
SPECIAL FEATURE: DATA ASSIMILATION

Experimental warming altered rates of carbon processes,
allocation, and carbon storage in a tallgrass prairie

ZHENG SHI,1,� XIA XU,1 OLEKSANDRA HARARUK,1,2 LIFEN JIANG,1 JIANYANG XIA,1 JUNYI LIANG,1

DEJUN LI,1,3 AND YIQI LUO
1

1Department of Microbiology and Plant Biology, University of Oklahoma, Oklahoma 73019 USA
2Pacific Forestry Centre, Victoria, British Columbia V8Z1M5 Canada

3Huanjiang Observation and Research Station for Karst Ecosystems, Key Laboratory of Agro-ecological Processes in Subtropical
Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China

Citation: Shi, Z., X. Xu, O. Hararuk, L. Jiang, J. Xia, J. Liang, D. Li, and Y. Luo. 2015. Experimental warming altered rates

of carbon processes, allocation, and carbon storage in a tallgrass prairie. Ecosphere 6(11):210. http://dx.doi.org/10.1890/

ES14-00335.1

Abstract. Climate warming affects ecosystem functioning by altering the rates of carbon (C) fixation and

release. Modeling warming effect on terrestrial C cycling is critical given the feedbacks between climate and

C cycling. However, the effect of warming on key model parameters and the resulting long-term C dynamics

has not been carefully examined. In this study, measurements from a nine-year warming experimental site in

a tallgrass prairie were assimilated into a terrestrial ecosystem C cycle model to assess warming effect on key

model parameters and to quantify uncertainties of long-term C projection. Warming decreased allocation of

gross primary production (GPP) to shoot, and turnover rate of the live C pools (i.e., shoot and root C), but

increased the turnover rates of litter and fast soil C pools. Consequently, warming increased live C pools, but

decreased litter and soil C pools, and overall decreased total ecosystem C in a 90-year model projection.

Information content gained from assimilated datasets was much greater for plant, litter and fast soil C pools

than for slow and passive soil C pools. Sensitivity analysis revealed that fast turnover C pools were most

sensitive to their turnover rates and modest to C-input related parameters on both short-term and long-term

time scales. However, slow turnover C pools were sensitive to turnover rate and C input in long-term

prediction, not in short-term prediction. As a result, total soil and ecosystem C pools were generally

insensitive to any parameter in short term, but determined by turnover rates of the fast, slow and passive soil

C and transfer coefficients from upstream C to slow and passive C pools. Our findings suggest that data

assimilation is an effective tool to explore the effect of warming on C dynamics; the nine-year field data

contribute more information for the fast C processes than for the slow C processes; and C cycle model

parameters change with warming, and models need to account for that phenomenon not to produce bias in C

projections. However, warming-induced changes in parameter values also suggest that some important

ecosystem processes may be missing or not adequately represented in the ecosystem C models.

Key words: Bayes’ theorem; carbon cycle; global climate change; model-data fusion; sensitivity analysis.

Received 15 September 2014; revised 6 March 2015; accepted 18 March 2015; published 9 November 2015.

Corresponding Editor: S. Niu.

Copyright: � 2015 Shi et al. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited. http://creativecommons.org/licenses/by/3.0/

� E-mail: zheng.shi@ou.edu

v www.esajournals.org 1 November 2015 v Volume 6(11) v Article 210



INTRODUCTION

Global mean temperature has increased by
0.858C since 1880s and is predicted to continue
rising over the 21st century (IPCC 2013). Nu-
merous field experiments showed prompt eco-
system responses to climate warming (e.g., Harte
and Shaw 1995, Hobbie and Chapin 1998, Luo et
al. 2001b, Melillo et al. 2002, Dukes et al. 2005,
Grime et al. 2008, Niu et al. 2013). Warming often
enhance both ecosystem carbon (C) influx and
effluxes, such as plant growth and soil respira-
tion (Rustad et al. 2001, Wu et al. 2011, Lu et al.
2013). Many ecosystem C cycle models were
designed to predict warming effect on ecosystem
C uptake through photosynthesis and release via
plant and soil respiration (Parton et al. 2007, Luo
et al. 2008). However, there is often great
divergence in predictions among models (Norby
and Luo 2004, De Kauwe et al. 2013). To simulate
future states of ecosystems and climate realisti-
cally, it is essential to carefully examine how
climate warming affects the mechanisms of C
cycling.

Global C cycle models predict positive feed-
back to climate warming (Cox et al. 2000, Cramer
et al. 2001). However, field experiments and
observations suggest negative or neutral feed-
back (Welker et al. 2004, Giardina et al. 2014). In
addition, most recent meta-analyses by Wu et al.
(2011) and Lu et al. (2013) showed neutral
feedback of terrestrial ecosystems to increased
temperature due to the compensation of warm-
ing-enhanced C uptake with warming-induced
increases in C effluxes. The disparity between
model results and empirical studies could partly
stem from inadequate model parameterization,
because the models assume that parameter
values are scenario-invariant constants. Addi-
tionally, assessing uncertainties associated with
model parameters and predictions is critical for
accurate projections (Braswell et al. 2005, Xiao et
al. 2011, 2014). Therefore, it is necessary to
calibrate model parameters against observations
to improve model performance and gain insights
into changes in mechanisms of C cycling.

Data assimilation is a statistical method that
allows incorporating multi-sourced convoluted
measurements into ecological models, constrain-
ing model parameters, and quantifying uncer-
tainties of model parameters and predictions. For

example, Braswell et al. (2005) used daily and
seasonal eddy flux data from Harvard forest to
estimate parameters in an ecosystem C flux
model (SIPNET). The better fitting between
model output and observations demonstrated
the effectiveness of the model-data integration.
By assimilating soil respiration and biometric C
data from Duke Forest, Xu et al. (2006) applied
probabilistic inversion to quantify uncertainties
of model parameters and predicted carbon pool
dynamics in ambient and elevated CO2 treat-
ments. They found significant difference in
extracted parameter values under the two treat-
ments and large uncertainties associated with
residence time of the passive C pool. Wang et al.
(2007) estimated parameters in a land surface
model using multiple eddy flux datasets and
found good agreement between constrained
parameter values and independent estimates.
Weng and Luo (2011) quantified uncertainties
contributed by model only and model and data
together to short- and long-term predictions and
concluded that uncertainties introduced by mod-
el and data varied with forecasting time and C
pools. Keenan et al. (2013) evaluated information
content from 17 datasets and found that many
datasets were redundant in terms of providing
information content. Overall, previous research
showed that data assimilation was an effective
tool to estimate parameter values and uncertain-
ties.

Long-term warming experiment in a tallgrass
prairie in central Oklahoma, USA, has been
conducted since 1999 (Luo et al. 2001b, Niu et
al. 2010). In this study, C stocks and fluxes
collected from 2000 to 2008 under ambient and
warming conditions were assimilated into an
ecosystem C model (Weng and Luo 2008) to
constrain its parameters and make model projec-
tion of the long-term carbon dynamics. Specifi-
cally, we explored how warming changed the
mechanisms of C cycling by testing whether
warming had an effect on key model parameters
such as turnover rate and transfer coefficients,
and investigated warming effect on long-term
projections for C pools. Lastly, we examined the
sensitivities of both short-term and long-term
projections to model parameters.
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MATERIALS AND METHODS

The TECO model

The Terrestrial ECOsystem (TECO) model is a

CENTURY-type C pool and flux model that is

used to simulate ecosystem C dynamics under

various climatic conditions (Luo et al. 2008,

Weng and Luo 2008, De Kauwe et al. 2013).

TECO has been used to assimilate observations

from forest ecosystems (Xu et al. 2006, Weng

and Luo 2011). Here, we modified TECO model

to represent grassland ecosystems by partition-

ing newly fixed C between plant shoots and

roots and combining metabolic and structural

litter pools into a one litter pool (Fig. 1). Soil C

pool in the TECO model consists of fast, slow
and passive pools and was left unchanged.

Carbon dynamics in the TECO model can be

described by the following first-order differen-
tial equation:

dXðtÞ
dt
¼ nðtÞACXðtÞ þ BUðtÞ

Xð0Þ ¼ X0

ð1Þ

where A is a 6 3 6 matrix describing carbon
transfers among the pools as illustrated by
arrows in Fig. 1.

A ¼

�1 0 0 0 0 0

0 �1 0 0 0 0

1 1 �1 0 0 0

0 0 f43 �1 f45 f46

0 0 f53 f54 �1 0

0 0 0 f64 f65 �1

0
BBBBBB@

1
CCCCCCA

ð2Þ

The fijs in matrix A (Eq. 2) represent the
fractions of carbon entering ith pool from jth
pool, termed transfer coefficients. C is a 6 3 6
diagonal matrix, with its elements representing
fractions of pools that leave the pools in a day,
termed turnover rate:

C ¼

c1 0 0 0 0 0

0 c2 0 0 0 0

0 0 c3 0 0 0

0 0 0 c4 0 0

0 0 0 0 c5 0

0 0 0 0 0 c6

0
BBBBBB@

1
CCCCCCA

ð3Þ

X(t)¼ (X1(t) X2(t) X3(t) X4(t) X5(t) X6(t))
T is a 631

vector representing the carbon content of six
carbon pools at time t. X0 is the initial values for
X(t) at time 0. X0 ¼ (0 150 200 100 1350 300)T

estimated from experimental data when the
experiment was set up. B is a vector of allocation
coefficients partitioning newly fixed C among the
two live pools (shoots and roots). U(t) is the
carbon input (i.e., GPP) at time t. n(t) is an
environmental scalar, depending on air temper-
ature (T) and soil moisture (W)

nðtÞ ¼ FTðtÞFWðtÞ ð4Þ

FT(t) represents temperature effects calculated as
FT(t) ¼ R10 Q10

(T(t)�10)/10 and FW(t) represents the
effects of soil water content calculated as FW(t)¼
5W(t) when W(t) , 0.2 or FW(t)¼ 1 when W(t) �
0.2.

Data sources
We assimilated six data sets collected from a

Fig. 1. Model structure with carbon pools (X1�X6)

and fluxes in a grassland ecosystem. SOM stands for

soil organic matter; GPP stands for gross primary

productivity. Arrows show directions of carbon trans-

fer.
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tallgrass prairie in central Oklahoma (348590 N,
978310 W) into the TECO model, including soil
respiration, heterotrophic respiration, above-
ground biomass, root biomass, labile soil carbon
and total soil carbon. We used the data collected
from both control and warming conditions from
2000 to 2008. We also manipulated hay harvest in
the studied system. However, we did not use any
data from the clipped plots.

Data on soil respiration have been collected
once or twice a month since 2000 and on
heterotrophic respiration since October 2001
(Zhou et al. 2007). Aboveground biomass and
belowground net primary productivity (BNPP)
were collected once a year from 2000 to 2008 (Niu
et al. 2010). Root biomass was calculated from
BNPP and a root turnover rate (Luo et al. 2009b).
Labile and soil carbon were collected yearly from
2000 to 2008 (Xu et al. 2012).

We used air temperature, soil moisture, and
GPP for the period of 2000–2008 as input data to
drive the TECO model. Air temperature and soil
water content were observed in the experimental
plots, and daily values of GPP were derived from
TECO photosynthesis sub-model (Appendix: Fig.
A1). Long-term (i.e., 90 years) projection and
associated uncertainties were generated by cy-
cling through 2000–2008 forcing data (air tem-
perature, soil moisture and GPP) using 10000 sets
of accepted parameters.

Data assimilation
We estimated a total of 17 model parameters:

two allocation coefficients (bi ), six turnover rates

(ci ) the inverses of which were residence or
turnover times, seven transfer coefficients ( fi,j)
and two parameters for environmental scalar
(R10 and Q10). Prior ranges of the 17 parameters
(Tables 1 and 2) were set based on published
papers. The prior ranges of bis were based on Hui
and Jackson (2006), prior ranges of cis and fijs
were based on Weng and Luo (2011) and Zhou et
al. (2010). We assumed that the parameters were
distributed uniformly within their prior ranges.

We applied Bayes’ theorem (Eq. 5) to estimate
parameter values and associated uncertainties
(Xu et al. 2006, Weng and Luo 2011).

pðhjZÞ ¼ pðZjhÞpðhÞ
pðZÞ ð5Þ

where, p(hjZ ) is the posterior distribution of the
parameters h given the observations Z. p(Zjh) is a
likelihood function calculated with the assump-
tion that each component is independent from all
other components and has Gaussian distribution
with a zero mean

PðZjhÞ} exp �
X6

i¼1

X
t2obsðZiÞ

½ZiðtÞ � ØiXðtÞ�2

2r2
i ðtÞ

8<
:

9=
;
ð6Þ

where, Z(t) is observation and i represents ith
data set, X(t) are the six carbon pools at time t,
and Ø is the mapping vector that maps the
simulated carbon pools to observations. For
aboveground biomass Ø1¼ (1 0 0 0 0 0); for root
biomass: Ø2 ¼ (0 1 0 0 0 0), for heterotrophic

Table 1. Abbreviations, descriptions and units of model parameters.

Parameter Description Units

b1 allocation of GPP to shoot . . .
b2 allocation of GPP to root . . .
c1 turnover rate of C from shoot pool g C g C�1 d�1

c2 turnover rate of C from root pool g C g C�1 d�1

c3 turnover rate of C from litter pool g C g C�1 d�1

c4 turnover rate of C from fast SOM g C g C�1 d�1

c5 turnover rate of C from slow SOM g C g C�1 d�1

c6 turnover rate of C from passive SOM g C g C�1 d�1

f43 fraction of C in litter pool transferring to fast SOM . . .
f53 fraction of C in litter pool transferring to slow SOM . . .
f54 fraction of C in fast SOM transferring to slow SOM . . .
f64 fraction of C in fast SOM transferring to passive SOM . . .
f45 fraction of C in slow SOM transferring to fast SOM . . .
f65 fraction of C in slow SOM transferring to passive SOM . . .
f46 fraction of C in passive SOM transferring to fast SOM . . .
R10 temperature relative effects when temperature is at 108C . . .
Q10 temperature sensitivity of decomposition . . .
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respiration Ø3¼ (0 0 1�f43�f53 1�f64�f54 1�f45�f65
1�f46); the component of autotrophic respiration:
Ra ¼ 0.25�(1�b1�b2)�GPP(t), and total soil respi-
ration is the sum of Ra and Rh; labile carbon was
mapped as Ø4¼ (0 0 0 1 0 0), and total soil carbon
was mapped as Ø5¼ (0 0 0 1 1 1). p(h) was a set of
uniform distributions over the ranges specified in
Table 2, and p(Z ) was the probability distribution
function of observations.

Posterior probability distributions of parame-
ters were obtained using a Metropolis-Hastings
(M-H) algorithm, a Markov Chain Monte Carlo
(MCMC) technique (Metropolis et al. 1953,
Hastings 1970). The detailed description of M-H
algorithm can be found in Xu et al. (2006). In
brief, the M-H algorithm repeated two steps: a
proposing step and a moving step. In the
proposing step, a new parameter set hnew was
generated based on the previously accepted
parameter set hold and a proposal distribution,
which was uniform in our study:

hnew¼ h old þ rðhmax�h minÞ=D ð7Þ

where hmax and hmin are the maximum and
minimum values of parameters, r is a random
variable between �0.5 and 0.5, and D is used to
control the proposing step size and was set to 5
as is Xu et al. (2006). In each moving step, hnew

was tested against the Metropolis criterion to
examine if the new parameter set should be
accepted or rejected. The first 2500 accepted
samples were discarded (burn-in period) and the

rest were used to generate posterior parameter
distributions. To test for convergence of posterior
parameter estimates, we ran the M-H algorithm
four times, generating four chains with 100,000
parameter samples and tested the chains with
Gelman-Rubin diagnostics (Gelman and Rubin
1992).

Data analysis
Maximum likelihood estimates (MLEs) were

calculated when parameters were well con-
strained. The mean values were calculated when
parameters were not constrained. MLEs were
estimated by observing the value with greatest
frequency.

We used Shannon information index (Shannon
1948) to quantify information content contribut-
ed by observations for each projected C pool

HðXÞ ¼ �
X

pðxiÞlogbpðxiÞ ð8Þ

where p(xi ) is the probability of a pool size xi.
Parameter b equals 2, and units of information
content were bits. Information gain was calculat-
ed as the difference in information content of
each C pool before and after data assimilation.
The relative information gain was the relative
difference in information content before and after
assimilation of the observations.

Data collected in the field are often not
sufficient to constrain some of the counteracting
processes in a C cycle model (Ricciuto et al. 2011).
As a consequence, model parameters which

Table 2. Model parameters and default values in TECO, prior ranges, maximum likelihood estimates (MLE) and

Gelman-Rubin (G-R) statistics

Parameter Default LL UL MLEcontol MLEwarming G-R statistics

b1 0.17 0.1 0.45 0.27 0.24 1.0
b2 0.36 0.1 0.45 0.31 0.31 1.0
c1 9 3 10�3 1 3 10�4 1 3 10�2 6.64 3 10�3 5.06 3 10�3 1.0
c2 9 3 10�3 1 3 10�4 1 3 10�2 4.24 3 10�3 2.86 3 10�3 1.0
c3 9 3 10�3 1 3 10�4 2 3 10�2 6.66 3 10�3 9.72 3 10�3 1.0
c4 0.015 1 3 10�4 5 3 10�2 1.69 3 10�2 1.85 3 10�2 1.0
c5 6 3 10�4 1 3 10�5 2 3 10�3 7.43 3 10�4 7.45 3 10�4 1.0
c6 2 3 10�5 1 3 10�8 3 3 10�5 1.55 3 10�5 1.47 3 10�5� 1.0
f43 0.5 0.3 0.7 0.53 0.41 1.0
f53 0.12 0.05 0.15 0.10a 0.10a 1.0
f54 0.6 0.2 0.7 0.54 0.54 1.0
f64 0.005 0.0 0.008 0.0038a 0.0041a 1.0
f45 0.5 0.1 0.6 0.47 0.51 1.0
f65 0.01 0.0 0.02 0.01a 0.01a 1.0
f46 0.5 0.3 0.7 0.50a 0.51a 1.0
R10 0.8 0.5 1.0 0.58 0.57 1.0
Q10 2.6 1.0 5.0 2.09 2.06 1.0

� Mean value.
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control the counteracting processes are likely to
correlate with each other. Therefore, in addition
to analyzing the information content in the
observations, we analyzed the correlations be-
tween posterior parameter estimates.

To characterize the sensitivity of C pools to
model parameters we calculated the coefficients
of determination (R2) between the projected C
pool sizes and the model parameters and used
them as a measure of sensitivity of C pools to the
parameters (Weng and Luo 2011). C pool sizes at
different projected timescales might be sensitive
to different model parameters (Weng and Luo
2011). Thus, we analyzed the sensitivity of each
projected C pool at the end of ninth year (i.e.,
short term) and 90th year (i.e., long term) to each
of the 17 parameters.

RESULTS

Parameter constraint and variability with warming
After assimilating the experimental data, un-

certainties in many TECO model parameters
were significantly reduced, with the exceptions
of turnover rate of passive C (c6) and most of the
transfer coefficients (e.g., f53, f64, f65 and f46; Fig.
2). A maximum likelihood estimate (MLE) was
calculated for each of the well constrained
parameters, while a mean value was calculated
for the poorly constrained parameter (Table 2).
MLEs for C allocation to leaves (b1), turnover
rates of leaves and roots (c1 and c2), and
partitioning from roots to litter pool ( f43) were
greater in the warming treatment than in the
control condition; whereas the MLEs for the
turnover rates of litter and labile C (c3 and c4)
was greater in the warming treatment; MLEs for
the other parameters were similar between the
two conditions (Fig. 2 and Table 2).

Parameter correlations
Correlations among model parameters differed

little between control and warming conditions
(Table 3; Appendix: Table A1), therefore we
presented only the results for control treatment
in the main text (Table 3). Three levels of
correlation were defined: high (jrj . 0.5), modest
(0.3 , jrj , 0.5) and low (0.1 , jrj , 0.3).
Predictably, the parameters with the highest
correlations were those associated with counter-
acting processes, e.g., C allocation to leaves and

leaf turnover rate (b1 and c1); C allocation to roots
and root turnover rate (b2 and c2); transfer
coefficient from litter to labile C and the turnover
rate of the latter (c4 and f43); and transfer
coefficient from labile to slow C pool and the
slow C turnover rate (c5 and f54). Some parameter
pairs showed unexpectedly high degree of
association, e.g., C allocation to shoots and roots
(b1 and b2), C allocation to leaves and root
turnover rate (b1 and c2), root and labile C
turnover rates (c2 and c4); and labile and slow C
turnover rates (c4 and c5). Passive C turnover rate
(c6) had weak correlation with other parameters,
and transfer coefficients had fairly low correla-
tion among one another as well as with the other
parameters.

Model performance and information
gain under both treatments

After data assimilation, TECO model generat-
ed similar mean values and patterns of respira-
tion, plant and soil C content to the observations
under control and warming conditions (Fig. 3).
However, the model failed to fully capture effects
of drought on respiration and biomass in 2006
under both treatments (Fig. 3A–H). Dynamics of
soil C was not fully captured by the model
possibly due to the large errors associated with
the observations and our model structure, but the
temporal trend in soil C change was generally
captured (Fig. 3I–L). In order to test the
effectiveness of the optimization, we also did
another set of optimization by assimilating first
six-year data (2000–2005) and then compared the
observations with simulations. The results were
quite similar to those we obtained by assimilating
all the data (Appendix: Fig. A2). However,
simulated root carbon was not well agreed with
observations, because only one data point was
measured in the first six years. Besides the poor
simulation of root carbon within 2006–2008, soil
labile carbon was consistently overestimated
from 2006–2008 with only assimilation of data
with 2000–2005. The other modeled variables
were reasonably well simulated within 2006–
2008. Meanwhile, we also ran the simulation
using default parameter values (values before
data assimilation) and compared the model
results with both observations and simulations
with parameter values after data assimilation
(Fig. 4). We found that for most of the variables
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RMSEs were consistently greater for simulation

with default values than that with parameters

after data assimilation (Appendix: Table A2).

Higher RMSEs suggest poor model performance.

However, heterotrophic respiration was an ex-

ception. The RMSEs were slightly smaller for

default simulation.

Assimilated observations contributed most
information to the labile C pool (Fig. 5),

increasing the information content in the labile
C pool by 290% (control) and 310% (warming)

compared to model with original parameters.

Fig. 2. Posterior distribution of the 17 model parameters under control and warming treatments. The bs are

allocation coefficients, cs refer to turnover rates and fs are transfer coefficients. See Table 1 for parameter

abbreviations.
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Observations also increased the information
content in the modeled live and litter C pools,
increasing it by up to 100% compared to the
original model prediction. Observations contrib-
uted the least amount of information to the slow
and passive C pools (5–10%). Interestingly, the
information content contributed by observations
from the warming plots differed from informa-
tion contributed by data from the control plots:
warming increased information contribution of
the observations for all pools except for the litter
C pool.

Effect of warming on projected C pools
Warming had different effects on C pools in a

90-year model prediction (Fig. 6): it increased
live C pools (X1 and X2), decreased dead C pools
(X3, X4 and X5), and had little effect on passive
soil C pool (X6). Overall, warming decreased
total soil C content and ecosystem C content. Due
to low information gain from the observations,
we observed substantial inflation of uncertainty
for passive C pool (X6) after 90 years of
simulation, whereas for other C pools uncertain-
ty stabilized after 1–9 years of simulation.
Because of inflating uncertainties in the soil C
pool, uncertainties in the ecosystem C pool also
increase with time under both warming and
control treatments.

Sensitivities of short-term and long-term
projected C pools to parameters

Sensitivities of projected C pools to parameters
were similar under control and warming treat-
ments (Fig. 7; Appendix: Fig. A3), therefore we
presented the results for the control condition
only (Fig. 7). Sensitivities of the four fast
turnover C pools (i.e., pool 1–4) to parameters
were similar between short-term and long-term
projections: C pools were most sensitive to their
respective turnover rates and modest to alloca-
tion coefficients or transfer coefficients which
represent C input.

The two slow turnover C pools (pool 5 and 6)
had different sensitivities to parameters between
short- and long-term predictions. In short term,
X5 was slightly sensitive to its turnover rate but
insensitive to other parameters. In long term, X5

became more sensitive to c5 and modest to f54. In
short term, X6 was most sensitive to f65, the
transfer coefficient from X5 to X6, modest to
turnover rates of X4 and X5 and f64. In long term,
X6 became more sensitive to turnover rate of
itself (c6).

The sensitivities of soil and ecosystem C pools
to parameters also differed between short-term
and long-term projections. In short term, ecosys-
tem C was sensitive solely to c3, and soil C was
generally insensitive to any one model parameter
(Fig. 7A). In long term, however, the two pools
were rather sensitive to turnover rates of the litter
C and three soil C pools and the transfer

Table 3. Correlation coefficients among parameters in control treatments (superscript 1: jrj . 0.5; 2: 0.5.jrj .0.3;

3: 0.3. jrj . 0.1; þ: positive correlation; �: negative correlation). Similar correlation coefficients in warming

treatment.

Control b1 b2 c1 c2 c3 c4 c5 c6 R10 Q10 f43 f53 f54 f64 f45 f65 f46

b1 1 �1 þ1 �1 �3 þ3

b2 1 �2 þ1 �3 þ3 þ3 �2

c1 1 þ2 þ2 �3 �3

c2 1 þ1 þ2 �2 �2 þ3

c3 1 �3 þ3 �3 �3

c4 1 þ1 �2 �2 þ1 þ3 þ3 þ2

c5 1 � �2 þ2 þ1 þ3 þ2

c6 1
R10 1 �3 þ3

Q10 1 �3 �3

f43 1
f53 1 �3 �3

f54 1 þ
f64 1
f45 1
f65 1
f46 1
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coefficients from upstream C pools to slow and

passive C pools (Fig. 7B).

DISCUSSION

Constraints of parameters and parameter
correlations

Recently, alternative model structures or addi-

tional components have been incorporated into

global land models to better represent C cycling

or fit empirical observations (e.g., Thornton et al.

2009, Wang et al. 2010, Wieder et al. 2013, Xu et

al. 2014). As a result, the models have become

more and more complex, but less tractable (Xia et

al. 2013). Improving the parameterization of an

existing model structure through data assimila-

tion has been largely ignored, yet has been

proved an effective method to increase model

fit to observations (Hararuk et al. 2014). The

difference in parameter values between control

and warming treatments in our study further

evidenced that scenario-invariant parameteriza-

tion in global land models could contribute

significant uncertainty to model predictions.

Therefore, the disparity between model results

and empirical findings in climate-C cycle feed-

back could be resolved to some extent if

parameter values are allowed to vary with

Fig. 3. Comparison of the observations and the mean values of the simulated observational variables with the

parameters accepted under control and warming treatments. Panels (A–B): soil respiration under control and

warming; (C–D): heterotrophic respiration (Rh); (E–F): aboveground biomass carbon; (G–H): root biomass

carbon; (I–J): labile soil organic carbon; (K–L): soil organic carbon. Note: observations are mean with standard

error except for soil respiration and Rh for clarity.
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different climatic scenarios. On the other hand,

warming-induced changes in parameter values

also suggest that some important mechanisms

are missing or not adequately represented in the

land models. For example, warming-enhanced

turnover rates of litter and labile C pools could be

due to changes of plant community; however it

also indicates possible inadequately representa-

tion of model processes such as temperature or

soil moisture response functions.

The six data sets used in our study contained

information for allocation coefficients of GPP to

shoots and roots (b1 and b2), temperature

sensitivity of turnover rates (Q10) and all turn-

over rates except for passive soil C under both

treatments. The poorly constrained transfer

coefficients ( fs) implied that the six data sets

did not contain much information about carbon

partition among litter pool and soil organic

matter pools (Weng and Luo 2011). In addition,

the measurements duration (2000–2008) is rela-

tively short in comparison to residence time of

passive C pool (inverse of c6), which may have

been the reason why data sets contributed little

information to passive C pool. Passive C pool as

one form of recalcitrant C, is critical for long-term

carbon projections of the states of terrestrial

ecosystems, as models are often used to evaluate

Fig. 4. Comparison of the observations and the values of the simulated observational variables with the default

model parameters and parameters accepted under control and warming treatments. Panels (A–B): soil respiration

under control and warming; (C–D): heterotrophic respiration (Rh); (E–F): aboveground biomass carbon; (G–H):

root biomass carbon; (I–J): labile soil organic carbon; (K–L): soil organic carbon. Note: observations are mean

with standard error except for soil respiration and Rh for clarity.
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ecosystem responses to climate changes at
decadal and century time scales. Therefore,
collecting information relevant to the transfer
coefficients and the passive C pool dynamics
would help constrain the parameters and in-
crease the accuracy of model projections.

Model complexity often leads to equifinality of
model solutions which is indicated by parameter
correlations (Luo et al. 2009a). Many close
correlations among parameters were identified
in our study. The strong parameter correlations
indicate that the assimilated data sets are not
sufficient to distinguish between counteracting
processes in the model (Ricciuto et al. 2011).
However, the correlations could also be due to
the model structure and could not be reduced by
assimilating more data sets (Keenan et al. 2013).
Our results indicated that more data are needed
to separate the counteracting processes, such as
rate of C allocation to leaves and roots, and their
respective turnover rates, transfer coefficients
from litter to labile C and from labile C to slow
C pool, and their respective turnover rates.

Warming effect on model parameters
and projected carbon pools

Warming affected C allocation coefficient to
shoots (b1) and most of the turnover rates, but
had little impact on temperature sensitivity and
transfer coefficients. The negative effect of
warming on turnover rates of plant biomass (c1
and c2) may have been due to a warming-
induced change in the plant community structure
(Niu et al. 2010). Positive effects of warming on
litter and labile C turnover rates indicate changes
in physical and biochemical properties of the two
pools. However, warming had little effect on
turnover rates of slow and passive soil carbon
pools indicating resistance of physical and
biochemical properties of these recalcitrant pools
to warming or limited information contained in
the assimilated observations (e.g., for passive soil
C).

Warming affected short-term and long-term C
pool sizes through regulating photosynthetic
input (GPP), allocation coefficients, turnover
rates, environmental factors (R10 and Q10), and
transfer coefficients individually or together.
Warming-induced changes in C pool sizes were
net results of different effects of warming on the

Fig. 5. Information gain (A) and relative information gain (B) of long-term C prediction derived from the

distributions of carbon content simulated by the model with prior and posterior parameters.
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key parameters, which were not always unidi-
rectional in their changes. For instance, b1 was
reduced by warming, but plant biomass still
increased as a result of warming-enhanced GPP
combined with decreased turnover rates of
shoots and roots. For the fast and slow soil C
pools, warming-induced increase in the turnove
rates resulted in diminishment of the pool size.
Warming had little effect on passive soil C pool
due to little warming effects on relevant param-
eters such as c6 and f64. As a result, warming
slightly decreased both total soil C and ecosys-
tem C content.

The processes that are not calibrated in our
study may also affect long-term C cycle projec-
tion. For example, our results are subject to
uncertainties caused by modeled GPP as model
input (Xu et al. 2006, Zhang et al. 2010, Weng and

Luo 2011) and TECO model structure. Ideally,
one would calibrate an integrated canopy pho-
tosynthesis model and ecosystem C cycling
model simultaneously. However, many parame-
ters in photosynthesis model cause equifinality.
Therefore, it is still a challenge to calibrate them
against data at the same time (Zhang et al. 2010,
Weng and Luo 2011). TECO model structure may
also contribute to uncertainties. For instance, the
largest difference between observed and mod-
eled respiration and biomass occurred in the
driest year, which implied model inadequacy in
capturing severe drought effect. The little change
in temperature sensitivity under warming also
indicates the possible uncertainties contributed
by model structure. The lack of parameterization
of microbial activity and nitrogen dynamics in
TEOC could also contribute to the uncertainties.

Fig. 6. Long-term (90 years) projections based on accepted parameters for each of the carbon pools, soil organic

carbon and ecosystem carbon under control and warming treatments. Box plots show visual summaries of

carbon content distributions in the 5% (bottom bar), 25% (bottom hinge of the box), 50% (line across the box), 75%

(upper hinge of the box), and 95% (upper bar) intervals. Note that x1 represents the peak aboveground biomass

carbon.
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Sensitivities of short- and long-term
projected C pools to parameters

Pool sizes at equilibrium state are determined
by C input and turnover rate (Luo et al. 2001a,
Weng and Luo 2011). The fast turnover pools
(i.e., pool 1–4) all reached steady states in short-
term prediction. Therefore, as expected, the
turnover rates and allocation or transfer coeffi-
cients controlled the C pool sizes in both short
and long terms in our study. However, the
turnover rates played greater role in determining
pool sizes than the C inputs represented by
allocation or transfer coefficients. The underesti-
mation of aboveground and root C and the

overestimation of labile and soil C before data
assimilation were likely caused by these sensitive
parameters. Specifically, the aboveground C
simulation was sensitive to b1 and c1 (Fig. 7A).
The improvement was likely caused by the two
parameters after data assimilation. The root C
simulation was sensitive to b2 and c2 (Fig. 7A),
which improved the simulation after data assim-
ilation. Labile C was sensitive to c4 and f43 and
soil C was sensitive to c4, f43 and f54, which were
all well-estimated after data assimilation.

The two slow turnover pools were sensitive to
different parameters between short- and long-
term predictions. The X5 did not reach equilib-

Fig. 7. The sensitivity of the carbon pools in short term (nine-year simulation; (A) and long term (90-year

simulation; (B) to the 17 parameters in control treatment. x1–x6 are the six carbon pools as shown in Fig. 1; c1–c6
are turnover rates of the carbon pools; b1–b2 are the allocation coefficients of GPP to shoot and root, respectively;

fi,j values are the carbon transfer coefficients from pool j to pool i. The area of the circle represents the value of the

coefficient of determination.
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rium state until 18th year and X6 was still
growing at the end of the long-term prediction.
Therefore, the importance of their respective
turnover rates and C inputs did not appear in
the short term, but increased over time. Different
sensitivities of the six individual pools to model
parameters determined the sensitivity of soil and
ecosystem C between short- and long-term
predictions. Such shift in sensitivities between
short- and long-term highlights the importance
of the soil C dynamics in long-term ecosystem C
projections. Since long-term C cycle projection is
the primary goal of biogeochemical models, it is
critical to accurately estimate parameters related
to slow turnover C pools and transfer coeffi-
cients.

CONCLUSIONS

Assimilation of six observed data sets into the
TECO model constrained most of its parameters
and facilitated assignment of uncertainties to
parameter values. Our results showed that
warming affected some of the key model
parameters and thus affected C cycle projections,
indicating that scenario-invariant parameters in
global land models could cause substantial errors
in their projections of plant and litter C storage.
By comparing information content in the C pools
before and after data assimilation, we found that
the six data sets contained more information for
the pools with fast turnover rates, than the pools
with slow turnover rates. The sensitivity analysis
revealed that individual C pools were mainly
determined by respective turnover rates, regard-
less of projection period. However, projected soil
and ecosystem C pools in short term were
generally unresponsive to model parameters,
whereas determinants of long-term projected soil
and ecosystem C pools were both turnover rates
and transfer coefficients. Changes in parameter
values under warming suggest that scenario-
invariant parameterization could introduce un-
certainty in model prediction and also that the
ecosystem C model may not well represent some
ecosystem processes.
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