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Abstract

Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current

models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through

parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly

uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC

dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models.

Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve

model predictive performance when assessed against global SOC databases. This study aimed to data-constrained

parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in

predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties

between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variabil-

ity in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when

forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5),

produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated

microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5

model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC

dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent

and could be avoided, depending on the parameter values.
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Introduction

Soils contain the largest fraction of global terrestrial car-

bon (C), storing more C than the vegetation and atmo-

sphere combined (Falkowski et al., 2000; House et al.,

2002). Changing climate could accelerate soil organic

carbon (SOC) decomposition (Fang et al., 2005), increas-

ing atmospheric CO2 concentrations, which could cause

further climate warming (Falkowski et al., 2000). Such

interdependencies between SOC and climate highlight

the importance of accurate prediction of global SOC

distributions and their feedbacks to climate change.

Predictions of the contemporary global SOC content

from 11 Earth system models (ESMs) participating in the

5th Coupled Model Intercomparison Project (CMIP5;

Taylor et al., 2011) vary sixfold, ranging from 510 to 3040

Pg C (Todd-Brown et al., 2013b). Of 11 models, only six

produced SOC pools that were within the range of the

Harmonized World Soil Database estimates (HWSD,

890–1660 Pg C) and none explained more than 16% of

the spatial variability in the HWSD soil C (Todd-Brown

et al., 2013b). The differences in model representations

of contemporary soil carbon result in a wide range of

soil responses to climate change. For example, under the

high radiative forcing scenario (RCP 8.5), model projec-

tions of changes in global SOC by 2100 ranged between

a 72 Pg C loss and a 253 Pg C gain (Todd-Brown et al.,

2013a). This emphasizes the need for improving the

models used for soil carbon cycle simulation, or at least

understanding whether and how improvements in pre-

dictive performance may be achieved.

All CMIP5 models simulate soil carbon decomposi-

tion as a first-order decay process (Todd-Brown et al.,

2013b). Such formulations (which we call ‘conven-

tional’) represent the decomposing activity of microbes

as decay constants, modified by environmental func-

tions, and assume that the amount of decomposed SOC

is linearly dependent on the SOC stocks. These conven-

tional models cannot account for some microbial pro-

cesses observed in experimental studies, such as the

priming effect (Kuzyakov et al., 2000; Fontaine et al.,

2004, 2007), microbial acclimation to increasing temper-

atures (Luo et al., 2001; Chen & Tian, 2005; Peng et al.,

2009), and CO2-induced changes in the microbial com-
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munity composition (Carney et al., 2007). Schimel &

Weintraub (2003) argue that SOC decomposition

should not be represented by decay constants because

the decomposition rate is regulated by extracellular

enzyme concentrations. Instead, they propose that SOC

dynamics should be modeled using functions based on

Michaelis–Menten kinetics, which account for the con-

centrations of enzymes.

In recent years several, enzyme-driven decomposi-

tion models (which we call ‘microbial models’) were

developed (Schimel & Weintraub, 2003; Allison et al.,

2010; German et al., 2012; Wang et al., 2012). These sim-

ulate the acclimation of soil respiration to elevated tem-

peratures (Allison et al., 2010) as well as the priming

effect (Schimel & Weintraub, 2003). Moreover, replac-

ing a conventional model with a microbial model in the

Community Land Model improved its predictive accu-

racy for the global SOC distribution (Wieder et al.,

2013). However, microbial models may also produce

responses not observed in nature: A recent analysis

illustrated that microbial models produce unrealistic

oscillatory responses to small perturbations (Wang

et al., 2013). Such unrealistic dynamical properties

emphasize the importance of investigating whether and

why more realistic biological assumptions lead to more

realistic biological predictions at the spatial and tempo-

ral scales they are intended to be applied.

Improvements to model predictions can also be

achieved by calibration of the model parameters. With

the increase in the number of globally observed data-

sets, more studies have focused on assimilating data

into carbon cycle models to estimate their parameters.

For instance, Ise & Moorcroft (2006) and Zhou et al.

(2009) assimilated global SOC (Global Soil Data Task

Group, 2000) data into a C cycle model to constrain

SOC temperature sensitivities; Hararuk et al. (2014)

researched how assimilating global SOC data changed

model parameters and SOC feedbacks to changing cli-

mate; and Smith et al. (2013) assimilated multiple data-

sets into a global terrestrial carbon cycle model to

explore structural as well as parameter uncertainties.

All of these studies parameterized conventional carbon

cycle models, and to date, limited research has been

carried out on calibrating global microbial decomposi-

tion models and studying the climate change feedbacks

they predict (though see Wieder et al., 2013).

This study was to (1) calibrate two microbial models

to the global estimated distributions of total soil organic

carbon and microbial biomass carbon; (2) compare the

performance of the calibrated microbial and conven-

tional models at predicting the contemporary SOC dis-

tribution; (3) test for the presence of unrealistic

oscillations in the microbial model dynamics; and (4)

compare SOC responses to climate change between

microbial and conventional models and evaluate the

uncertainties of those responses.

Materials and methods

Models

We performed Bayesian parameter estimation on two microbial

models and compared the parameter estimates and model pre-

dictions to those of a calibrated conventional model (Hararuk

et al., 2014). For the conventional model, we used Community

Land Model coupled with Carnegie-Ames-Stanford Approach

biogeochemistry submodel (CLM-CASA’; Parton et al., 1993;

Oleson et al., 2008, 2004). This model has the soil carbon cycle

compartment modeled as a 3-pool system and has C transfers

among the pools regulated by temperature, soil moisture, soil

clay content, and SOC pool sizes (Fig. 1a). For the 2-pool micro-

bial model formulation (Fig. 1b), we used the model described

by German et al. (2012), but with altered calculations of half-sat-

uration constants and temperature limitation of C uptake so as

to make them comparable to the ones in the 4-pool microbial

model (Allison et al., 2010). For the 4-pool microbial model, we

used the model introduced by Allison et al. (2010).

The two-pool microbial model of German et al. (2012) is

described as

dMIC

dt
¼ CUE� Vmax �MIC

SOC

Kmþ SOC
� rd �MIC ð1Þ

dSOC

dt
¼ Inputsoil þ rd �MIC � Vmax �MIC

SOC

Kmþ SOC
ð2Þ

with

CUE ¼ CUEslope � TS � CUE0 ð3Þ

Vmax ¼ Vmax0 � exp � Ea

R� ðTS þ 273Þ
� �

� exp ð�parclay � clayÞ

ð4Þ

Km ¼ Kmslope � TS þ Km0 � exp ðparlig � ligninÞ ð5Þ

where MIC and SOC are the microbial biomass and soil

organic carbon pools (Fig. 1b), respectively; Inputsoil is the car-

bon transferred to the soil from the litter pool; Vmax is the

temperature adjusted rate of SOC decomposition; Km is the

half-saturation constant for substrate-limited soil organic car-

bon decomposition rate; rd is the microbial death rate; CUE is

the microbial carbon use efficiency; TS is soil temperature; R is

the gas constant (8.31 J K�1 mol�1); CUE0 and CUEslope are the

baseline microbial carbon use efficiency and its dependency on

temperature, respectively; Vmax0 is the maximum rate of micro-

bial carbon uptake; Ea is the activation energy of SOC decom-

position; and Km0 and Kmslope are the baseline half-saturation

constant and its dependency on temperature, respectively.

Microbial respiration, when normalized by microbial bio-

mass ð1� CUEÞ � Vmax � SOC
KmþSOC

� �
, has been reported to be

nonlinearly dependent on soil clay content (M€uller & H€oper,

2004). We therefore modified the original model of German

et al. (2012) to include an exponential function of clay limita-
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tion of decomposition and estimated a parameter parclay to test

whether it was different from 0 in the microbial model formu-

lation. We also mimic the substrate quality limitation by

adjusting the baseline half-saturation constant by a lignin-

dependent correction factor, with its magnitude regulated by

parlig, because previous studies have reported substrate qual-

ity limitations on decomposition (Taylor et al., 1989; Vance &

Chapin, 2001; Cusack et al., 2009).

The 4-pool microbial model from Allison et al. (2010) is

dMIC

dt
¼ Vmaxup �MIC

DOC

KmupþDOC
� CUE � rd �MIC

� rEnzProd �MIC ð6Þ

dDOC

dt
¼ alit-to-DOC � Inputsoil þ rd �MIC� ð1� aMIC-to-SOCÞ

þ Vmax � ENZ
SOC

Kmþ SOC
þ rEnzLoss � ENZ� Vmaxup

�MIC
DOC

KmupþDOC
ð7Þ

dSOC

dt
¼ alit-to-DOC � Inputsoil þ rd �MIC� aMIC-to-SOC � Vmax

� ENZ
SOC

Kmþ SOC
ð8Þ

dENZ

dt
¼ rEnzProd �MIC � rEnzLoss � ENZ ð9Þ

where ENZ and DOC are enzyme and dissolved organic car-

bon pools, respectively; Vmaxup is the temperature adjusted

rate of DOC uptake by microbes; Kmup is a half-saturation

constant limiting microbial uptake of DOC; rEnzProd is a rate of

enzyme production; Inputsoil is C transferred from litter to soil;

alit-to-DOC is the fraction of Inputsoil that is transferred to DOC;

aMIC-to-SOC is the fraction of dead microbes transferred to soil;

and rEnzLoss is the rate of enzyme loss. The functions in the 2-

and 4-pool models were dependent on temperature as fol-

lows:

CUE ¼ CUEslope � TS � CUE0 ð10Þ

Vmaxup ¼ Vmaxup0
� exp � Eaup

R� ðTs þ 273Þ
� �

ð11Þ

Kmup ¼ Kmupslope � TS þ Kmup0 ð12Þ

Vmax ¼ Vmax0� exp � Ea

R� ðTS þ 273Þ
� �

� exp �parclay � clay
� �

ð13Þ

Km ¼ Kmslope � TS þ Km0 � expðparlig � ligninÞ ð14Þ
where Vmaxup0

is the maximum rate of microbial DOC uptake;

Eaup is the activation energy of DOC uptake; Kmup0 and Kmup-

slope are baseline half-saturation constants for substrate limita-

tion of DOC uptake and its dependency on temperature,

respectively.

Data

We used two soil carbon datasets for Bayesian parameter esti-

mation: A global map of total soil carbon content for the top 1

m of soil generated by International Geosphere-Biosphere Pro-

gramme – Data and Information System (IGBP-DIS; Global

Soil Data Task Group, 2000); and a global map of soil micro-

bial biomass distribution for the top 1 m (Xu et al., 2013). The

IGBP-DIS dataset has been widely used for production of new

datasets (House et al., 2002), the assessment of terrestrial C

uptake (Freibauer et al., 2004), for model evaluation (Kucharik

et al., 2000; Delire et al., 2003), and for model improvement

(Ise & Moorcroft, 2006; Zhou et al., 2009; Smith et al., 2013).

The global microbial dataset has been used previously for

parameterization of a biogeochemical model (Waring et al.,

2014). Prior to using the datasets in the data assimilation rou-

tine, we randomly separated all the grid cells into two groups

as in Smith et al. (2013) and Hararuk et al. (2014), used one

group for model parameter estimation, and the other for eval-

uation to guard against overfitting.

(a)

(b)

(c)

Fig. 1 Schematic representation of the conventional (a), 2-pool

(b), and 4-pool (c) microbial models.
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The global litter lignin content was provided as part of the

CLM-CASA’ package: The plant-functional-type-level esti-

mates of lignin were applied to the MODIS-derived distribu-

tions of plant functional types used in CLM (Lawrence &

Chase, 2007; Oleson et al., 2007). The map of soil clay content

was originally developed by the International Geosphere-Bio-

sphere Programme (Global Soil Data Task Group, 2000) and

was also provided as a part of the CLM-CASA’ package. We

also used 30-year averages of soil temperatures and soil C

input produced by CLM-CASA’ and calibrated by Hararuk

et al. (2014) (Fig. 2a) as external model inputs. Soil tempera-

tures were calculated using air temperatures from global

reanalysis data (Qian et al., 2006), and soil C input was

strongly correlated with MODIS NPP data (r2 = 0.75; Fig. S1).

Soil C input was 45% of NPP values, which, given the equilib-

rium assumption, implied that 55% of the incoming C was

returned back to the atmosphere via respiration from the litter

pools.

Parameter estimation

We calibrated parameters in the two microbial models

using Bayesian probabilistic inversion. According to

Mosegaard & Sambridge (2002), Bayesian inversion can be

summarized as

pðcjZÞ ¼ vc � pðZjcÞ � pðcÞ ð15Þ
where p(c|Z) is posterior probability density function of

model parameters c; p(Z|c) is a likelihood function

of parameters c; p(c) is prior probability density function of

parameters c; and vc is a normalization constant. We

assumed that the prediction errors were normally distrib-

uted and uncorrelated, and calculated the likelihood func-

tion, p(Z|c), as

pðZjcÞ ¼ vL � exp �
X2
j¼1

Xk
i¼1

ðZi;j � Xi;jÞ2
2r2i;j

8<
:

9=
; ð16Þ

(a)

(b)

(c)

(d)

Fig. 2 Annual soil C influx used to drive the soil submodels (a); performance of calibrated microbial and conventional models (b); spa-

tial distribution of changes in the residuals’ magnitudes after switching from conventional to microbial model formulation (c), pixels

used for calibration are not shown; plant-functional-type-level changes in the magnitudes of model residuals (d), error bars are stan-

dard errors. C3G – C3 grasslands; C4G – C4 grasslands; DBF – deciduous broadleaf forest; DNF – deciduous needleleaf forest; EBF –

evergreen broadleaf forest; ENF – evergreen needleleaf forest; SHRUB – shrublands.
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where Zi,j is total soil C reported by IGBP-DIS (j = 1) or soil

microbial biomass reported in Xu et al. (2013) (j = 2) in the ith

gridcell, Xi,j is total soil C or microbial biomass C simulated by

the models at a corresponding gridcell; r2i;j is the variance of a

jth measurement at ith gridcell (the standard deviation of each

measurement at the ith grid cell is assumed to be 30% of the C

pool value at that gridcell as in Hararuk et al., 2014); k is the

total number of gridcells; and vL is a constant.

We assigned minimum and maximum values to the param-

eters and used an adaptive Metropolis (AM) algorithm (Haa-

rio et al., 2001), a Markov Chain Monte Carlo method, to

sample from the posterior parameter distributions. When

assigning prior parameter ranges, we were guided by the liter-

ature, hypothesis testing, and sampling efficiency. For

instance, activation energy ranges were assigned within the

ranges reported in Fang & Moncrieff (2001) and Fang

et al.(2006); CUE sensitivities were assigned between 0 and

maximum reported in Devêvre & Horw�ath (2000). We tested

whether SOC decomposition was sensitive to soil clay content

(Eqns 4 and 13) by assigning an initial sensitivity to 0 and a

broad prior range; the same hypothesis testing was performed

for litter lignin content. Broad prior ranges decreased parame-

ter acceptance rate making the data assimilation algorithm

inefficient; therefore, when literature data were not available,

we assigned the range that yielded reasonable acceptance

rates and was �20–30% of the value reported in Allison et al.

(2010).

We generated a parameter chain by running the AM algo-

rithm in two steps: a proposing step and a moving step. In the

proposing step, a new parameter set cnew was generated from

a previously accepted parameter set ck�1 through a proposal

distribution (cnew|ck�1). In the moving step, a probability of

acceptance P(ck�1|cnew) was calculated as in (Marshall et al.,

2004):

Pðck�1jcnewÞ ¼ min 1;
pðZjcnewÞpðcnewÞ
pðZjck�1Þpðck�1Þ

� �
ð17Þ

The value of P(ck�1|cnew) was then compared with a ran-

dom number U from 0 to 1. The parameter set cnew was then

accepted if P(ck�1|cnew) ≥ U, otherwise ck was set to ck�1.

The AM algorithm required an initial parameter covariance

matrix, which we generated from test runs of 50 000 simula-

tions for 2-pool and 4-pool microbial models, assuming a uni-

form proposal distribution as in Xu et al. (2006):

cnew ¼ ck�1 þ r� cmax � cmin

D
ð18Þ

where cmax and cmin are upper and lower parameter limits,

and r is a random number between �0.5 and 0.5, and D = 5.

We constructed a covariance matrix C0 on the basis of the test

run and modified the proposal step to be

cnew ¼ N ck�1;Ck

� 	 ð19Þ

Ck ¼ C0 k� k0
SdCovðc0; . . .; ck�1Þ k[ k0

�
ð20Þ

where k0 = 2000; Sd ¼ 2:38
ffiffiffi
8

p
for the 2-pool model and

Sd ¼ 2:38
ffiffiffiffiffi
15

p
for the 4-pool model (Gelman et al., 1996).

We made five parallel runs (each run containing 500 000

iterations) starting at dispersed initial points in the parameter

space. All parameter and likelihood chains converged to the

same frequency distributions. During a simulation, we equa-

ted Eqns (1–2) or (6–9) (depending on the model) to zero and

solved the model for the two (or four) carbon pool sizes at

each gridcell (the semi-analytical spin-up approach; Xia et al.,

2012). We assumed that the spatial relationships of total soil C

and microbial biomass C with environmental factors would

represent the temporal relationships and that year-to-year

changes in soil C pools were close to zero – an approach previ-

ously used by Ise & Moorcroft (2006) and Smith et al. (2013).

We discarded the first half of the simulations (the burn-in

phase) and confirmed the convergence the second half using

Gelman–Rubin diagnostics (Gelman & Rubin, 1992).

Nonlinearities typically present in biological models, as

well as a lack of data constraints, often mean that posterior

model parameter estimates may not be independent of each

other: Our posterior parameter probability distributions may

be correlated if the effects of changes of any one parameter on

model predictions is at least partly dependent on the values

for other model parameters. High correlations indicate high

confidence about the relationship between parameters but

without necessarily indicating high confidence (narrow

parameter ranges) about the values of the individual parame-

ters that are correlated. In such cases, it is advisable to use the

joint probability distributions when using the model to make

predictions rather than individual parameter estimates. Such

correlations can also be used to identify modeled processes

that need additional data to estimate parameter values. To

detect such processes and the degree to which our parameter

estimates are independent of each other, we calculated param-

eter correlations from posterior parameter distributions (sam-

ple size = 10 000).

Forward model runs and stability analyses

To evaluate the consequences of our parameter uncertainties

for uncertainties in soil C feedbacks under climate change, we

ran the calibrated microbial models forward, driving them

with a climate change scenario (increasing CO2 and tempera-

tures), and sampling from the joint posterior parameter distri-

butions obtained in the previous analysis (sampling from the

joint parameter distributions avoids potential problems with

correlated parameters when making predictions). We used the

Community Earth System Model (CESM) output for the Rep-

resentative Concentration Pathway 8.5 (RCP8.5) experiment

(specifically, the simulated temperature and soil C influx) to

drive soil C pools. The CESM model output was provided as

part of the Coupled Model Intercomparison Project Phase 5

(CMIP5) and was accessed from http://pcmdi9.llnl.gov.

Under RCP 8.5, CESM simulated a 3.5 K increase in mean glo-

bal temperature, and an atmospheric CO2 increase to 1150

ppm, by the year 2100 (Keppel-Aleks et al., 2013). We first

used the 2006–2010 data to generate initial pools using the

semi-analytical model spin-up approach (Xia et al., 2012) and

then ran the microbial models forward in time to the year

2100, generating soil C feedbacks to the changing climate. We

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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then compared the model predictions to the feedbacks pre-

dicted by a calibrated conventional model (Hararuk et al.,

2014).

Once, we ran the forward simulations, it became evident

that we needed to test the microbial models for their intrinsic

propensity to generate oscillations in carbon pool sizes, given

that soil carbon pool sizes at local to global scales occasionally

exhibited multiyear oscillations. We investigated the intrinsic

propensity of the carbon pools to oscillate following the tech-

niques described in Svirezhev (2002) and Wang et al. (2013):

(1) Using maximum-likelihood parameter values, we calcu-

lated the Jacobian matrix for both microbial models at each

gridcell, indicating the sensitivity of the system state to small

perturbations (these small perturbations can come from any

source); (2) we then calculated the eigenvalues of the Jacobians

when the soil pool sizes were at equilibrium, where complex

conjugate eigenvalues with negative real parts indicated an

oscillatory return to equilibrium while only real negative ei-

genvalues indicated a monotonic return to equilibrium (eigen-

values with positive real parts indicated an unstable

equilibrium but these did not occur in our study); (3) we esti-

mated the period of oscillations from the imaginary compo-

nent of an eigenvalue as p ¼ 2p
i , where p was the oscillation

period, and i was the imaginary component of an eigenvalue;

(4) we calculated the approximate times required to damp the

oscillations as t � (�r)�1, where r was the real part of an

eigenvalue (negative if the models were convergent). Note

that the calculated estimates of oscillation period and decay

rate may not accurately reflect the values produced in forward

simulations; the estimates are only valid for the dynamics fol-

lowing small perturbations to the stable equilibrium, whereas

our forward simulations represent continuous and directional

changes to the stable equilibrium. However, we include the

eigenvalue-derived oscillation periods and decay rates here

because they correspond well to those observed in simulations

(as also noted by Wang et al., 2013), and they also provide

intuitive meaning to the contrasting eigenvalues calculated for

different parameter sets and regions of the world.

Results

Performance of the microbial models after calibration

After calibration, the microbial models explained a

higher fraction of the variation in the SOC data than the

conventional model (Fig. 2b). Additionally, the micro-

bial models had lower spatial RMSE than the calibrated

conventional model. As indicated by RMSE’s and r2,

the two microbial models produced similar SOC distri-

butions; therefore, we make further total SOC fit com-

parisons using a conventional model and one of the

microbial models, giving the illustrations for both

microbial models in the Supplementary Information.

Microbial models performed notably better than the

calibrated conventional model in terms of soil C predic-

tion in the low-temperature regions and in the regions

with small soil C inputs, as indicated by reduction in

the magnitudes of model residuals (Figs 2c,d and S2).

These differences in SOC predictions were caused by

the differences in the SOC residence times because the

soil C pools are determined by the soil C inputs and the

residence times (Luo et al., 2003) and the former were

identical for conventional and microbial model formu-

lations. In the conventional models, the spatial patterns

of SOC residence times are determined mainly by tem-

perature (Todd-Brown et al., 2013b), whereas in micro-

bial models residence times are controlled by both

temperature and SOC inputs (mediated by microbial

biomass change, Fig. 1b and c). Fresh C input stimu-

lates microbial biomass growth, which increases the

rate of old SOC decomposition (the priming effect, Ku-

zyakov et al., 2000; Fontaine et al., 2004, 2007); there-

fore, the microbial models simulated lower SOC

residence times than the conventional model in the

areas with high SOC input (Fig. S3). In the regions with

low SOC input (e.g. shrublands and tundra), SOC resi-

dence times in the microbial models were higher than

predicted by the conventional model. This was due to

the nonlinearity of substrate limitation in the microbial

models (Eqns 1–2 and 6–8) (the conventional model

assumed a linear effect of substrate limitation on the

microbial activity; Parton et al., 1993), as well as the

dependency of residence times on microbial biomass.

Both the 2-pool and the 4-pool microbial models

explained ~30% of the spatial variability in observed

microbial biomass C after calibration (Fig. 3). The

biome with the largest residuals was deciduous needle-

leaf forest: Microbial biomass was underpredicted there

on average by 550 g C m�2. The largest overpredictions

were in evergreen needleleaf forest and evergreen

broadleaf forest: on average 50 g C m�2. The patterns

of model residuals in Fig. 3b and c suggested that the

model formulations did not capture the decomposition

processes in deciduous needleleaf forests.

Posterior parameter distributions and correlations

Many parameters were constrained by assimilating

total SOC and microbial biomass C data into the two

microbial models (Fig. 4). The parameters most con-

strained were the microbial death rate; the temperature

sensitivity of microbial carbon use efficiency; the base-

line microbial carbon use efficiency; activation energy;

the lignin effect on the half-saturation constant of SOC

decomposition; and the clay effect on the rate of the

SOC decomposition. The unconstrained parameters

were associated with the substrate limitation of C pool

decomposition, the temperature sensitivity of microbial

DOC uptake, and the dynamics of the enzyme pool.

This indicates the need for assimilation of C flux data to

constrain these parameters because, according to the

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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(a) (b)

(c) (d)

Fig. 3 Spatial distribution of model residuals for microbial biomass simulated by calibrated 2-pool (a, b) and 4-pool (c, d) microbial

models. Pixels used for model calibration are not shown. C4G – C4 grasslands; DBF – deciduous broadleaf forest; DNF – deciduous

needleleaf forest; EBF – evergreen broadleaf forest; ENF – evergreen needleleaf forest; SHRUB – shrublands.
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model Eqns (1–2) and (6–8), flux data would contribute

additional information on the temperature sensitivity

and substrate limitation of microbial activity.

The lignin and clay effects on SOC decomposition,

originally not included in the model, were significantly

larger than zero and converged to the same values in

both microbial models (Fig. 4). No observations were

available to evaluate the lignin regulation for the half-

saturation constant; however, our estimates for parclay
were close to the range calculated from observations.

Observed parclay ranged from 1.94 (Wang et al., 2003) to

3.02 (M€uller & H€oper, 2004), whereas the 95% confi-

dence intervals (CI) for the 2-pool model were 1.99–2.8
and 1.86–2.78 for the 4-pool model (Table S1). The tem-

perature sensitivity of microbial carbon use efficiency

was also estimated to be larger than zero and was

0.016–0.02°C�1 for the 2-pool model and 0.012–
0.019°C�1 for the 4-pool model. For the 4-pool model,

these were close to the observed range of 0.01–
0.014°C�1 (Devêvre & Horw�ath, 2000; Steinweg et al.,

2008; Frey et al., 2013).

We calculated temperature sensitivities (Q100s) of

heterotrophic respiration for both microbial models

(Fig. 5a and b) because the models had differing struc-

tures and parameters associated with soil responses to

temperature. We calculated Q10 as the ratio of respira-

tion after one day of a 10°C temperature increase from

mean annual temperature to equilibrium respiration at

mean annual temperature. The lower temperature

dependency of microbial use efficiency and lower acti-

vation energy of SOC decomposition in the 4-pool

model than in the 2-pool model led to lower tempera-

ture sensitivities in the 4-pool model. Both microbial

models simulated spatially variable Q100s, unlike the

conventional model which assumed Q10 was constant

across space, with higher values in the low-temperature

(a)

(b)

Fig. 5 Spatial distribution of the temperature sensitivities of SOC turnover rates in the 2-pool microbial model (a) and 4-pool microbial

model (b). Constrained Q10 for the conventional model was constant and equal to 1.86.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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regions and lower Q100s in the high-temperature

regions – a widely reported pattern indicative of tem-

perature acclimation of microbial activity (Luo et al.,

2001; Chen & Tian, 2005; Peng et al., 2009). This accli-

mation was caused by substrate limitation and the sen-

sitivity of CUE to temperature (Fig. S4). High CUE

facilitated an increase in the microbial pool, and as res-

piration was proportional to microbial biomass, the

large microbial pool produced a strong feedback to ele-

vated temperature. In addition to temperature, micro-

bial biomass was regulated by the substrate: The

temperature sensitivity decreased if there was an insuf-

ficient amount of available substrate for the maximum

potential biomass increase for the given temperature

(Fig. S4), a phenomenon also observed in the field

(Hartley et al., 2007).

Of 28 parameter pairs in the 2-pool model, only five

were strongly correlated (Table 1): microbial death rate

was negatively correlated with the activation energy of

SOC decomposition, positively correlated with baseline

carbon use efficiency, and negatively correlated with

the temperature dependency of carbon use efficiency.

The correlated parameters regulated C influx and out-

flux in the microbial pool, emphasizing that we did not

have influx or outflux data to separate those parame-

ters. Baseline CUE and the CUE dependency on tem-

perature were negatively correlated, which was

expected due to the CUE equation formulation (Eqns 3

and 10). Activation energy of SOC decomposition was

negatively correlated with baseline CUE, and as the

two parameters had the opposing effects on regulating

microbial C uptake, we attributed this correlation to

lack of the observed data to separate the two processes.

Of 105 parameter pairs in the 4-pool model, only four

pairs were correlated (Table 2). As in the 2-pool model,

microbial death rate was positively correlated with the

baseline CUE and negatively with the degree of tem-

perature dependency of CUE; two latter parameters

were also negatively correlated with each other. The

activation energy of SOC decomposition was negatively

correlated with the fraction of dead microbes trans-

ferred to the SOC pool, which was probably also caused

by the absence of C flux data.

SOC responses to climate change

We ran the models forward in time under the RCP8.5

climate change scenario to illustrate the differences in

soil C responses between conventional and microbial

models. The initial soil C pool sizes differed between

the conventional and microbial models (Fig. 6a–c): the
calibrated microbial models predicted a higher global

soil C content than the calibrated conventional model

(by 180–200 Pg C), and the predictions of all soil C

cycle model formulations fell within the 95% CI of the

observed SOC content (890–1660 Pg C; Todd-Brown

et al., 2013b). We illustrate soil C sensitivities to climate

change as cumulative relative soil C changes because

the initial pool sizes were different among the models.

In the microbial models, soil C was more sensitive to

climate change than in the conventional model: The 2-

pool and 4-pool microbial models simulated between

8% and 11% cumulative SOC losses, and the conven-

tional model simulated a 2.5% SOC loss after 95 years

of climate change.

Under the RCP8.5 scenario, after 95 years of climate

change, the mean annual global temperatures increased

by 3.5°C (Keppel-Aleks et al., 2013), and the annual glo-

bal soil C input increased by 20% (Fig. S5). As men-

tioned earlier, the SOC residence times in the microbial

models were regulated not only by temperatures, but

also by SOC input. The temperature increases, along

with the increase in SOC inputs, stimulated microbial

biomass growth and therefore increased SOC decompo-

sition. In the conventional model, fresh C input resulted

in soil C accumulation and temperature increases

caused SOC loss. Increases in both temperature and

SOC input led to a higher relative SOC loss in the

microbial models than in the conventional model,

despite the lower Q100s of the former.

Among the three models, the 2-pool microbial model

had the highest uncertainty in SOC responses under

Table 1 Parameter correlations in the 2-pool microbial model

Parameters rd CUEslope CUE0 Km0 Kmslope parlig Ea parclay

rd 1.00

CUEslope �0.75 1.00

CUE0 0.93 �0.61 1.00

Km0 �0.07 0.08 �0.06 1.00

Kmslope 0.33 �0.43 0.30 �0.04 1.00

parlig �0.10 0.11 �0.07 �0.04 0.11 1.00

Ea �0.63 0.46 �0.60 �0.48 �0.27 �0.36 1.00

parclay 0.18 �0.23 0.16 0.01 �0.06 �0.19 �0.36 1.00

significance of bold values indicates strongly correlated parameters.
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the RCP8.5 scenario (Fig. 6e), ranging between 1.5%

and 12.5% loss after 95 years of climate change. This

larger uncertainty does not appear to have resulted

from larger parameter uncertainties in the 2-pool model

than in the 4-pool model (Fig. 4), rather it appears to be

a consequence of the oscillatory dynamics predicted by

the 2-pool model. The 2-pool model exhibited oscilla-

tions in the dynamics of SOC over the 95-year period

(Fig. S6), consistent with the linear analysis of the

model which implied that the average global period of

oscillations was 57 years (Fig. 7a) with the range of

around 38 years and taking about 140 years required to

damp the oscillations.

The uncertainty in soil C feedbacks in the 4-pool

model was not as high as in the 2-pool model because

the globally averaged periods of oscillations in the for-

mer were larger and convergence times were shorter:

1.9 and 116.5 years, with the times required to damp

the oscillations 17.5 h and 4.4 years, respectively

(Fig. 7b,e,c and f). Moreover, in posterior parameter

space for the 4-pool model, there were parameter com-

binations that did not produce oscillations (Fig. 4, gray

lines; the linearized model about the steady state had

four negative real eigenvalues). The distribution of no-

noscillatory behaviors throughout parameter space as

well as preliminary analyses of model behaviors using

the posterior parameter estimates (omitted for brevity)

strongly implies the existence of thresholds in activa-

tion energies, temperature dependence of microbial car-

bon use efficiency, and partitioning of the C flux from

litter to DOC beyond which the model begins to exhibit

oscillatory dynamics. High ratios of oscillation period

to their convergence times and existence of sample runs

with no oscillations led to lower uncertainty in SOC

feedbacks in the 4-pool model than in the 2-pool model.

Discussion

Progress in simulating SOC dynamics

Most carbon cycle models have been simulating SOC

decomposition as a first-order decay process with the

variability in the models’ parameterization causing sub-

stantial uncertainties in SOC predictions (Todd-Brown

et al., 2013b). In recent years, studies have been focus-

ing on reducing this uncertainty by applying data-mo-

del fusion techniques to constrain the model parameters

(Ise & Moorcroft, 2006; Zhou et al., 2009; Smith et al.,

2013; Hararuk et al., 2014). Still, data-constrained con-

ventional models leave plenty of unexplained variation

in the data (Smith et al., 2013; Hararuk et al., 2014).

Microbial models have shown potential to simulate

global SOC stocks better than conventional models

(Wieder et al., 2013), and our results illustrated thatT
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SOC representation by microbial models was better

than that by conventional models once both model for-

mulations were calibrated against data. However, bet-

ter representation of SOC distribution may not indicate

that microbial models are better than conventional

models at predicting SOC dynamics. For example,

microbial models have been criticized for producing

unrealistic SOC dynamics, such as oscillations in SOC

pools (Wang et al., 2013). While there are reports of

oscillations in microbial biomass and respiration

observed in the incubation studies (Lloyd et al., 1982;

Cenciani et al., 2008), the phenomenon needs to be

investigated further prior to being considered true for

natural ecosystems. In our study, oscillations in the

SOC pools were present in both the 2-pool and 4-pool

microbial models (Fig. 7). However, they were less

prominent in the 4-pool model due to short oscillation

periods and rapid convergence times (Fig. S6). More-

over, many parameter combinations in the 4-pool

model did not generate oscillations in the SOC pools at

all (Fig. 4). This indicates that the 4-pool microbial

model suffers less from unrealistic mathematical arti-

facts than the 2-pool model. Future studies should

investigate whether the 4-pool microbial model could

be used to construct a better performing alternative to

conventional models for simulating soil carbon dynam-

ics, providing improved predictions of carbon stocks

and fluxes while avoiding mathematical artifacts (such

as through only using regions of parameter space that

do not lead to intrinsically generated oscillations).

Uncertainties in future SOC dynamics

Future climate change can be either mitigated or wors-

ened by terrestrial feedbacks. For the past two decades,

soils have been slowing the rate of atmospheric CO2

increase by sequestering over 0.45 Pg C per year (Pan

et al., 2011); however, it remains uncertain whether

soils will continue to sequester C under changing tem-

peratures and CO2 concentrations. CMIP5 models are

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6 Global frequency distributions of total SOC pools produced by a calibrated CENTURY-type model (a, from Hararuk et al., 2014),

2-pool and 4-pool microbial models (b and c, respectively), and the cumulative SOC changes under RCP8.5 scenario (d–f, red lines are

maximum-likelihood cumulative changes, and gray lines are sample runs, representing uncertainty).

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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not unanimous in simulating soil responses to the

RCP8.5 scenario, ranging from a 7% loss of soil C after

95 years of climate change to a 22.6% gain in SOC

(Todd-Brown et al., 2013a). A data-constrained conven-

tional model predicted a 1–6% loss in soil C after 95

years (Hararuk et al., 2014), which was within the

CMIP5 range. The calibrated microbial models, how-

ever, simulated much stronger negative response of soil

C to RCP8.5 scenario than conventional models: a 2–
13% loss (2-pool model) and 6–13% (4-pool model) loss

in SOC. This study also narrowed the range of potential

SOC responses to RCP8.5 scenario presented in Wieder

et al. (2013) and suggested that outcomes with zero car-

bon loss and carbon gain, projected by most CMIP5

models, were not likely.

One of the key differences between conventional and

microbial model formulations is the effect of SOC input

on SOC residence times: In the conventional model, the

SOC input rate does not affect residence time, whereas

in the microbial models, the SOC input is negatively

related to residence time (Fig. S3). This is because

increases in the SOC input rate result in increases in the

microbial pool size, which in turn decreases the total

SOC residence time (priming effect) as the turnover rate

(a) (d)

(b) (e)

(c) (f)

Fig. 7 Spatial distribution of oscillations in the 2-pool (a) and 4-pool (b, c) models, and time required to damp the oscillations (d–f). The

4-pool model had higher ratios of the oscillation period to convergence time than the two-pool model, which indicated that oscillations

will be damped early in their evolution. This figure was produced using only those parameter sets that led to oscillations in the 4-pool

model. Note that the oscillation properties were estimated by eigenvalue analysis not by direct simulation (see Materials and methods).

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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of SOC is proportional to the size of microbial pool

(Eqns 2, 8 and 9). According to the microbial model

structure, the magnitude of the priming effect and its

uncertainty depends on a multitude of parameters reg-

ulating microbial pool size and activity. Of those

parameters, most attention has been paid to CUE and

its temperature sensitivity, which has been shown to

generate large uncertainties in SOC feedbacks (Allison

et al., 2010; Wieder et al., 2013). Our data-constrained

CUE sensitivities had more narrow ranges than those

explored in the literature and therefore were unlikely to

be the largest source of uncertainty.

The microbial turnover rate had wide posterior

ranges in both models (2.33–3.78 per years for the 2-

pool model and 2.59–5.36 per years for the 4-pool

model), and being the only parameter that determined

depletion of microbial pool, was likely the cause of

most of the uncertainties in the predictions of soil car-

bon, particularly for the 4-pool model. Another poorly

constrained parameter that could have caused substan-

tial uncertainties in the 4-pool model predictions was

alit-to-DOC, controlling the proportional allocation of C

influx among soil carbon pools. The destination of fresh

carbon input has previously been reported to cause

large uncertainties in the SOC feedbacks (Allison et al.,

2010).

Future improvements

Although the microbial models (particularly, the 4-pool

model) demonstrate the best model performance in

simulating the global SOC distribution to date, there is

much room for improvement. The data indicate that

48% of variability in global total SOC and 70% of vari-

ability in global microbial biomass distributions

remains unexplained, implying that substantial

improvements in predictive ability can be achieved.

The extent to which this potential for improvement can

be realized will be influenced by advances in our

understanding of the SOC processes and properties as

well as improvements in our understanding of how

much predictive ability is realistically achievable (Luo

et al., 2014). The nature of environmental limitation on

microbial dynamics also remains uncertain: CUE has

been reported to decrease with increasing temperature;

however, this relationship may not be linear as the rate

of CUE decrease diminishes under high temperatures

(Devêvre & Horw�ath, 2000; Wetterstedt & �Agren, 2011;

Frey et al., 2013). CUE probably also depends on

organic matter quality (Frey et al., 2013; Sinsabaugh

et al., 2013). Lastly, a recent report suggests that

changes in microbial activity with temperature are not

caused by changing CUE, but are a result of tempera-

ture sensitivity of microbial turnover rates (Hagerty

et al., 2014). Together, these uncertainties highlight that

more studies are needed to investigate controls over

CUE, microbial death rates, and the partitioning of soil

C input between DOC and SOC pools.

The oscillatory dynamics observed in microbial mod-

els by Wang et al. (2013) and in this study (Figs 7 and

S6) are rarely observed in nature and need to be further

investigated. If these turn out to be artifacts of the

model assumptions then they can be avoided by cali-

brating the microbial models with an additional con-

straint so that parameters generating oscillations are

discarded. This would be impossible for the 2-pool

model as it inevitably produces oscillations, but could

be plausible for the 3-pool model of Wang et al. (2013);

which only exhibited oscillations in litter and microbial

biomass, but not in soil organic carbon. A perhaps more

robust, but potentially challenging, approach would be

to modify the microbial formulations to scale from the

microscale processes to the macro-scale dynamics in a

way that properly accounts for the complexities of soil

microbial community dynamics. A similar argument

was made by Franks (2009) when highlighting the

occurrence of the same problems when modeling mar-

ine microbial dynamics in a similarly simplistic way.

In this study, we relied on the assumption that soil

carbon is in equilibrium. This assumption may intro-

duce inaccuracies in parameter estimation: Zhou et al.

(2013) illustrate that estimating parameters under the

equilibrium assumption results in the underestimation

of soil carbon residence times in comparison with

parameter estimates made without the equilibrium

assumption. This implies that parameter estimates in

this study may underestimate the potential soil carbon

sink and overestimate soil carbon losses under a cli-

mate change scenario. Improvements in the parameter

estimates can be achieved by assimilating dynamic

observations into the model, such as soil respiration, as

well as changes in pool sizes.

The correlations between the parameter distributions

inferred for our microbial models were largely associ-

ated with parameters controlling the rates of C influx

and outflux from the soil. The presence of parameter

correlations emphasized the potential benefits of incor-

porating data on the dynamics of soil organic carbon

when performing parameter calibration. Obtaining

accurate estimates of these parameters could be essen-

tial for accurate estimation of SOC changes under cli-

mate change. The relatively low number of parameter

correlations in both models implied that the level of

complexity in our models was appropriate given that

we only used contemporary SOC and microbial C

stocks as data constraints. Adding more parameters

and processes while keeping the number of datasets

fixed could lead to the models becoming overparame-

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12827
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terized, in which the more parameter-rich models make

worse predictions against holdout or independent data.

Indeed, an information theory metric such as AIC

would imply that the 2-pool microbial model is prefera-

ble to the 4-pool model on the basis of parsimony

because it achieves a very similar predictive accuracy

with fewer parameters. However, given that model per-

formance was assessed using holdout data, we con-

clude that the additional parameters in the 4-pool

model are not making its predictive accuracy worse.

Moreover, the 4-pool model clearly does not include

the unrealistic dynamics of the 2-pool model, and so

we conclude that it is preferable to the 2-pool model in

terms of the realism of its predictions.

Another assumption we made was that standard

deviations of total and microbial soil carbon were 30%

of their value at each gridcell. It is possible that the use

of observational error estimates would alter our param-

eter estimates, with consequences for our predictions,

but unfortunately such data are not available. In addi-

tion, the datasets we used probably did not contribute

much information to model parameters regulating

short time scale processes because soil pools are largely

the result of the long-term processes. Time series of soil

heterotrophic respiration could be used to estimate

these unconstrained parameters.

As we show in this study, data assimilation facilitates

fairly accurate (50% variation explained) SOC stocks

simulation by microbial models, and the following

structural analysis identifies the 4-pool model as prefer-

able due to the absence of prominent oscillations in

SOC dynamics. Microbial models simulated spatially

variable temperature sensitivities of SOC decomposi-

tion with the variability pattern similar to the observed

one, whereas the conventional model assumed Q10

was constant. Data assimilation also narrowed the glo-

bal ranges for the temperature sensitivities of CUE,

established a data-informed range for soil clay content

limitation on C uptake rate, as well as the range for sub-

strate quality limitation of C uptake by microbes. The

parameter values obtained in this study can be used in

future modeling efforts, as well as the initial values for

further parameter optimization.
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