is
allocated to each plant component. In functional-relationship
models, relationships among plant organs provide constraints
from which the allocation coefficients can be determined. In gen-
eral, these relationships are based on the hypotheses that (1) sap-
wood cross-sectional area must be sufficient to supply structural
support and water transport for the leaf area (the pipe-model
hypothesis, Shinozaki et al., 1964a,b) and (2) root activity and
leaf activity should be balanced (the functional balance hypothe-
sis, Davidson, 1969). In resource-limitation models, the allocation
coefficients are adjusted according to which resource is most lim-
iting to growth. Resource-limitation models are based on similar
ideas to the functional relationship models, but the key distinc-
tion is that relationships are calculated among allocation coeffi-
cients rather than among the biomass fractions. In optimisation
models, allocation coefficients are varied to maximise some mea-
sure of performance by the plants.

Each of the 11 ecosystem models was classified into one of
these four groups. Classifications and a full description of how
each model represents allocation are given in Table 1. Many
models separately consider allocation to bole, branches and coarse
roots, whereas others lump these components into wood. Here,
we consider only the combined component wood to enable com-
parison among models. Three models, ED2, LPJ-GUESS and
O-CN, also utilise a proportion of available C for reproduction.

Results

Allocation patterns

Figure 1 shows the average measured and modelled C allocation
coefficients in the ambient treatments over the experimental
period at both sites. At both sites, the observations indicate that
the largest fraction of NPP goes to wood, but at Duke the wood
allocation fraction is greater, and the root allocation fraction
lower, than at ORNL. Overall, the models agree with the obser-
vations that the greatest fraction of NPP was allocated to woody
tissue at both sites, with notable exceptions being LPJ-GUESS

and O-CN at Duke, and O-CN and TECO at ORNL. Most dif-
ferences among models in their prediction of allocation fractions
at ambient CO2 arise from parameterisation; these differences are
discussed in the Notes S2.

The data indicate that eCO2 had very different effects on allo-
cation patterns at the two sites (Figs 2, 3). At Oak Ridge, trees
in eCO2 increased allocation towards fine-root production at
the expense of wood and leaves. As a consequence, root produc-
tion roughly doubled at soil depths below 0.3 m (Iversen et al.,
2008). By contrast, at Duke, the root biomass proportion also
increased at depth (Pritchard et al., 2008), but the root alloca-
tion fraction did not change. There was a shift instead from
foliage allocation to wood allocation, with the average wood
allocation fraction increasing by 3%, although this shift was not
statistically significant (95% CI =�1.4%, 7.4%) (McCarthy
et al., 2010).

In general, the models predicted a reduction in foliage alloca-
tion in response to CO2 but disagreed on where the additional
NPP would be partitioned (Figs 2, 3). Differences among models
at ambient and in response to eCO2 can be understood following
the categorisation of allocation schemes described in the
Materials and Methods section.

Fixed coefficients Fixed coefficient models assume that alloca-
tion fractions are not affected by environmental conditions. In
two of these models, CLM4 and GDAY (at Duke), there was no
change in allocation in response to eCO2 (Figs 2a, 3a). At Oak
Ridge, GDAY assumed that root allocation was increased in
response to eCO2, based on the average CO2 response measured
at the site. It can be seen in Fig. 3 that this response is assumed to
start in the second year of the experiment, because in the decidu-
ous version of the model, growth is based on the previous year’s
accumulated productivity. These models are included for com-
pleteness but overall, the observations from both experiments
indicate that allocation responses to eCO2 are dynamic, so it is
clear that the constant coefficient approach is of limited useful-
ness for predicting allocation patterns under eCO2.

Somewhat surprisingly, two other fixed coefficient models,
CABLE and EALCO, did show eCO2 effects on allocation
(Figs 2a, 3a). These effects occur because both models use pheno-
logical phases, with different fixed allocation coefficients during
each phase (Table 1). As a result, eCO2 can alter annual alloca-
tion coefficients, even though the allocation coefficients are fixed
during each growth phase, because the relative CO2 enhancement
of NPP varies throughout the year. For CABLE at Duke, this
effect is clearly seen during the drought year (2002) in Fig. 2.
The drought occured after foliage expansion, during a period
when allocation to foliage is low and allocation to wood is high.
The CO2 effect on NPP during drought is amplified. Thus, the
CO2 effect is largest during the period when wood allocation is
greatest, with the overall effect that allocation to wood increases
at the expense of foliage. Although such a drought 9 CO2 inter-
action on allocation is also predicted by other types of allocation
models (e.g. see ED and SDGVM, Fig. 2), in this model it was
not intentional, but rather was a side effect of the assumption of
phenological phases for allocation.
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In EALCO, the assumption that the period of foliage alloca-
tion continues until the observed maximum LAI is reached
implies that annual foliage allocation is determined by the
observed LAI. The fine-root allocation coefficient is fixed, and
wood allocation is therefore the remainder of NPP. At Duke,
where observed root allocation was not affected by eCO2, the
allocation patterns simulated by EALCO resemble the observa-
tions (Fig. 2). At Oak Ridge, by contrast, where observed root
allocation was strongly affected by eCO2, the allocation patterns
simulated by EALCO differ strongly from the observations
(Fig. 3). As with CABLE, however, these eCO2 effects were an
unintended consequence of the phenology of the allocation
scheme.

Functional relationships The three models ED2, LPJ-GUESS
and O-CN allocate C according to functional relationships
among plant organs, which maintain sapwood, foliage and fine
roots in ratios that vary according to N and water availability.
The allocation responses to CO2 predicted by these three models
are relatively consistent (Figs 2b, 3b), and capture the observed
responses to some extent. With the additional increase in produc-
tivity in response to CO2, all three models predict that initially
wood allocation must increase to supply the extra wood volume
necessary to maintain the same leaf to sapwood area ratio. In
ED2, this effect continues throughout the experiment, because
high available soil N means that nutrient limitation does not
develop (Zaehle et al., 2014). In LPJ-GUESS and O-CN, water

Table 1 Full description of the assumptions regarding allocation made in the models for the simulations in this paper

Model Representation of allocation Timestep

Fixed coefficients
CABLE Allocation coefficients are fixed, but fractions differ between three phenological phases:

(1) maximal leaf growth phase: 80% of available C allocated to foliage; 10% each to wood and roots
(2) steady growth phase: plant functional type (PFT)- specific allocation coefficients used
(3) final phase: no leaf growth; available C allocated to wood and roots in ratio 55%: 45%

Daily

CLM4 For this study, allocation fractions were set as fixed empirical constants based on site observations, which did not vary
through the year. Note: The standard version of the model allocates C to the stem and foliage as a dynamic function of
NPP.

Daily

EALCO For this study, allocation coefficients were determined to maintain a prescribed relationship among plant tissues, namely:
foliage: sap wood: fine root = 1: 0.75: 0.5 for conifers and = 1: 3: 2 for deciduous trees
The start of plant growth is determined by a temperature sum. During the early growing season, all available C is allocated
to foliage because leaf biomass is small relative to sapwood and fine roots. Leaves stop growing when LAI reaches a
maximum LAI that is prescribed for each year and treatment based on the site data. After LAI reaches its maximum,
available C is allocated to sapwood and fine root only to maintain their prescribed relationship mentioned above (i.e. 60%
vs 40%). The growth of coarse roots and heartwood occurs during the senescence of fine root and sapwood, respectively
On an annual basis, the outcome of this set of assumptions is that root vs sapwood allocation relationship is fixed, and
foliage allocation yields the observed maximum LAI when enough C is fixed by the plants
Note: in other work the model EALCO often uses a ‘transport resistance scheme’ where flows of C and N depend on
concentration gradients (Thornley, 1972; Wang et al., 2002)

Daily

GDAY Allocation fractions are empirical constants set from site observations. Theses coefficients were varied between ambient and
eCO2 treatments at ORNL to reflect empirical site measurements

Annual

Functional relationships
ED2 Allocation is determined such that the biomass components follow allometric relationships given by Medvigy et al. (2009):

Bleaf ¼ eðtÞ
1þ qþ qswh

Ba Eqn 2

Broot ¼ q

1þ qþ qswh
Ba Eqn 3

Bsw ¼ Qswh

1þ qþ qswh
Ba Eqn 4

(Ba, active biomass pool; Bleaf, Broot and Bwood, biomass pools of foliage, sapwood and roots, respectively).
Leaf phenology is described by a phenology parameter (e(t)) [0–1]). Sapwood biomass and peak leaf bio
mass are maintained in the proportion qsw h (h, tree height; qsw, fixed leaf : sapwood area ratio). Root bio
mass and peak leaf biomass are maintained in the ratio q, which increases with increasing water or nitrogen
limitation. After allocating to leaves and roots on a daily basis, ED2 uses a 70 : 30 split of available ‘reserve’
C between woody growth and reproduction
Note: in the standard ED2 model, allocation fractions do not vary with N limitation

Daily
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Table 1 (Continued)

Model Representation of allocation Timestep

LPJ-GUESS A new version of the model incorporating N limitation was used (Smith et al., 2014). The allocation model follows Sitch et al.

(2003), with the addition of N dependence of the leaf: root biomass ratio
First, 10% of NPP is allocated to reproduction. The remaining NPP is allocated to the foliage, wood and roots on an annual
time step based on allometric relationships among biomass components
The ratio of LAI to sapwood area (SA) is constant

LAI ¼ kla:saSA Eqn 5

(kla:sa, a PFT-dependent constant). Additionally, upward tree growth requires an increase in supporting
stem diameter

H ¼ kallom2D
allom3 Eqn 6

(H, tree height; D, stem diameter; kallom2 and kallom3, PFT dependent allometric constants). These two
relationships define the wood biomass to leaf biomass ratio
The root biomass to leaf biomass ratio depends on a PFT-specific maximum leaf-to-root mass ratio lrmax and N and water
availability factors (N andW, ranging 0–1):

Cf ¼ lrmaxminðW;NÞCr Eqn 7

(Cr, root biomass pool; Cf, foliage biomass pool)

Annual

O-CN Implements the same scheme as LPJ-GUESS, with the key changes being that: (1) allocation takes place on a daily time step,
(2) the leaf-to-root mass ratio and leaf-to-sapwood ratios do not vary with PFT, and (3) partitioning of NPP to
reproduction also occurs on a daily basis and depends on the amount of remaining NPP after allocation to foliage, wood
and fine roots has taken place. A fast turnover labile pool buffers NPP against short-term variations in GPP; and a
nonrespiring reserve pool buffers interannual variability and facilitates bud burst in deciduous trees

Daily

Resource limitations
DAYCENT Carbon is allocated according to priorities. Fine roots have first priority, then foliage and finally wood. Demand by the fine

roots varies between 5% and 18% of total NPP depending on the maximum of two limitations (soil water and nutrient
availability). The remaining carbon available for allocation is then distributed to the foliage pool until the maximum LAI is
reached. The maximum LAI is set for each PFT depending on an allometric relationship with wood biomass. Allocation to
woody tissue only takes place once the maximum LAI has been attained

Daily

ISAM Allocation formulation after Arora & Boer (2005), with a dependence on light and water availability (but not explicitly
nutrient limitation). Under high LAI, light limitation occurs, and allocation to wood increases to compete for light. When
water limitation occurs, allocation to roots increases. Allocation to foliage is calculated as the residual. The allocation
fractions are calculated as follows:

aw ¼ ew þ xð1� LÞ
1þ xð2� L�WÞ Eqn 8

ar ¼ er þ xð1�WÞ
1þ xð2� L�WÞ Eqn 9

af ¼ 1� aw� ar Eqn 10

(W, soil water availability factor [0–1]; L, light availability factor; x ɛw,ɛr, PFT-dependent allocation
parameters). L is given by L = exp(–k LAI), (k, light extinction coefficient; LAI, leaf area index, which is
input from observations).
For broadleaf PFTs, this scheme is modified using three phenological growth phases:
(1) Leaf onset phase: allocation is completely to leaves, with zero allocation to wood or roots
(2) Steady growth phase: resource limitation model used
(3) Leaf senescence phase: allocation to foliage is set to zero, and aw and ar are increased to sum to one
The phases are determined by the ratio of LAI to a maximum LAI value for the biome. Phase (2) starts once
the LAI reaches half the maximum LAI, and ends once LAI falls below 95% of the maximum LAI value

Daily
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and nutrient limitations develop over the course of the experi-
ment, causing allocation to shift towards roots to maintain a
functional balance between foliage and roots. This effect is seen
most clearly in O-CN, in which increased N stress develops at
both sites. In LPJ-GUESS, the dynamics of allocation at Oak
Ridge change following a simulated mortality event in 2005. The
mortality reduces the stand-scale leaf:sapwood area ratio signifi-
cantly, driving an increase in wood allocation in the last years of
the experiment.

Resource limitations Three models, ISAM, DAYCENT and
TECO use resource limitation approaches, in which allocation
coefficients are determined by limitations of water, light and
nutrient availability. Although the approaches are similar in the-
ory, the implementations are sufficiently different that the three
models predict rather different allocation patterns and responses
to eCO2 (Figs 2, 3).

In ISAM, the allocation coefficients vary with water and light
limitation (Table 1). However, the predicted CO2 effects on allo-
cation differ between the sites because of the use of phenological
phases in deciduous species. At Duke, eCO2 increased LAI,
decreasing light availability, and reduced transpiration per unit
leaf area, increasing water availability. Both effects cause an
increase in wood allocation (Fig. 2g), much like that predicted by
the allometric models, and somewhat similar to observations. By
contrast, at Oak Ridge, foliage allocation is predicted to increase
strongly with eCO2 (Fig. 3g), as an unintentional side effect of

the use of phenological phases. The start of senescence period
(the third phenological phase) occurs when the observed LAI
declines to 95% of the prescribed maximum value. Because LAI
is greater in the eCO2 treatment, the LAI does not fall below the
senescence threshold until considerably later than in the ambient
treatment (c. 20 d). As allocation to foliage continues until the
senescence phase starts, foliage allocation is increased consider-
ably in response to CO2, in stark contrast to observations and
other models.

The DAYCENT and TECO models use similar prioritisation
schemes to decide allocation (Table 1). However, the predicted
response of allocation to eCO2 differs between these two models
because of different predicted impacts on water and nutrient
stress. In DAYCENT, at Duke, root allocation was increased
with eCO2 due to an increase in nutrient limitation. At Oak
Ridge, by contrast, root allocation was unchanged, indicating
that water and nutrient stress were unaffected by eCO2. At both
sites, foliage allocation decreased in response to eCO2 because
the maximum prescribed LAI had been attained. As a result, allo-
cation to wood (the third in the list of priorities) increased at
Oak Ridge, but not at Duke. These predictions differed markedly
from observations at both sites.

In the TECO model, at Duke, the maximum root allocation
was obtained at aCO2 and as result there was no CO2-induced
change. At Oak Ridge, water stress was reduced under eCO2 as a
consequence of water savings due to stomatal closure, resulting in
lower root allocation. At both sites, foliage allocation was reduced

Table 1 (Continued)

Model Representation of allocation Timestep

TECO The total amount of carbon available for allocation on a given day is given by the tissue growth rate (G), which is a function
of temperature and water availability. The model prioritises allocation to foliage and roots. The demand for carbon by
foliage is given by the amount of carbon needed to reach the maximum LAI. Growth is allocated to foliage to meet this
demand, but at any time step the allocation cannot exceed 40% of the total available carbon to be exported. Demand for
carbon by the roots increases with decreasing water availability, but cannot exceed 30% of the total available carbon to be
exported. The remaining available carbon is then allocated to the stem. The allocation coefficients are thus calculated as fol-
lows:

af ¼ min 0:4G;
ðLAImax � LAIÞ

SLA

� �
Eqn 11

ar ¼ min 0:3G;
1:5

W � bmL� bmR

� �
Eqn 12

aw ¼ G� af � ar Eqn 13

(G, total carbon to be allocated; LAImax, PFT-specific maximum leaf area index; SLA, specific leaf area;W,
soil water availability factor [0–1]; bmL and bmR, parameters defining the ratio of fine roots to foliage).
LAImax depends on canopy height, but height was assumed constant in these simulations for both PFTs.
The maximum LAI thus did not vary in TECO, unlike the other models

Daily

Optimisation
SDGVM SDGVM optimises canopy LAI such that net canopy C uptake is maximised. The annual carbon balance of the lowest

canopy layer is calculated. Allocation to foliage in the current year is determined such that the lowest layer of the canopy
had a positive carbon balance in the previous year. Allocation of remaining labile carbon between roots and woody tissue
are given by constant PFT-specific fractions

Daily

Note that in several instances, alternative allocation sub-models are available for the models used here, so other applications of these models may not use
the allocation routines described here.
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as LAI approached the prescribed maxima, as in DAYCENT.
Consequently, according to the prioritisation scheme, allocation
to wood is increased at both sites, and most strongly at Oak Ridge.
These predictions are similar to observed allocation responses at
Duke, but very different from observations at Oak Ridge.

Canopy optimisation In SDGVM, LAI is varied to maximise
net canopy C uptake (photosynthesis less respiration and leaf C
costs). This optimisation determines the amount of C allocated
to foliage; the rest of the C available is allocated to wood and
roots in a fixed ratio. This approach predicts that allocation to
foliage should decrease at both sites (Figs 2d, 3d) because the
eCO2 enhancement in NPP is greater than the LAI increase pre-
dicted by the optimisation scheme. The changes in foliage alloca-
tion predicted by this model are similar to observations.
However, because the model assumes that the remaining NPP is
divided in a fixed fraction between wood and roots, it did not
successfully predict changes in wood and root allocation.

Consequences for Leaf Area Index

Differences in model predictions of ambient LAI are discussed
in Walker et al. (2014); here we focus on the predicted eCO2

effect on LAI. This effect depends, first, on the NPP enhance-
ment; second, on the change in allocation of NPP to foliage;

and, third, on any change in specific leaf area (SLA) with eCO2.
Fig. 4 shows the observed and modelled responses of NPP,
foliar biomass, SLA and LAI to eCO2. Most models predict that
eCO2 leads to an increase in NPP, but there is a reduction in
foliage allocation, such that the increase in foliage biomass is
less than the increase in NPP. These predictions are generally
consistent with the observations. The exception to this rule is
ISAM at Oak Ridge, where foliage allocation increased, as
explained above, leading to a larger response of foliage biomass
than of NPP.

Observations from both sites showed that whole-canopy SLA
(calculated as total leaf area index divided by total leaf biomass)
was reduced at eCO2 (�6.4 and �5.3% at Duke and Oak Ridge,
respectively). Owing to this reduction in SLA, the observations
show smaller CO2 effects on LAI (14.4% and 2.3% increase at
Duke and Oak Ridge, respectively) compared to the effects on
foliage biomass (22.1% and 8.2% increase at Duke and Oak
Ridge, respectively). By contrast, most models assume that SLA
is constant, and therefore the enhancement in LAI due to CO2

directly corresponds to the foliage biomass enhancement.
However, some models vary SLA. In CLM4, SLA increases as

a linear function of canopy depth (Thornton & Zimmermann,
2007). Increased foliage allocation under eCO2 increases LAI,
which results in a lower mean foliage C cost (increased mean
SLA), allowing the enhancement in LAI to be greater than the

(a)

(b)

Fig. 1 Fractions of Net Primary Productivity
(NPP) allocated at ambient CO2 to the
foliage, wood, fine roots and reproduction at
(a) Duke and (b) Oak Ridge. The values
shown are means of the annual values and
the error bars show the interannual variability
in allocation fractions (� 1SD) calculated
over the number of years (n) of the
experiment (n = 10 at Duke and n = 11 at
Oak Ridge). Models are grouped by
allocation model type. Observations are
shown by the abbreviation ‘OBS’. Further
discussion of differences among model
predictions of allocation patterns at ambient
CO2 concentration is provided in Table 1 and
in Supporting Information Notes S2.
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corresponding foliar biomass enhancement. This response of
SLA is in the opposite direction to observations; data at both sites
indicate a reduction in SLA at eCO2. In the ISAM model, LAI is
decoupled from canopy biomass. The LAI is calculated based on
a phenological model where the maximum LAI is specified, and
has no relationship with the foliage biomass. As a consequence,
the implied SLA can change dramatically with eCO2, as at Oak
Ridge where foliage biomass is predicted to increase considerably
but prescribed LAI does not (Fig. 4). In the EALCO model, SLA
is forced to decrease at eCO2 by a percentage that is based on
observations. By including this observation into the model proce-
dure, the EALCO model is able to replicate the CO2 effects on
both foliage biomass and LAI (Fig. 4).

Biomass turnover

The eCO2 effect on biomass C storage depends both on alloca-
tion patterns and turnover times. We therefore documented the
turnover times for different plant tissues in both observations and
models (Tables 2, 3). In comparing model turnover times to
observations, it is important to bear in mind that observed turn-
over times are calculated from the turnover and mortality of

tissue during the experimental period only. During this period,
woody turnover mainly reflects branch shedding and a loss of
heavily suppressed trees, and for this reason is likely to be longer
than turnover times calculated over the whole lifetime of these
species. Foliage and fine-root tissue have longer turnover times at
Duke than at Oak Ridge. At both sites there was a noticeable
CO2 effect on the lifespan of fine roots, although root lifespan
decreased overall at Duke, whereas at Oak Ridge root lifespan
increased at eCO2, likely because of deeper rooting distributions
(Iversen et al., 2008).

This suite of models poorly replicated the observed tissue life-
spans during the experimental period (Tables 2 and 3), with con-
siderable variability across sites and among models, for all tissues.
Many models tended to suggest shorter woody tissue lifespan
than the observed, including CABLE, CLM4, GDAY, ISAM and
SDGVM at Duke and CABLE, CLM4, DAYCENT, GDAY,
ISAM, LPJ-GUESS, SDGVM and ISAM at Oak Ridge. A
shorter lifespan is to be expected in models that set turnover rates
based on the full lifetime of woody species. For example, GDAY
and TECO have shorter woody lifespans than the observations
because these models used general model parameterisations. Sim-
ilarly, the DAYCENT model predicted woody turnover times

(a)

(b)

(c)

(d)

Fig. 2 Change in the percentage of annual
Net Primary Productivity (NPP) allocated to
the foliage (green line), wood (orange line)
and fine roots (blue line) between ambient
and elevated CO2 at Duke.
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that were six times longer at Duke compared with Oak Ridge.
This was because at Duke, the death rate for woody biomass was
set to zero and thus the plotted data only reflects litter from the
branches.

By contrast, some of the models (ED2, LPJ-GUESS, O-CN
and SDGVM) had a self-thinning mortality mechanism, which
caused differences between sites and in response to eCO2 treat-
ment (Tables 2, 3). However, these differences were not consis-
tent among models. For example, in LPJ-GUESS woody litter is
produced via either disturbance or mortality. For these simula-
tions, stochastic disturbance and fire events were switched off, so
woody litter was only produced by tree mortality, which increases
as the canopy becomes denser and competition for light more
severe. As the canopy was simulated to be less dense at Duke,
partly because of lower SLA of the dominating conifers compared
with the broad-leaved trees at Oak Ridge, less mortality occurred
at Duke. By contrast, at Oak Ridge, mortality substantially
decreased woody biomass. With respect to eCO2, SDGVM
predicted an increase in woody turnover time. In SDGVM,
self-thinning occurs when a diameter increment falls below a
prescribed minimum. At eCO2, the increased productivity
enables more trees to reach the minimum diameter increment,
increasing woody lifespan.

Consequences for carbon storage in biomass

We compared the CO2 effect on NPP with the CO2 effect on
biomass increment over the duration of the experiment (Fig. 5a,
b). Most of the models predicted that the effect of eCO2 on bio-
mass increment exceeded the effect of eCO2 on NPP. The differ-
ence between the CO2 effect on biomass increment and that on
NPP depends on how far the simulated stand is from steady state,
that is, the point where gains from NPP equal losses to turnover
and mortality. In the very early stages of stand growth, before
notable turnover or tree mortality commences, the simulated
CO2 effect on biomass increment will be equal to the CO2 effect
on NPP. At steady state, by contrast, the rate of biomass incre-
ment (at aCO2) is zero, so any stimulation of biomass increment
by eCO2 will result in a very high relative response. This stand
stage effect accounts for the large percentage increase in biomass
seen in the ISAM model at both the Duke and ORNL FACE
sites. A shift in allocation towards long-lived woody components
will also increase the percentage biomass increment response
compared to the NPP response, because woody tissue has a long
lifespan. This effect can be seen in the TECO simulations, partic-
ularly at Oak Ridge where woody allocation increases by 10%
(Fig. 3l), and as a result a 36% stimulation of NPP results in a

(a)

(b)

(c)

(d)

Fig. 3 Change in the percentage of annual
Net Primary Productivity (NPP) allocated to
the foliage (green line), wood (orange line)
and fine roots (blue line) between ambient
and elevated CO2 at Oak Ridge.
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109% increase in biomass increment over the course of the exper-
iment.

We also calculated the percentage of the increase in NPP due
to eCO2 that was retained in biomass by the end of the experi-
ment (Fig. 5c,d), which we called the NPP retention rate. Obser-
vations showed a dramatic difference between the Duke and
ORNL FACE sites in the NPP retention rate (Fig. 5c,d). At
Duke, 88% of the extra NPP due to eCO2 remained in biomass,
whereas at ORNL, none of the additional NPP remained at the
end of the experiment. This difference is remarkable given that
the stimulation of NPP did not differ greatly between the experi-
ments. This difference can be attributed to changes in allocation
pattern: at Duke, there was a shift in the allocation of NPP to
long-lived woody biomass, whereas at ORNL, the additional
NPP was largely allocated to short-lived fine roots (Iversen et al.,
2008).

The predicted NPP retention rate varied strongly among the
models. This percentage depends on the wood allocation fraction
and wood turnover time, and was particularly sensitive to changes
in either of these parameters with eCO2. At Duke, models sug-
gested that a high proportion (i.e. > 40%) of the NPP enhance-
ment remained in the tree biomass. The two models with low
wood allocation at Duke (LPJ-GUESS, O-CN, Fig. 1) predicted
the smallest NPP retention rate. SDGVM predicted the greatest
NPP retention rate, despite a relatively low allocation to wood,
because of the prediction that wood lifespan increases with eCO2

(Table 2). The TECO model also has a high NPP retention rate
despite a low wood allocation at aCO2 (Fig. 1), because of the
large increase in wood allocation fraction with eCO2 (Fig. 2).

At Oak Ridge, the models predicted a somewhat smaller NPP
retention rate, largely as a result of lower wood allocation coeffi-
cients (Fig. 1), but few models captured the magnitude of the
observed response. The GDAY model does capture the response,
but this result was not predicted, but rather is a result of the pre-
scribed change in allocation to roots based on the observations.
LPJ-GUESS and O-CN predicted the smallest NPP retention
rates. However, LPJ-GUESS makes this prediction not due to a
shift in allocation towards roots, but rather because woody alloca-
tion is low (Fig. 1) and there is a very rapid woody turnover rate
(Table 3). Similar to the observations, the low NPP retention rate
in O-CN occurs because of a shift in allocation towards roots
(Fig. 3) as well as the low wood allocation fraction.

Discussion

Our goal in this paper was to address uncertainty in ecosystem
models caused by different model assumptions about allocation
and turnover processes. To do so, we applied 11 ecosystem mod-
els to data from two forest FACE experiments and used the
experimental data to help discriminate among the model assump-
tions. These two forest FACE experiments provide uniquely rich
datasets to constrain the response of allocation processes to CO2

(a)

(b)

Fig. 4 Response (elevated/ambient) of Net
Primary Productivity (NPP), foliar biomass,
whole-canopy specific leaf area (SLA) and
leaf area index (LAI) to CO2 enhancement at
Duke (a) and Oak Ridge (b). The data shown
are means over the years of the experimental
measurements (Duke, 1996–2005; Oak
Ridge, 1998–2008), with error bars
indicating interannual variability (� 1 SD).
Foliage biomass and LAI data are means of
the maximum value simulated/observed
during each year. SLA is calculated as whole-
canopy LAI divided by foliage biomass.
Observations are shown by the abbreviation
‘OBS’.
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in ecosystem models. Much of our previous understanding of
allocation responses to eCO2 has come from meta-analysis using
predominantly potted plants (Curtis & Wang, 1998; Poorter

et al., 2012). For example, Curtis & Wang (1998) found little
evidence for sustained shifts in belowground allocation patterns
due to CO2. Similarly, Poorter et al. (2012) found little evidence
of a consistent CO2 effect on C allocation fractions (leaf, wood
and roots) from a meta-analysis of young plants grown under
controlled conditions. However, ecosystem models need to be
informed by allocation patterns at ecosystem scale, rather than
those in rapidly expanding young plants, where ontogenetic
effects tend to outweigh environmental factors. Furthermore, to
provide strong constraints on model behaviour, we need data on
allocation patterns in response to experimental manipulations
that are accompanied by detailed information on plant nutrient
and water status. The intensively-studied FACE experiments are
thus of tremendous value for evaluation of allocation models.

Nonetheless, it is important to recognise the limits to which
these data can constrain models. First, there are significant uncer-
tainties in the data due to the inherent difficulty of estimating
biomass production in large forests. For example, estimates of
woody biomass production were made using allometric equations
determined from trees harvested before the onset of treatments.
Root biomass production estimates were made by scaling mea-
surements of root length measured using minirhizotron technol-
ogy to root biomass (Iversen et al., 2008; Pritchard et al., 2008).
Second, there were a number of one-off events that likely affected
allocation patterns in the experiments, but were not related to
atmospheric CO2 and are not captured in models. These events
include a windstorm at Oak Ridge in 2004 and an ice storm at
Duke in 2002 (McCarthy et al., 2006). Third, changes in alloca-
tion patterns in the models are intended to represent responses to
gradual changes rather than the step increase in CO2 concentra-
tion applied in the experiments. Furthermore, most models were
parameterised with standard PFT parameters rather than site-spe-
cific parameters. Also, at the Duke site, the significant hardwood
understorey is ignored by most models, which simulate pines
only. For these reasons, we should not expect any model to pre-
cisely match the observed magnitude and interannual variability
of treatment effects on allocation. Rather, we assessed the capac-
ity of the models to qualitatively reproduce the major features of
the observed changes. The overall effects of CO2 treatment on
allocation patterns were clear, but differed between the two sites,
with N availability as an important driver (Finzi et al., 2007;
Norby et al., 2010; Zaehle et al., 2014).

Comparative success of different allocation models

We examined four different classes of allocation assumption.
Broadly speaking, the models that used functional relationships
among biomass fractions to control C allocation (ED2, LPJ-
GUESS, O-CN) were best able to replicate the contrasting
observed changes in C partitioning at eCO2 at both sites. These
models initially predicted an increase in wood allocation with
eCO2 in line with the observations, but as these models became
water and nutrient stressed, allocation shifted towards roots.
Thus, both the allometry of leaf to wood biomass, and the shift
in the functional relationship between leaf and root biomass with
stress, were important to capture the CO2 response. The timing

Table 2 Mean lifespan (years) of the foliage, fine roots and woody
biomass at Duke

Foliage Fine roots Wood (Ambient) Wood (Elevated)

Observations 1.7 3.6 124.6 146.7
(1) Canopy foliar area optimisation
CABLE 1.1 –* 66.1 66.6
CLM4 2.1 2.1 47.2 48.4
EALCO 1.5 18.8 143.0 124.3
GDAY 1.7 1.7 51.8 52.1

(2) Functional relationships
ED2 2.3† 5.9 0.0† 0.0†

LPJ-GUESS 1.5 1.4 2092.2 2922.2
O-CN 1.4 1.5 268.8 254.4

(3) Resource limitations
DAYCENT 1.8 5.0 207.7 200.9
ISAM 1.4 0.5 41.4 41.9
TECO 1.3 1.2 57.9 58.1

(4) Canopy foliar area optimisation
SDGVM 2.8 10.1 55.6 77.0

Annual estimates of lifespan are calculated as the maximum of the biomass
pool in a given year divided by the sum of the litter and mortality in that
year; these estimates are then averaged over the years of simulation.
Lifespans for woody biomass are given for Ambient and Elevated CO2

treatments.
*CABLE does not explicitly represent fine roots.
†ED2 assumed no mortality occurred during the course of the simulations
at Duke. See Table 1 for details of the models.

Table 3 Mean lifespan (years) of the foliage, fine roots and woody
biomass at Oak Ridge

Foliage Fine roots Wood (Ambient) Wood (Elevated)

Observations 0.6 0.9 203.1 218.7
(1) Canopy foliar area optimisation
CABLE 1.1* –† 64.4 64.8
CLM4 0.4 1.0 46.6 47.3
EALCO 0.4 18.9 239.4 224.9
GDAY 0.5 0.8 95.5 95.1

(2) Functional relationships
ED2 0.3 3.7 175.0 178.5
LPJ-GUESS 0.3 1.3 10.8 9.5
O-CN 0.4 1.6 824.2 850.6

(3) Resource limitations
DAYCENT 0.2 4.9 36.9 36.9
ISAM 0.4 1.1 43.0 43.8
TECO 0.3 2.0 61.4 62.3

(4) Canopy foliar area optimisation
SDGVM 0.4 6.7 23.9 26.4

Annual estimates of lifespan are calculated as the maximum of the biomass
pool in a given year divided by the sum of the litter and mortality in that
year; these estimates are then averaged over the years of simulation.
Lifespans for woody biomass are given for Ambient and Elevated CO2

treatments.
*CABLE has a foliage lifespan > 1 yr because it maintains a small leaf area
index (LAI; c. 0.5–1) over winter from which it re-establishes a canopy
when simulating deciduous plant functional types (PFTs). See Table 1 for
details of the models.
†CABLE does not explicitly represent fine roots.
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of the development of stress responses varied between the models
and differed from observations (see Zaehle et al., 2014), but they
did tend to capture the direction of allocation shifts due to eCO2.
The success of these schemes is in contrast to previous work by
Luo et al. (1994), who found that a model built on the principles
of the functional balance hypothesis did a poor job of explaining
observed changes in root allocation in response to eCO2. How-
ever, this study concerned young plants aged 22 d to 27 months.
In addition, a key assumption of the model used by Luo et al.
(1994) was that total N uptake did not change in response to
CO2 treatment, as was observed in the experiments they consid-
ered. By contrast, N uptake increased at eCO2 in both of the
FACE sites studied here (Finzi et al., 2007). Thus, the functional
balance approach appears to be more successful for explaining
the CO2 effects on allocation in forest ecosystems than in young
plants.

By comparison to the observations, modelled changes in allo-
cation patterns were more gradual, meaning that they did not
match the observed interannual variability in the observations.
The models show a lagged response of allocation to changes in
water and nutrient limitations (due to annual allocation in LPJ-
GUESS, and a time-integrated N scalar in O-CN), which buffers
the rate at which allocation to roots changes. However, as
explained above, we would not necessarily expect the models to
be able to simulate responses to step changes in environmental
conditions. Of more concern is the fact that different

parameterisations among these models resulted in marked differ-
ences among otherwise similar schemes (see Notes S2), indicating
that parameterisation of these schemes is a source of significant
uncertainty. Large-scale synthesis of data on allocation patterns
(Litton et al., 2007; Wolf et al., 2011a,b) could potentially be
used to reduce this uncertainty, particularly if synthesis was done
in terms of model parameters.

The other three approaches used to represent allocation in our
ecosystem models were considerably less successful at reproduc-
ing observations. Of particular concern, allocation schemes in
which the allocation coefficients were not constrained by the
resulting biomass fractions (i.e. constant coefficient and resource
limitation approaches) could have unintended outcomes. For
example, due to the interaction of allocation with a phenological
scheme, CABLE unexpectedly predicted an eCO2 effect on C
allocation to wood during a drought at Duke. Similarly, in
ISAM, a maximum LAI was prescribed, causing leaf senescence
in eCO2 to be delayed by as much as 20 d, with the unintended
result of increased partitioning to foliage at eCO2 at ORNL.
These results show that allocation schemes either need to be con-
strained by the resultant biomass fractions (e.g. the functional
relationships approach) or tested thoroughly to ensure that model
predictions are as intended.

The constant allocation coefficient approach (CABLE, CLM4,
EALCO, GDAY) is unsuitable for predicting the consequences
of eCO2 for allocation because it is unable to capture dynamic

(a)

(b)

(c)

(d)

Fig. 5 The effect of CO2 enhancement on
vegetation carbon storage at the two sites.
Left-hand plots show the effect of elevated
CO2 on cumulative Net Primary Productivity
(NPP; red bars) and biomass increment (blue
bars) over the experiment at (a) Duke and (b)
Oak Ridge. Right-hand plots show the
proportion of additional NPP resulting from
the increase in CO2 which remains in the
plant biomass (foliage, wood and fine roots)
at the end of the experiment at (c) Duke and
(d) Oak Ridge. Note the bar for TECO in
panel (b) has been clipped to 100% for
plotting purposes, but extends to 109%.
Observations are shown by the abbreviation
‘OBS’.
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changes in allocation with changing water and nutrient availabil-
ity at seasonal to interannual timescales. The experimental data
show that these shifts in allocation pattern are significant, and
therefore need to be captured in models, although it remains
uncertain whether these changes in allocation pattern will be per-
sistent over the long term.

The resource limitation approach – in which allocation frac-
tions are decided based on the relative strength of nutrient, water,
and light limitations – is similar in some ways to the functional
relationships approach, but the models were significantly less suc-
cessful at predicting the observed allocation patterns. This lack of
success may be due to the fact that the approach is based on allo-
cation fractions, which are considerably more difficult to measure
than biomass fractions, with the consequence that many fewer
data are available on which to base model formulations and
parameters. In addition, at least some of the available data avail-
able do not support the general approach of prioritisation among
plant components used in DAYCENT and TECO (Litton et al.,
2007).

The one optimisation approach to allocation included in our
set of 11 models (SDGM) also failed to capture the observed
responses. However, this was principally because the optimisation
approach was incomplete, combining foliar optimisation with
fixed coefficients for wood and root tissues. A number of other
optimisation and game-theoretic allocation models have been
developed (e.g. see Franklin et al., 2012). Several of these
approaches have given promising results for explaining observed
patterns in C allocation (Dewar et al., 2009; Dybzinski et al.,
2011; Valentine & M€akel€a, 2012; McMurtrie & Dewar, 2013)
including observations from FACE experiments (Franklin et al.,
2009; McMurtrie et al., 2012). The results from these studies are
sufficiently promising to merit investigation of the implications
of these concepts when implemented into ecosystem models. It
would be particularly useful to implement the ‘assumption-cen-
tred’ model evaluation framework developed here to investigate
how such models compare to the allocation models currently in
use.

Other important processes

In addition to allocation, tissue turnover is a key process deter-
mining C storage in biomass, particularly turnover rates of the
long-lived woody biomass (Bugmann & Bigler, 2011; Smith
et al., 2013; Xia et al., 2013). Very few of the models considered
here include any explicit mechanism governing turnover. Tissue
lifespan is usually a prescribed parameter, either by PFT or based
on site knowledge. Elevated CO2 has been shown to affect tissue
lifespan. For example, needle lifespan was reduced at Duke
FACE (Sch€afer et al., 2002) and root lifespan was increased at
ORNL FACE (Iversen et al., 2008). This CO2-induced response
has implications for short-term litterfall and long-term soil C
storage (see Iversen et al., 2012). Even the models that employed
a mechanism to adjust lifespan still did not compare well to data:
LPJ-GUESS and SDGVM produced very different and at times
unrealistic results when applied to a transient step-change experi-
ment. Amongst models in which turnover processes are

parameterised, there was striking inter-model variability in the
lifespan of the wood, foliage and fine roots (Tables 2, 3); it varies
by as much as an order of magnitude for the woody component.
These results point to a need for better data on turnover. Such
data could come from many sources besides manipulative CO2

experiments. In particular, they need to cover all stages in forest
development (Wolf et al., 2011b).

Similarly, to estimate CO2 effects on canopy cover, models
need to estimate SLA in addition to foliage allocation. Most
models prescribed SLA and therefore did not capture the
observed reduction in SLA due to eCO2. As a consequence,
changes in canopy cover in response to eCO2 are overestimated.
However, the only model currently incorporating a theoretical
prediction of SLA (CLM-CN) performed worse, because SLA
was predicted to increase rather than decrease. A reduction in
SLA is a commonly observed response in eCO2 experiments
(Medlyn et al., 1999; Ainsworth & Long, 2005; Poorter et al.,
2009) that needs to be incorporated in ecosystem models, prefer-
ably via a process-based prediction of SLA rather than an ad hoc
reduction in SLA as CO2 increases. SLA is one of the most com-
monly studied plant traits (Kattge et al., 2011), so there are ample
data available on which to base such a model.

Where does the carbon go?

The observed site responses show contrasting effects of eCO2 on
the fate of vegetation C. There was a sustained increase in bio-
mass C at Duke FACE but no sustained increase at ORNL
FACE. In both cases, models were unable to correctly simulate
the change in C storage, because they were unable to capture the
full extent of the site N dynamics (see Zaehle et al., 2014) and
the resulting change in allocation patterns. At Duke FACE, mod-
els tended to predict that a greater proportion of the enhance-
ment in NPP remained in the plant biomass at the end of the
experiment than the observations indicated. In many cases (DAY-
CENT, EALCO, ED2, LPJ-GUESS and O-CN), this was
because the models prescribed too long a turnover time for wood,
and allocated too much of the additional NPP to wood. The
response was more variable at Oak Ridge, but models again over-
predicted the resulting change in plant biomass (with the excep-
tion of GDAY, which used prescribed allocation). At both sites,
therefore, models generally over-predicted the C storage due to
eCO2.

Soil is also a major store for carbon. We did not address the
CO2 effect on C storage in the soil, as we were focusing on model
assumptions related to biomass allocation and turnover. Predic-
tions of soil C storage will be influenced by the input of C to soil,
which is dependent on assumptions about allocation, especially
to fine roots (Iversen et al. 2012), but the fate of C in soil depends
on a different set of model assumptions that are chiefly related to
organic matter decomposition. Future work should investigate
how these assumptions differ among models and the interaction
between plant allocation and soil processes. Constraining these
assumptions with data will be challenging, given the inherent
uncertainty in soil C data (Hungate et al., 2009). Even after a
decade of experimentation, soil C changes in the two FACE
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experiments are difficult to detect because of the large, heteroge-
neous background pool.

We also do not address the allocation of photosynthate to pro-
cesses other than growth and respiration. These processes include
C exudation to the rhizosphere, transfer to mycorrhizae, volatile
organic C emissions, and losses to herbivory. These C flows may
have important ecosystem consequences; for example, rhizo-
sphere C inputs are thought to increase with eCO2, stimulating
microbial activity and enhancing plant available N (Drake et al.,
2011; Phillips et al., 2012). However, these fluxes have not been
quantified directly for the two FACE sites, and estimates have
principally been inferred from mass balance calculations (Palm-
roth et al., 2006; Drake et al., 2011; Phillips et al., 2011). Fur-
thermore, none of the models considered here have any
mechanistic representation of rhizodeposition processes. Conse-
quently, these additional C flows remain a key unknown requir-
ing additional experimental data and model development.

Some of the models (ED2, LPJ-GUESS and O-CN) did
include allocation of C to reproduction. Where these fluxes were
simulated, they were considerably larger than observed. In the
case of ED2, for example, the allocation fraction to reproduction
was 16–22% and increased by 6–12% with eCO2. By contrast,
the observed allocation to reproduction was <1% at Duke
(McCarthy et al., 2010). The sweetgum trees at ORNL did not
produce measurable reproductive tissue within the timeframe of
the experiment.

Ways to reduce model uncertainty

This study has shown that model uncertainty due to allocation
and turnover processes could be reduced through several means,
including improvements to models, targeted synthesis of experi-
mental data and additional measurements.

We have shown that allocation approaches that are constrained
by biomass fractions (such as functional relationships) were more
successful at capturing observed trends, and were generally more
robust, than approaches based on allocation coefficients. In par-
ticular, we showed that approaches using constant allocation
coefficients or resource limitations, when combined with pheno-
logical schemes occasionally produced unintended responses to
eCO2. We therefore advocate allocation approaches based on
functional relationships or optimisation schemes, and that any
allocation model should be subjected to wide-ranging tests to dis-
cover whether it behaves as intended.

We have shown that allocation parameters differ considerably
among models. Synthesis of existing allocation data, especially if
it is done in terms of model parameters, would reduce uncer-
tainty among models by providing baseline parameter values.
Similarly, we showed that turnover coefficients were highly vari-
able among models, indicating that they are poorly constrained
by data. Uncertainty among models could be reduced with better
measurements of turnover, as well as synthesis of existing mea-
surements. Such work could also assist in developing better mod-
els of turnover. SLA has been extensively measured, and these
measurements should be used to help develop process representa-
tion for environmental effects on SLA.

FACE experiments provide rich datasets with which to con-
strain models, but the strongly contrasting responses between the
two experimental sites imply that additional datasets will be
needed to derive generalisations about allocation at the ecosystem
scale. Ecosystem manipulation experiments need to be intensively
studied to provide all the data needed to constrain models. For
the work presented here we required data on growth and turnover
of all plant components as well as complementary data on plant
water and nutrient availability. We recommend that future eco-
system-scale experiments attempt to fully quantify carbon, water
and nutrient budgets.
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