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ABSTRACT

Understanding the climatic and biotic controls of

interannual variability (IAV) in net ecosystem ex-

change (NEE) is important for projecting future

uptake of CO2 in terrestrial ecosystems. In this

study, a statistical modeling approach was used to

partition climatic and biotic effects on the IAV in

NEE, gross primary productivity (GPP) and eco-

system respiration (RE) at a subtropical evergreen

plantation in China (QYZ), a deciduous forest

(MOZ), and a grassland (DK1) in the USA. The

climatic effects in the study are defined as the

interannual anomalies in carbon (C) fluxes directly

caused by climatic variations, whereas the biotic

effects are those caused by the IAV in photosyn-

thetic and respiratory traits. The results showed

that the contribution of biotic effects to the IAV in

NEE increased significantly as the temporal scale

got longer from daily to annual scales. At the an-

nual scale, the contribution of biotic effects to the

IAV in NEE was 47, 69, and 77% at QYZ, MOZ, and

DK1, respectively. However, the IAV in NEE was

mainly controlled by GPP at QYZ, and by RE at

DK1, whereas the contributions of GPP and RE to

the IAV in NEE were similar at MOZ, indicating

different mechanisms regulating the IAV in NEE

among ecosystems. Interestingly, there was a

strong negative correlation between the climatic

and biotic effects at the annual scale from 2003 to

2009 at QYZ (r2 = 0.80, P < 0.01), suggesting

these two effects counteracted each other and re-

sulted in a relatively stable C sink, whereas no

correlations were found at the other two sites.

Overall, our study revealed the relative importance

of climatic and biotic effects on the IAV in NEE and

contributed to our understanding of their under-

lying mechanisms.
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INTRODUCTION

The Earth’s climate is warming as a result of rapidly

increasing CO2 emissions and the global mean

temperature is expected to increase by 1.1–6.4�C by

the end of this century (IPCC 2007). Although

nearly 30% of carbon (C) released by anthropo-

genic activities is sequestered by terrestrial ecosys-

tems (Canadell and others 2007), whether this

natural sink will be sustainable into the future is a

major concern (Luo and Weng 2011). The capacity

of ecosystem C sequestration depends on the

magnitude of net ecosystem exchange of CO2

(NEE), which usually varies among years. Large

interannual variability (IAV) in NEE has been ob-

served at almost all eddy-flux sites over the world

(Baldocchi 2008).

Climatic variables, such as solar radiation, tem-

perature, and water conditions (Barr and others

2007; Pintér and others 2008; Yuan and others

2009) as well as cloud cover, drought, snow cover,

and El Niño-Southern Oscillation (ENSO, Baldoc-

chi and others 2001; Goulden and others 1996;

Weber and others 2009), are believed to be the

direct drivers of the variation in NEE. However,

climatic variables can also indirectly drive IAV in

NEE by regulating ecological and physiological

processes such as photosynthetic and respiratory

traits (Humphreys and Lafleur 2011) and pheno-

logical features (for example, growing season

length, transition dates, and phenological lags,

Dragoni and others 2011; Richardson and others

2009; Wu and others 2013). In addition, stand age

and nutrient conditions may also change eco-

physiological properties (Buchmann and Schulze

1999; de Beeck and others 2010). In this paper, we

defined the effects of ecological and physiological

changes on IAV in C fluxes caused by either climate

or other factors such as biotic effects. The direct

effects of climatic variations were treated as cli-

matic effects. Due to the complex interactions

between the climate and ecophysiological pro-

cesses, few studies have explicitly quantified the

two types of effects on IAV in NEE, separately.

Over the past decade, two statistical approaches,

the homogeneity-of-slopes method (Hui and others

2003) and the crossed model (Richardson and others

2007) have been developed to address the issue. Both

methods apply models that simulate C fluxes with

yearly varying parameters, and both consider the

variation of NEE from changes of model parameters

as biotic effects and those directly from changes of

climatic variables as climatic effects. Analysis of var-

iance (ANOVA) is then used to obtain the relative

importance of the biotic and climatic effects in both

methods. However, the multiple linear regression

model used in Hui and others (2003) produced con-

siderable model-data mismatch in some ecosystems

(Polley and others 2008; Teklemariam and others

2010). Richardson and others (2007) used a process-

based model to estimate the relative importance of

climatic and biotic effects as well as the magnitude of

the two effects each year, which has been successful

for Howland forest, USA, but may not be suitable for

other ecosystems. Thus, more flexible methods need

to be developed with site-specific data sets.

Previous studies with these approaches have

found that biotic effects became more important as

the temporal scale increased from days to years

(Hui and others 2003; Polley and others 2008;

Richardson and others 2007), whereas climatic

effects, mainly at diel to seasonal scales, had the

opposite trend (Baldocchi 2008; Luo and Weng

2011). Moreover, the importance of biotic effects to

IAV in NEE varied among ecosystems (for example,

grassland > forest > peatland, Hui and others

2003; Polley and others 2008; Teklemariam and

others 2010), and between deciduous and ever-

green forests (deciduous > evergreen, Richardson

and others 2007; Wu and others 2012).

Forest plantations, occupying about 200 mil-

lion ha over the world (FAO 2007), are a large wood

production and efficient C sink due to fast growth

(Carle and Holmgren 2008; Pan and others 2011). In

terms of area, China has the largest portion of global

plantations (about one-third), 40% of which are

planted in Southern and Eastern China with a sub-

tropical monsoon climate (Huang and others 2012).

However, the potential C sequestration in planta-

tions was questioned by a recent meta-analysis,

suggesting that soil C concentration in plantation

forests was lower than that in natural forests (for all

trees and the Genus Pinus, Liao and others 2012).

Understanding this inconsistency requires more

detailed studies on mechanisms of C cycling in

plantations and their biotic responses to climate

change, to which the partitioning of climatic and

biotic effects would provide useful information.

Therefore, in this study, we aimed to investigate

the relative importance of biotic and climatic effects

on IAV in NEE and their potential interactions at a

subtropical evergreen plantation in China. Instead

of using the specific-scale functions in Richardson

and others (2007), we applied the Bayesian infor-

mation criterion (BIC) to optimize the relationships

of climatic variables with maximum photosynthetic

rate (Am) and temperature sensitivity (Q10) using

multiple regression models. An empirical model

with the optimized relationships and yearly varying
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parameters was then constructed to simulate sea-

sonality and IAV in NEE. A modified statistical

approach from Richardson and others (2007) was

used to partition the climatic and biotic effects on

IAV in NEE (and its component fluxes GPP and RE)

and their relative importance. Because the re-

sponse magnitude of C fluxes to climate variability

is the sum of biotic and climatic effects, the corre-

lation between biotic and climatic effects can

potentially reveal the possible responses of the

ecosystem C cycle to future climate change and

help clarify whether a positive feedback exists be-

tween the C cycle and climatic change (Cox and

others 2000; Luo and others 2009). If the biotic

effects are negatively correlated with climatic ef-

fects with similar magnitudes, ecosystem C fluxes

may not fluctuate with climatic change and can be

a robust C sink/source. To evaluate the perfor-

mance of our modeling method, we also applied

our approach to another two ecosystems, an oak

forest and a C3 grassland in the US. The three sites

not only represent different ecosystem types

(evergreen and deciduous forests, and grasslands),

but also cover a wide range of geography and

climate. Therefore, the comparison of the results

across the three ecosystems will strengthen the

application of our approach.

METHODS

Site Information

In this study, we mainly focused on a subtropical

plantation in China using a statistical modeling ap-

proach to examine climatic and biotic effects on IAV

in C fluxes. Another two ecosystems in the USA were

used to validate the approach. Thus, the three sites

included Qianyanzhou, Missouri Ozark, and Duke

Forest Open Field. The Qianyanzhou flux site (QYZ,

26�44¢29¢¢N, 115�03¢29¢¢E, a.s.l. 100 m) is located in

Jiangxi Province, China. The site is controlled by a

subtropical monsoon climate, whereas other areas at

a similar latitude are occupied by arid steppes and

deserts (Huang and others 2007). The mean annual

temperature and precipitation are 17.9�C and

1,475 mm, respectively, based on the meteorologi-

cal record from 1985 to 2007 (Wen and others 2010).

High temperature and drought often occur in sum-

mer, suppressing plant physiological activities. The

vegetation is a needle-leaved forest plantation that is

25 years old and approximately 13 m tall. The

dominant species are Pinus massoniana, Pinus elliottii,

and Cunninghamia lanceolate.

The Missouri Ozark flux site (MOZ, 38�44¢39¢¢N,

92�12¢00¢¢W, a.s.l. 219 m) is located at the Baskett

Research and Education Area (BREA) in Missouri,

USA. The climate of the area is warm, humid, and

continental. The mean annual temperature and

precipitation are 13.6�C and 1,023 mm over the

period of 1971–2000, respectively. The vegetation

is a deciduous forest that is 77 years old and

approximately 13 m tall. The dominant species are

white oak (Ouercus alba) with other oak species and

hickories (Yang and others 2010).

The Duke Forest Open Field (DK1, 35�58¢16¢¢N,

79�05¢36¢¢W, a.s.l. 168 m) is located at the Black-

wood Division of the Duke forest in North Carolina,

USA. The regional climate is characterized by warm

and humid summers and mild winters with mean

annual temperature of 15.5�C and mean annual

precipitation of 1,145 mm based on the long-term

record (111 years). The dominant species is the C3

grass, Festuca arundinacea (Stoy and others 2008).

Data Sources

Half hourly data for NEE and corresponding cli-

matic variables at the QYZ flux tower (2003–2009)

were obtained from CERN (Chinese Ecosystem

Research Network, www.cern.ac.cn/), whereas the

data at MOZ (2005–2009) and DK1 (2003–2007)

were from AmeriFlux (public.ornl.gov/ameriflux/

index.html). These variables included Fc (CO2

flux), u* (friction velocity), PAR (photosyntheti-

cally active radiation), Ta (air temperature), Ts (soil

temperature), PPT (precipitation), SWC (soil water

content), and VPD (vapor pressure deficit).

Gap-Filling

The raw data were preprocessed by spike screening

and nighttime filtering based on the methods in

Papale and others (2006). Then a Q10 function was

used to model the nighttime flux, which represents

the nighttime ecosystem respiration (RE, Richard-

son and Hollinger 2005) and fill the gaps:

RE ¼ R10Q
Ts�10

10

10 ; ð1Þ

where R10 is the respiration rate at 10�C, Q10 is the

temperature sensitivity of RE. The parameterization

of equation (1) follows the method from Reichstein

and others (2005) with slight modifications. First,

we set 1-month moving windows with a step of

1 day. If the valid nighttime data in a certain

moving window were less than 100 points, the

window was expanded to get enough data points.

Then the fitted parameters R10 and Q10 were ob-

tained for each moving window. Only the R10

values within a range of 0–0.15 mg C m-2 s-1 and

the coefficient of variance (CV) less than 50% were
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accepted (Reichstein and others 2005). These valid

R10 values were averaged with the inverse of

standard error as a weighting factor. The weighted

R10 was considered as the long-term reference

respiration rate through the whole period. Then we

put the weighted R10, a constant, into equation (1),

and obtained the estimates of daily Q10 using 1-

month moving window with a step of 1 day. Once

the parameters in equation (1) were estimated, we

applied it to fill the gaps at nighttime. Daytime RE

was also estimated by this method to extend the

equation to daytime.

GPP was estimated as the difference between

estimated daytime RE and observed NEE. A

Michaelis–Menten equation (Falge and others

2001) was used to describe the GPP for the daytime:

GPP ¼ PAR � Am

PARþ Km
; ð2Þ

where Am is the maximum photosynthetic rate and

Km is the Michaelis constant, which is PAR at which

the photosynthetic rate is half of Am. We fitted Am

and Km using a 1-month moving window as de-

scribed above to get the daily parameters of a

photosynthesis model. We then used these

parameters to estimate daytime GPP. The daytime

flux gaps for NEE were filled by using the equation:

NEE = RE - GPP.

Empirical Model

The seasonality of the parameters in the gap-filling

model (for example Am, R10 and Q10) has been

proven to be related to climatic variables (for

example, temperature, soil moisture, and VPD)

(Ricciuto and others 2008; Richardson and others

2006). At the QYZ site, SWC has been proven to be

a good indicator for maximum carboxylation rate

(Ju and others 2010). In addition, Yu and others

(2008) have used multiple linear regression with Ta

and SWC to simulate Q10. In this study, we applied

multiple linear regression of meteorological vari-

ables to simulate the seasonality of Am and Q10.

Quadratic and interactive terms were included in

the regression to capture the potential nonlinear

relationships between climatic variables and the

parameters. Regression variable selection was based

on Bayesian information criterion (BIC, Burnham

and Anderson 2002).

First, we considered daily Ta, VPD, and SWC as

the potential explanatory variables for Am, and Ts,

and VPD and SWC for Q10, according to univariate

linear correlation between climatic variables and

model parameters. We then constructed a series of

candidate models with different combinations of

potential explanatory variables and their quadratic

and two-order interactive terms. The BIC of each

candidate model was calculated by

BIC ¼ �2� log ðLikelihoodÞ þ k� log ðnÞ; ð3Þ

where k is the number of parameters, n is the

length of data, and Likelihood is the likelihood

function. The likelihood function is the probability

density function (PDF) of the joint distribution of

the model parameters when the data are given. The

model with the lowest BIC was selected and then

the explanatory variables in this model were used

in the next steps. After model selection, the best

model for Q10 at QYZ was identified as:

Q10 ¼ a0 þ a1 � Ts þ a2 � SWC þ a3 � Ts � SWC

ð4Þ

and the best model for Am was

Am ¼ b0 þ b1 � Ta þ b2 � VPDþ b3 � SWC; ð5Þ

where ai (i = 0, 1, 2, 3) and bi (i = 0, 1, 2, 3) are

parameters. Therefore, we constructed an empirical

model for NEE, which is expressed as

NEEpredict ¼ R10Q
Ts�10

10

10 � Am � PAR

PARþ Km
; ð6Þ

where Q10 and Am are functions of climate variables

and R10 and Km are constant parameters.

The parameters of the empirical model were

estimated by Bayesian parameterization with the

Markov Chain Monte Carlo (MCMC) method

(McCarthy 2007) using non-gap filled half-hour

data. The posterior probability of a parameter set hi

could be obtained from

PrðhijDataÞ ¼ Pr ðhiÞ � PrðDatajhiÞP
j ðPr ðhiÞ � PrðDatajhiÞÞ

; ð7Þ

where Pr(hi|Data) is the posterior probability of hi,

which means the joint probability of parameter set

hi when given the data. Pr(hi) is the prior proba-

bility of hi, and Pr(Data|hi) is the likelihood func-

tion. For a normal distribution, the likelihood

function is expressed as

Likelihood ¼
Yn

i¼1

1
ffiffiffiffiffiffi
2p
p

r
e�

1
2

ei
rð Þ

2
� �

; ð8Þ

where ei is the model residual. When the maximum

likelihood method is used to estimate model

parameters, the statistics r can be calculated from

the following equation:

r2 ¼
Pn

i¼1 e2
i

n
ð9Þ
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There are a total of ten parameters to be optimized

with uniform prior distributions.

The same approach was applied to MOZ and

DK1, but the best models for Q10 and Am at these

sites were

Q10 ¼ a0 þ a1 � Ts þ a2 � SWC þ a3 � Ts � SWC

Am ¼ b0 þ b1 � Ta þ b2 � VPDþ b3 � VPD2

ð10Þ

and

Q10 ¼ a0 þ a1 � Ts þ a2 � SWC þ a3 � Ts � SWC

Am ¼ b0 þ b1 � Ta þ b2 � VPDþ b3 � VPD2

ð11Þ

respectively.

Statistical Analysis

At the QYZ site, we ran the models with separate

year’s data, and obtained seven parameter sets.

Following Richardson and others (2007) proce-

dure, we then ran the empirical model by crossing

each ‘‘driver year’’ with each ‘‘parameters year’’

and obtained a 7 9 7 matrix of model predictions.

This ‘‘cross model’’ was run for 500 iterations. The

analysis of variance (ANOVA) with factors of

‘‘driver year,’’ ‘‘parameter year,’’ ‘‘driver year’’ 9

‘‘parameter year’’ interaction, and ‘‘parameter

year’’ 9 ‘‘model run’’ interaction was used to par-

tition the total variance of the model predictions.

The majority (>95%) of the interannual variation

came from the factors ‘‘driver year’’ and ‘‘param-

eter year,’’ the contributions to total variation were

regarded as the contributions of climatic and biotic

effects to the interannual variation in C fluxes,

respectively. This approach was applied to model

predictions aggregated at daily, weekly, monthly,

seasonal, and annual periods, resulting in the

contributions of biotic and climatic effects to the

IAV of C fluxes at the corresponding periods. To

investigate the possible relationship between biotic

and climatic effects, the main effects of the factor

‘‘driver year’’ and ‘‘parameter year’’ were defined

as the magnitude of biotic and climatic effects,

respectively. The same approach was applied to

MOZ and DK1. Following Yuan and others (2009)

approach, we used standard deviation to represent

the absolute interannual variability (AIAV) and the

coefficient of variation (CV) to represent the rela-

tive interannual variability (RIAV).

All analyses but Bayesian parameter estimation

were applied in R (R Development Core Team

2011), which is a free, open source software envi-

ronment for statistical computing and graphics with

thousands of packages. WinBUGS (version 1.4.3,

http://www.mrc-bsu.cam.ac.uk/bugs/) was used to

conduct the Bayesian analysis.

RESULTS

Interannual Variability in Climate and
Carbon (C) Fluxes

The climatic variables (PAR, Ta, Ts, PPT, SWC, and

VPD) showed large interannual variability (IAV) at

both annual and monthly scales (Figure S1, S2,

S3). The relative IAV (RIAV, represented by the

coefficient of variation (CV)) in annual PAR, PPT,

and VPD was greater than that in Ta, Ts, and SWC at

QYZ (Figures S1B, D, F), whereas the RIAV in PPT,

SWC, and VPD was greater than that in PAR, Ta, and

Ts at MOZ and DK1 (Figures S2, S3). At the

monthly scale, the RIAV in Ta and Ts was lower

than that in other climatic variables at all the sites.

The variables associated with water conditions

(PPT, SWC, and VPD) showed larger IAV in the

growing season than other periods (Figures S1, S2,

S3). Note that Ta and Ts did not show the same

patterns at the annual scale at QYZ (r2 = 0.22,

P > 0.05) and DK1 (r2 = 0.46, P > 0.05), al-

though the seasonality and IAV at the monthly

scale were close (Figures S1C, S3C). For the period

considered in this study, two extreme climate

events occurred at QYZ, a severe summer drought

with high temperatures in 2003 and an ice storm

event from late January to early February 2008. At

MOZ, the precipitation in 2006 and 2007 was lower

than that in other years. At DK1, the precipitation

in 2007 was the lowest over the period 2003–2007.

During the study period, the annual NEE was

-333 ± 47 (mean ± SD), -479 ± 65 and

34 ± 92 g C m-2 y-1 at QYZ (2003–2009), MOZ

(2005–2009), and DK1 (2003–2007), respectively

(Figure 1B, D, F). At the monthly scale, AIAV of

NEE was 4–17, 6–58, and 5–41 g C m-2 mon-1 in

QYZ, MOZ, and DK1, respectively. The RIAV in the

monthly NEE was much larger than that at the

annual scale. Although the monthly NEE was

strongly correlated with the climatic variables, sig-

nificant correlations were only found between NEE

and Ts at QYZ (r2 = 0.61, P < 0.05) and between

NEE and PPT at DK1 (r2 = 0.65, P < 0.05) at the

annual scale.

Model Parameters and Performance

The modeled NEE at the half-hour, daily, weekly,

and monthly scales had good agreement with
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observed values for all three sites (Figure 2). At the

annual scale, the modeled NEE was -324 ± 39

(mean ± SD), -475 ± 51 and 34 ± 95 g C m-2 y-1

at QYZ, MOZ, and DK1, respectively, closely

matching the corresponding observed values in

terms of magnitude, RIAV, and interannual pat-

terns (r2 = 0.89, P < 0.01; r2 = 0.88, P < 0.05;

and r2 = 0.96, P < 0.01, respectively, Figure 1B, D,

F). At QYZ, the model caught the suppression of

summer drought on GPP and RE in 2003, but failed

to capture the weak summer suppression in 2004

and 2005 (Figures S6A, S7A). However, the model

underestimated the RE on cold days with high Q10

(Figures 5B, S7A). At the annual scale, the model

overestimated RE in 2009 and GPP in 2008 and

2009 (Figures S4B, S5B). At MOZ, the NEE had a

clear seasonality, which was well captured by the

model. However, the model overestimated both

GPP and RE in 2006 (Figures S4D, S5D) when the

temperature was higher and the precipitation was

lower than those in the normal years (Figure S2B,

D). At DK1, some large model-data mismatching of

NEE and GPP occurred on some days in warmer

and drier years (2006 and 2007, Figures 2C, S6C).

Parameterization of the empirical model was

conducted yearly during the study period with se-

ven parameter sets for QYZ and five for MOZ and

DK1. The PDFs of parameters Km and R10 varied

greatly among years at all three sites with larger

variation at MOZ and DK1 (Figure 3). Parameter

Km was significantly correlated with annual PAR

(r2 = 0.60, P < 0.05, Figure 4A) and SWC

(r2 = 0.62, P < 0.05, Figure 4B) at QYZ, and with

annual PAR (r2 = 0.80, P < 0.05, Figure 4C) and

PPT (r2 = 0.89, P < 0.05, Figure 4D) at DK1 but

not at MOZ as well as R10.

At QYZ, the Am increased by 0.035 ±

0.0058 mg C m-2 s-1 (mean ± SD) with the

increment of 1�C in Ta based on the yearly rela-

tionship between Am and Ta during the study per-

iod and decreased by 0.48 ± 0.11 mg C m-2 s-1

with 1 kPa in VPD, but the effects of SWC on Am
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Figure 1. Seasonal (A, C,

E) and interannual

variability (B, D, F) in

NEE for the study period

at QYZ, MOZ, and DK1.

The scaled NEE was

calculated by

(Xi - mean)/SD, where

Xi is NEE in a specific

month during the study

period. B, D, F represent

observed and modeled

annual NEE. Error bars in

modeled values are the

range of the 95% credible

interval predicted by the

empirical model. The gray

dashed horizontal lines are

the means of the observed

annual NEE.
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were minor. The maximum Am was

0.4920 mg C m-2 s-1 in 2006, whereas severe

summer drought resulted in a low Am in both 2003

and 2007 (Figure 5A). The Q10 values decreased

with Ts (0.037 ± 0.029 for every 1�C when SWC

was kept at 30%) and increased with SWC

(0.042 ± 0.038 for every percent of SWC when Ts

was kept at 18�C). The mean Q10 in a calendar year

ranged from 1.9 to 2.7, and the Q10 pattern was

different among years (Figure 5B). For example,

the Q10 values declined from 3.5 to 2.0, and then

increased to the former level in 2005 and 2007,

whereas it declined from 4.5 to 1.2 during the

whole year in 2003 (Figure 5B), which might have

resulted mainly from the continuously declining

SWC due to severe drought (r2 = 0.41, P < 0.001).

In 2009, the Q10 values remained relatively un-

changed within 1.6–2.1 (Figure 5B), probably due

to the relative low variations of SWC.

The relationships between daily Am and climatic

variables Ta and VPD at MOZ were nonlinear and

varied among years. However, the Am reached the

maximum when Ta was about 24�C and VPD about

1 kPa. The Q10 values deceased by 0.052 ± 0.049

with the increment of 1�C in Ta and increased by

0.038 ± 0.028 with 1% in SWC. At DK1, the daily Am

increased with Ta (0.0062 ± 0.0032 mg C m-2 s-1

for 1�C), and reached the maximum when VPD was

about 1 kPa. However, the relationships between

Q10 and climatic variables Ts (-0.056 to 0.049 for 1�C
increment when SWC kept at 30%) and SWC

(-0.0056 to 0.049 for 1% increment when Ts kept at

16�C) were not consistent among years.

Climatic and Biotic Effects on C Fluxes

The contributions of climatic effects to the IAV in C

fluxes decreased when the temporal scale increased

from days to years for all three sites (Figure 6A, C,

E) with a larger contribution in the forests (QYZ

and MOZ) than in the grassland (DK1). At QYZ, the

contribution of climatic effects to the IAV in NEE

was closer to that in GPP than RE (Figure 6A),

whereas DK1 had the opposite pattern (Figure 6E).

At MOZ, the contributions of climatic effects were

similar for NEE, GPP, and RE (Figure 6C). At all
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three ecosystems, the contributions of climatic ef-

fects to the IAV in NEE were lower in the growing

season than the non-growing season (Figures 7,

S10, S11). The magnitude of climatic effects on

annual NEE at QYZ, MOZ, and DK1 ranged from

-131 to 127, from -73 to 107, and from -60 to

89 g C m-2 y-1, respectively (Figure 8A–C). An-

nual PAR, SWC, and VPD all were correlated with

climatic effects on NEE at QYZ (Table 1). The cli-

matic effects on NEE were correlated with annual

PAR in MOZ and annual VPD in DK1 (Table 1).

On the contrary, the contributions of biotic ef-

fects increased when the temporal scale increased

from days to years (Figure 6B, D, F). The magni-

tude of biotic effects on annual NEE at QYZ, MOZ,

and DK1 were from -95 to 170, from -99 to 78,

and from -204 to 318 g C m-2 y-1, respectively

(Figure 8A–C). Interestingly, we found a significant

negative correlation between climatic and biotic

effects on NEE (r2 = 0.80, P < 0.01) and GPP

(r2 = 0.61, P < 0.05) at the annual scale at QYZ

(Figure 8J) but not at the other two sites.

DISCUSSION

Climatic and Biotic Drivers of the IAV in
NEE

Quantifying net ecosystem exchange of CO2 (NEE)

and its components (GPP and RE) and identifying

its controlling drivers is critical for understanding

ecosystem functioning and global C cycling. In this

study, we partitioned the IAV in C fluxes into cli-

matic and biotic effects, and quantified the relative

contributions of these two effects. At QYZ, the

relative contribution of climatic and biotic effects to

the IAV in NEE was closer to that in GPP compared

to RE, whereas the pattern was the opposite at

DK1. At MOZ, GPP and RE were similar to NEE in

terms of climatic and biotic effects (Figure 6). Yuan

and others (2009) defined the C uptake period as

the continuous period when a 5-day running

average of NEE was negative and suggested that the

longer the C sink period, the more important GPP

(and less importance of RE) was to NEE, because

GPP was the dominant flux in the C sink period
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Figure 3. Posterior

probability distribution

functions (PPDF) of

parameters Km (A, C, E)

and R10 (B, D, F) at QYZ,

MOZ, and DK1. The area

below each curve is 1. At

QYZ, the distribution of

Km in 2003 and 2007 was

not significantly different,

the distribution of R10 in

2008 was not significantly

different from those in

2003 and 2004. At MOZ,

the distribution of R10 in

2008 and 2009 was not

significantly different.

Others are all significantly

different for Km and R10 at

the three sites.
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whereas RE drove the variation of NEE during the

dormancy period of plants. Our results confirmed

this idea, which showed that the C sink periods

were 298, 254, and 183 days at QYZ, MOZ, and

DK1, respectively.

Annual NEE was usually linearly related to an-

nual solar radiation, air or soil temperature, and

water conditions (Archibald and others 2009; Pin-

tér and others 2008; Wen and others 2010) as well

as climatic factors in specific month(s) (Allard and

others 2008; Zhang and others 2011a) and climatic

events such as severe drought and El Niños (Aires

and others 2008; Wharton and others 2009).

However, the simple correlations between annual

NEE and climatic variables above might confound

the underlying mechanisms of IAV in NEE, because

climatic effects on IAV in NEE were different from

annual NEE. For example, although annual NEE

was significantly correlated with Ts at QYZ

(r2 = 0.61, P < 0.05), the modeling results showed

that radiation and water conditions, rather than

temperature, were the main climatic drivers on IAV

(Table 1). At MOZ and DK1, the primary climatic

drivers of IAV in NEE were radiation and water

conditions, respectively (Table 1). The warm cli-

mate of the three sites indicated that the tempera-

ture did not constrain the C fluxes, whereas the

relatively dry summer made water conditions a

primary controller of NEE at QYZ and DK1. Radi-

ation might affect NEE at QYZ via light supply,

change in evapotranspiration, and photoinhibition.

At MOZ, there was no strong constraint of water

conditions on NEE due to the year-round humid

climate, resulting in the dominant effect of radia-

tion.

IAV in NEE was also affected by biotic drivers

such as maximum photosynthetic rate (Am) and

reference respiration rate (R10, Humphreys and

Lafleur 2011), which contributed to biotic effects.
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At all three sites, we found significant changes in

Am, the Michaelis constant (Km), R10 and Q10

(Figures 3, 5, S8, S9) among the years as well as

in other studies (Richardson and others 2007;

Adkinson and others 2011). IAV in biotic drivers

may mainly result in biotic effects on IAV in both

annual GPP and RE. Because IAV in NEE was

controlled by different fluxes (GPP or/and RE)

among the three ecosystems, the main biotic driv-

ers of annual NEE also differed from photosynthetic

(Am and Km) to respiratory capacities (Q10 and R10).

However, it is difficult to identify one or two pri-

mary biotic drivers due to complex interactions and

the limited data.

Climatic and Biotic Effects on IAV in NEE

Variations in climatic variables (diel and seasonal-

ity) drive short-term variability in C fluxes,

whereas biotic drivers may be more important at

the long-term scale (Baldocchi 2008; Luo and

Weng 2011). Our results showed that the contri-

butions of biotic effects to variations in C fluxes

become more important with the increasing tem-

poral scale from days to years in spite of different

vegetation types (Figure 6, Richardson and others

2007; Wu and others 2012). Temporally, the con-

tributions of biotic effects were larger in the

growing season than the non-growing season

within a year (Figures 7, S10, S11), which was

consistent with our definition of biotic effects as the

result of IAV in plant physiological activities. Spa-

tially, it was suggested that the biotic effects were

more important in deciduous than evergreen veg-

etation for both forests and wetlands (Adkinson

and others 2011; Richardson and others 2007; Wu

and others 2012) and more important in grasslands

than forests (Polley and others 2008), because the

former was more sensitive to climate variation

(Adkinson and others 2011; Wu and others 2012).

In this study, we also found that the contribution of

biotic effect to IAV in NEE at the annual scale was

the largest in the grassland (DK1, 77%), followed

by the deciduous (MOZ, 69%) and evergreen for-
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ests (QYZ, 47%). However, whether the vegetation

type is the primary factor controlling the relative

contribution of biotic effects is still unclear.

Interestingly, we found a strong negative corre-

lation between the climatic and biotic effects on

both annual NEE and GPP (Figure 8J) at QYZ,

compared to a weak non-significant correlation in

Howland Forest (Richardson and others 2007),

MOZ and DK1 (Figure 8K, L). Because the re-

sponses of ecosystem C fluxes to climatic change

can be partitioned into climatic and biotic effects

with the opposite directions, the combined effect

(climatic + biotic effects) at QYZ may not fluctuate

dramatically. Therefore, the QYZ plantation has

robust ecosystem functioning in terms of C cycling,

in spite of the variations of climatic variables. For

example, the climatic effect caused the plantation

to absorb less C from 2003 to 2009 with a decrease

of 36.2 g C m-2 y-1, whereas the biotic effect off-

set the climatic one to a large degree (Figure 8A, J).

The relatively stable C sink may result from

ecological resistance to climatic variability for sev-

eral reasons. First, the ecological and biological

properties of the dominant species P. massoniana

and P. elliottii, with the waxy structures on the

leaves and associating mycorrhizal fungi, may en-

hance water availability and water use efficiency

and then reduce evapotranspiration (Wang and

Ding 2013; Zhang and others 1999). The subtropi-

cal evergreen plantation may thus be drought

resistant and has the ability to reduce the stress of

water deficit. Second, although the summer

drought suppressed both GPP and RE, there was

usually sufficient water during the pre-summer

period (data not shown), which might stimulate

microorganism activity, increase nutrient avail-

ability (Brooker 2006), and thus ameliorate envi-

ronmental limitations to the biotic effects.

At all three sites, the IAV in radiation and water

conditions was greater than that in temperature.

However, how these climatic variables directly and

indirectly affect C fluxes are crucial to understand

the underlying mechanisms of response of ecosys-

tem C cycling to climatic change. At QYZ, the

model parameter Km was strongly positively cor-

related with annual PAR and negatively with SWC

(r2 > 0.60, P < 0.05, Figure 4A, B). Because the

annual mean Am was not correlated with annual
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PAR or SWC (both P > 0.9) at QYZ, the maximum

photosynthetic rate was more difficult to reach if

the Km was the larger. Thus, the positive correla-

tion between PAR and Km indicated that the direct

and indirect effects of PAR on GPP were opposite

based on the light compensation curve (Falge and

others 2001), whereas the direct and indirect ef-

fects of SWC were consistent due to the negative
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Figure 8. Climatic and

biotic effects on NEE (A–

C), GPP (D–F), and RE

(G–I) at the annual scale,

and their relationship

between the two effects

(J–L) in QYZ, MOZ, and

DK1. The values were

calculated as the

difference between the

estimated value of

climatic (or biotic) effect

in the specific year and

the mean across 7 years.

The error bars represent

standard deviation for the

study period. Linear

relationships between

climatic and biotic effects

in J were significant for

NEE (r2 = 0.80,

P < 0.01) and GPP

(r2 = 0.61, P < 0.05).

Table 1. Correlation Coefficients (r) Between Annual Climatic Variables and Climatic (or Biotic) Effects on
IAV in Annual NEE at QYZ, MOZ, and DK1

r QYZ MOZ DK1

NEEclimatic NEEbiotic NEEclimatic NEEbiotic NEEclimatic NEEbiotic

PAR -0.99* 0.93* -0.97* 0.78 0.39 0.66

Ta -0.42 0.29 0.58 -0.13 0.70 0.46

Ts -0.50 0.29 0.46 -0.29 0.59 0.35

PPT 0.16 -0.33 -0.53 -0.03 -0.47 -0.83*

SWC 0.94* -0.90* -0.65 0.43 -0.28 -0.73

VPD -0.80* 0.86* 0.56 -0.15 0.80* 0.31

*P < 0.05.
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correlation between SWC and Km. On the contrary,

Km was strongly negatively correlated with annual

PAR and positively to PPT (r2 > 0.80, P < 0.05,

Figure 4C, D) at DK1. The annual mean Am was

positively correlated with Km and PPT (r2 = 0.80,

P < 0.05) and negatively to PAR (r2 = 0.46,

P = 0.21), resulting in the opposite direct and

indirect effects of PAR through Km and Am on GPP

and similar effects of PPT. However, it is difficult to

partition the effects of PAR and water conditions on

photosynthetic capacity due to the high correlation

between them at the annual scale, and the ultimate

relationships between the indirect and indirect ef-

fects of climate depend on the relative importance

of these climatic variables to GPP.

The previous and current studies found that the

seasonality of Am and Q10 was correlated with

temperature and water conditions (Ju and others

2010; Ricciuto and others 2008; Yu and others

2008). At QYZ, the positive effect of Ta on Am was

usually greater than the negative effect of VPD,

whereas in the severe drought summer, the nega-

tive effect of VPD dominated and then suppressed

Am, especially in 2003 (Figure 5A). At MOZ and

DK1, the effects of Ta and VPD on Am were similar

to those at QYZ, except that there was no strong

summer suppression on Am (Figures S8A, S9A). At

QYZ and MOZ, the temperature sensitivity of RE

(Q10) decreased with Ts and increased with SWC.

When SWC was kept constant at an average level of

30%, Q10 values decreased 0.037 ± 0.029 and

0.052 ± 0.049 with every 1�C in Ts at QYZ and

MOZ, respectively, which was similar to the aver-

age value of 0.046 ± 0.0033 for foliage respiration

from 56 species in arctic, boreal, temperate, and

tropical biomes (Tjoelker and others 2001). The

dependence of Q10 on temperature was usually

attributed to the acclimatization of respiration (Luo

and others 2001). However, a recent study has

found that Q10 values of RE did not differ among

biomes at a global scale, being independent of

temperature (Mahecha and others 2010). The re-

sults from DK1 showed that the effects of 1�C
increment in Ts on Q10 varied from -0.056 to 0.049

due to a complex interactions between temperature

and water conditions. The different effects of tem-

perature on Q10 values might have resulted from

the influence of the confounding factors as well as

methods and scales.

Model Performance, Limitations, and
Implications

In our study, the empirical model captured both

the seasonality and IAV in NEE relatively well,

with good agreement between the observations

and modeled results both in terms of AIAV and

RIAV (Figure 1; ‘‘Interannual Variability in Climate

and Carbon (C) Fluxes’’ and ‘‘Model Parameters

and Performance’’ sections). For example, the ob-

served NEE was very close to the simulated annual

NEE (-333 ± 47 vs. -324 ± 39 g C m-2 y-1)

within the range of -197 to -430 g C m-2 y-1 in

previous studies at QYZ (Yu and others 2008; Liu

and others 2009; Wen and others 2010; Zhang and

others 2011b). Nevertheless, systematic and ran-

dom errors may challenge the reliability of esti-

mated annual fluxes and their IAV (Mauder and

others 2013). Fortunately, standardized data-pro-

cessing approaches considerably reduce the sys-

tematic error to typically 5–10% and have little

effect on the IAV (Baldocchi 2008). The aggregated

random error on the annual scale is generally about

5% (Baldocchi 2008), and compared to the much

larger IAV in NEE, this level of error may not sig-

nificantly affect our results (Mauder and others

2013; Stoy and others 2008).

The plantation experienced a severe drought in

2003 at QYZ, becoming a C source in the summer,

but it was still a strong C sink over the whole year

comparable to normal years. This is because the

ecosystem has higher C uptake before the drought

due to the sufficient supply of soil water (Wen and

others 2010). In early 2008, a strong ice storm

caused great biomass losses (227 g C m-2), result-

ing in lower C uptake than that in normal years

due to the large reduction in GPP (Zhang and

others 2011b). Usually, such extreme climatic

events increase uncertainties in simulating C fluxes

(Ju and others 2010). The water deficiency and

heat stress usually suppress both GPP and RE, and

in most cases the response of GPP is more dramatic

than that of RE (Schwalm and others 2010). At

QYZ, the severe drought in 2003 and 2007 con-

siderably decreased C fluxes in summer, which was

difficult to simulate in the empirical and/or mech-

anistic models (Ju and others 2010). The extreme

drought in the summer of 2003 thus resulted in a

larger disagreement between modeled and ob-

served daily NEE (r2 = 0.54, P < 0.001) compared

to the normal condition (r2 = 0.70, P < 0.001,

Figure 2A). Such an effect of drought on model

performance also occurred for NEE in 2006 and

2007 at MOZ (Figure 2B). At QYZ, the severe ice

storm in early 2008 caused both physical damage

and physiological injury (Ma and others 2010;

Zhang and others 2011b). The physical damage

resulted in the loss of 200 and 2,206 g C m-2 in

branch breakage area and severely damaged area,

respectively (Ma and others 2010). Although the
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empirical model was able to capture the IAV by

changing the parameters, it seemed not to be as

flexible as the gap-filling model to capture the

sudden large loss of photosynthetic tissues, result-

ing in overestimated annual GPP in 2008 and 2009

and overestimated annual RE in 2009.

The difference between modeled and observed

NEE at QYZ mainly resulted from the difficulties in

simulating RE, which might be the result of low

correlations between nighttime Fc and climatic

variables (r2 = 0.32, P < 0.001 for half-hour scale)

and the extensive gaps due to unrealistic conditions.

The poor model performance also resulted in a large

contribution of the biotic effect on RE (Figure 7I–L).

At MOZ, similar model errors were also found for

RE in 2005 and 2006 when the precipitation was

low and the temperature was high (Figure S7B).

Although some studies suggested that those models

with GPP as biotic drivers could better simulate the

dynamics of RE (Kuzyakov and Gavarichkova 2010;

Migliavacca and others 2011), the problem of sim-

ulating RE was still pervasive (Mitchell and others

2011). Time lag between GPP and RE (Kuzyakov

and Gavarichkova 2010; Vargas and others 2011)

and the lack of other biotic data (for example, soil C

pool) might have influenced model performance.

Moreover, we found that the effect of SWC on Q10

decreased with temperature at QYZ, which may not

be suitable for severe drought situations, in which

high temperature accelerates the negative effect of

water stress. This causes additional difficulties in

simulating IAV in C fluxes.

Understanding the underlying mechanisms of

IAV in C fluxes is important for developing eco-

logical theories and projecting future ecosystem

changes (Hui and others 2003). Our study high-

lights the necessity of partitioning IAV in C fluxes

into climatic and biotic effects, because the current

process-based models generally failed to reproduce

the interannual dynamics of C fluxes (Keenan and

others 2012). Process-based mechanistic models

would be more robust for predicting IAV in C fluxes

if the biotic effects are incorporated into the model

at annual and longer time scales. Moreover, it is

difficult for both statistical and mechanistic models

to simulate the sudden and dramatic effects of ex-

treme events on C fluxes, which need to receive

more attention in climate-impact research (Reich-

stein and others 2013).
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