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ABSTRACT

Model intercomparisons and evaluations against observations are essential for better understanding of models’

performance and for identifying the sources of uncertainty in their output. The terrestrial vegetation carbon sim-

ulated by 11 Earth system models (ESMs) involved in phase 5 of the Coupled Model Intercomparison Project

(CMIP5) was evaluated in this study. The simulated vegetation carbonwas compared at three distinct spatial scales

(grid, biome, and global) among models and against the observations (an updated database from Olson et al.’s

‘‘Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database’’). Moreover, the un-

derlying causes of the differences in themodels’ predictionswere explored.Model–data fit at the grid scalewas poor

but greatly improved at the biome scale. Large intermodel variability was pronounced in the tropical and boreal

regions, where total vegetation carbon stocks were high.While 8 out of 11 ESMs reproduced the global vegetation

carbon towithin 20%uncertainty of the observational estimate (5606 112PgC), the simulated global totals varied

nearly threefold between the models. The goodness of fit of ESMs in simulating vegetation carbon depended

strongly on the spatial scales. Sixty-three percent of the variability in contemporary global vegetation carbon stocks

across ESMs could be explained by differences in vegetation carbon residence time across ESMs (P, 0.01). The

analysis indicated that ESMs’ performance of vegetation carbon predictions can be substantially improved through

better representation of plant longevity (i.e., carbon residence time) and its respective spatial distributions.

1. Introduction

A substantial proportion of annual anthropogenic car-

bon dioxide emission is sequestered by terrestrial vegeta-

tion (Canadell et al. 2007; Houghton 2007; Le Quéré et al.
2014), but this carbon sink may decrease in the future as a

result of the positive feedback between climate change and

the carbon cycle (Cox et al. 2000; Dufresne et al. 2002;

Friedlingstein et al. 2003, 2006; Le Quéré et al. 2009).

Therefore, understanding the mechanisms regulating the

changes in the terrestrial vegetation sink is crucial to im-

prove future climate projections. In their study,Arora et al.

(2013) highlighted the larger inconsistencies in the carbon–

climate and carbon–concentration feedback parameters in

the land carbon cycle component than in the ocean simu-

lated by Earth system models (ESMs) involved in phase 5

of the Coupled Model Intercomparison Project (CMIP5).

In addition, there was a significant model spread in the

twenty-first-century compatible CO2 emissions simulated

by CMIP5 ESMs under four representative concentration

pathways (RCPs; Jones et al. 2013). This spread was

dominated by the variability in the projected land carbon

changes, which was partly due to the diverse responses of

land carbon cycle models to anthropogenic CO2 increase
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and climate change and the different representations of

land-use change. Finally, Friedlingstein et al. (2014) also

showed that the uncertainty in the land carbon cycle pro-

jection was responsible for the large spread in the atmo-

spheric CO2 projections under the RCP8.5 scenario when

driven by CO2 emissions.

Currently, large uncertainties still exist in simulations

of global land carbon storage (including vegetation and

soil carbon), as shown in both historical simulations and

future simulations of CMIP5 ESMs (Anav et al. 2013;

Brovkin et al. 2013; Jones et al. 2013; Todd-Brown et al.

2013, 2014). In general, CMIP5 ESMs showed far less

agreement in their projections of land carbon changes

than in those of ocean carbon (Jones et al. 2013). The

simulated intermodel variation in the land carbon up-

take within a specific RCP scenario was even larger than

the variation across the four RCPs (Jones et al. 2013).

Despite the historical simulations of CMIP5 ESMs

correctly reproducing the main climatic variables con-

trolling the spatial and temporal characteristics of the

carbon cycle, the global soil carbon and vegetation

carbon showed very large variation across the models,

even though the multimodel means were close to the

reference data (Anav et al. 2013). Global soil carbon

storage varied by nearly sixfold, and global soil carbon

turnover times varied by almost fourfold across CMIP5

ESMs in their historical simulations (Todd-Brown et al.

2013). The changes in soil organic carbon over the

twenty-first century projected by CMIP5 ESMs ranged

from a loss of 70PgC to a gain of 250PgC (Todd-Brown

et al. 2014). Analysis of permafrost thermal dynamics in

the CMIP5 ESMs also revealed a wide range in current

permafrost areas, active layer parameters, and model

ability to simulate the coupling between soil and air

temperatures (Koven et al. 2013). Additionally, pro-

jected loss of permafrost extent in response to climate

change also varied greatly between the models.

Evaluating the models’ performance and under-

standing the sources of uncertainties in the simulated

contemporary state of the land carbon cycle are essen-

tial steps forward to improve the credibility of future

climate projections. Model evaluations using observa-

tions can help us identify uncertainties in predictions

and provide feedback for future model development

priorities (Friedlingstein et al. 2006; Blyth et al. 2011;

Luo et al. 2012). Hoffman et al. (2014) found a linear

relationship between the contemporary and the future

atmospheric CO2 mole fractions in 17 emission-driven

CMIP5 model simulations. They further constructed a

contemporary CO2-tuned model to estimate the atmo-

spheric CO2 trajectory for the twenty-first century based

on this linear relationship and the long-term time series

of atmospheric CO2 from Mauna Loa. As a result, the

uncertainties in future projections of atmospheric CO2

for the emission-driven RCP8.5 scenario were consid-

erably narrowed compared to the estimates from the full

ESM ensemble. This study (Hoffman et al. 2014) calls

for additional efforts to carefully evaluate and improve

the simulations of contemporary terrestrial carbon

stocks before we can have confidence in future pro-

jections (Jones et al. 2013).

Carbon in the vegetation pool is more dynamic com-

pared with carbon in soils (IGBP Terrestrial Carbon

Working Group 1998). The ability of ESMs to re-

produce the observed terrestrial vegetation carbon dy-

namics is, therefore, a good indicator for model

performance and is a critical prerequisite to improve the

land carbon cycle component. Anav et al. (2013) eval-

uated historical simulations of the land carbon cycle in

CMIP5 ESMs at the global scale and in the Northern

Hemisphere, Southern Hemisphere, and tropics. Todd-

Brown et al. (2013) benchmarked historical simulations

of soil carbon stocks from CMIP5 ESMs at the gridcell,

biome, and global scales. Both analyses have shown that

scale does affect model performances. The study by

Anav et al. (2013) was the first attempt to evaluate his-

torical simulations of terrestrial vegetation carbon in

CMIP5 ESMs along with many other variables. While it

is likely that there were interactions between the vari-

ables, Anav et al. (2013) did not link other variables to

vegetation carbon in their evaluations to explore the

possible causes for uncertainties in the simulated vege-

tation carbon. Focusing on vegetation carbon, we eval-

uated the historical simulations of terrestrial vegetation

carbon in 11 CMIP5 ESMs involved in the IPCC

Fifth Assessment Report (IPCC 2013) against an

observation-based estimate of the global land vegeta-

tion carbon pool developed by Gibbs (2006). We fo-

cused our analysis on evaluating and quantifying the

sensitivity of the model–data fit to various spatial scales

and identifying the causes of the intermodel variability.

2. Materials and methods

We evaluated vegetation carbon in terrestrial ecosys-

tems simulated by 11 CMIP5 ESMs (Table 1) applying

the observation-based estimate at three spatial scales:

grid cells, biomes, and global. At the gridcell scale, we

evaluated vegetation carbon density (kilograms of carbon

per square meter); at the other two scales, we evaluated

the total carbon stocks (petagrams of carbon) at each

biome and globally.We also analyzed annual net primary

productivity (NPP; petagrams of carbon per year) and

residence times of vegetation carbon at the global scale.

NPP, plant mortality, and losses from disturbances are

the determinants of carbon stock sizes, and the combined
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impacts of the loss factors can be quantified with the

derived estimate of residence time (Xia et al. 2013).

We evaluated 21 historical simulations from 11 mod-

eling centers. Here, we show the results of 11 simula-

tions (we selected one simulation from each modeling

center). This would not change our main findings and

conclusions because models from the same centers

usually have similar performance (e.g., Fig. S5 in the

supplementary material). However, the global vegeta-

tion carbon budget in IPSL-CM5B-LRwas considerably

lower than those in the other two models from their

group (IPSL-CM5A-LR and IPSL-CM5A-MR). This

could be attributed to the fact that IPSL-CM5B-LR had

an improved climatology and current climate variability

in tropical regions (Dufresne et al. 2013). However, the

equilibrium climate sensitivity in IPSL-CM5B-LR was

drastically different from that in IPSL-CM5A models,

and IPSL-CM5B-LRwas in its early development stages

[i.e., not completely validated and not yet perfectly

tuned for CMIP5 runs (J.-L. Dufresne 2013, personal

communication; G. Krinner 2014, personal communi-

cation)]. We selected one model from each modeling

center with the closest global sums of vegetation carbon

to the observational data, except for CESM1(BGC),

IPSL-CM5A-MR, and NorESM1-ME (the latter two

were recommended by the respective modeling groups).

The results of the other 10 ESMs along with the total 21

ESMs are available in the supplementary material.

a. CMIP5 ESMs

CMIP5ESMs and their major differences in simulating

vegetation carbon are described in Table 1 and Table S1

in the supplementary material. We downloaded the out-

put for monthly carbon mass in land vegetation (variable

cVeg) and carbon mass flux out of the atmosphere re-

sulting from net primary production on land (variable

npp) for their historical simulations. Land area fraction

(variable sftlf) in model output was also downloaded to

compute the global vegetation carbon and total vegeta-

tion carbon for each biome. We selected the ensemble

member r1i1p1 because most CMIP5 models had this

ensemble member output, while the availability of other

ensembles depended on specific models used. The letters

r, i, and p in the label for the ensemble member refer to

the initial condition, initialization method, and perturbed

physics version, respectively, and the number 1 after each

letter is the realization for the respective parameter

(Taylor et al. 2010, 2012). In the cases where multiple

ensemble members were available from a single model,

we examined the differences between the ensemble

members and found that the outputs were similar (not

shown). To ensure comparability with the observations,

we evaluated the simulated vegetation carbon in the year

2000, because many of the CMIP5 ESMs incorporated

land-use change and had dynamic vegetation (Tables 1 and

S1). Because of the high interannual variability in NPP

compared to vegetation carbon storage, we evaluated the

10-yrmeans ofNPP from1996 to 2005 fromCMIP5output.

b. Observational dataset

We used an observational dataset fromGibbs (2006) as

the benchmark for model evaluations. Olson et al. (1985)

developed a database and corresponding map following

more than 20 years of field investigations, consultations,

and analyses of the published literature. It is an integrated

dataset that provides a reference baseline for interpreting

the role of terrestrial vegetation in the global cycling of

CO2 and other gases and a basis for improving estimates of

vegetation and soil carbon, natural exchanges of CO2, and

net historic shifts of carbon between the biosphere and the

atmosphere (Gibbs 2006). To reflect the changes in land

cover over time, Gibbs (2006) updated the Olson et al.

(1985) database to a more contemporary land-cover rep-

resentation using the Global Land Cover 2000 database

(European Commission, Joint Research Centre 2003) to

estimate biomass carbon in living vegetation on a global

scale. Data fromGlobal LandCover 2000 were developed

using remotely sensed imagery acquired in 2000. Com-

pared to the original dataset by Olson et al. (1985), which

was derived from vegetation patterns of preagricultural

vegetation, this updated dataset accounted for changes in

land cover subject to human-induced land-use change,

forest harvest, and natural disturbances.

The global vegetation carbon stock of the dataset

developed by Gibbs (2006) was 560PgC. The IPCC

(Watson et al. 2000) reported global vegetation carbon

stocks to be 470PgC, taking into account land-use

change, whereas Saugier et al. (2001) reported global

vegetation carbon at 650PgC. The above two estimates

of global vegetation carbon stocks were a deviation of

approximately 20% from 560PgC, therefore we took

20% of 560PgC (112PgC) as the uncertainty range for

the dataset developed by Gibbs (2006), as this dataset

did not provide uncertainties associated with the errors

in measurements or estimates.

c. Biome data

To make a comparison between performance of

ESMs in simulating vegetation carbon and soil carbon,

we used the biome dataset developed by Todd-Brown

et al. (2013) to examine how well the models performed

in simulating the vegetation carbon at the biome scale.

In brief, the land-cover classification from the MODIS

land cover type Climate Modeling Grid (CMG) yearly

global 0.058 product (MCD12C1) (NASA LP DAAC

2008) was assigned to one of nine biomes: tundra, boreal
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forest, tropical rain forest, temperate forest, desert and

shrub land, grasslands and savannas, cropland and ur-

ban, snow and ice, or permanent wetland on a 18 3 18
global grid (Fig. S1 in the supplementary material). In

this classification, the temperate rain forest of the North

American Pacific Northwest was included in the boreal

forest biome.

d. MODIS NPP dataset

To explain the uncertainties in vegetation carbon be-

tween CMIP5 ESMs and the dataset developed by Gibbs

(2006), we used the MODIS product (MOD17A3) for

annual NPP from the year 2000 as a reference NPP. The

data were produced by the National Aeronautics and

Space Administration (NASA) Earth Observing System

(EOS) at 1-km spatial resolution (Heinsch et al. 2003).

MOD17A3 did not include an uncertainty analysis, but

uncertainties could be large because of possible errors

related to inputs of the algorithm for MOD17A3, in-

cluding land cover, fraction of photosynthetically active

radiation/leaf area index (FPAR/LAI), and other mete-

orological data (Zhao et al. 2005).

e. Residence time

We calculated vegetation carbon residence time at the

global scale as the ratio between the global vegetation

carbon pool and the global NPP for both the Gibbs

(2006) dataset (using MODIS NPP) and output of

CMIP5 ESMs.

f. Resolution

The resolution of original model outputs from CMIP5

ESMs was quite diverse (Tables 1 and S1). All evalua-

tion analysis was performed after we regridded vegeta-

tion carbon and NPP data to 18 3 18 cells assuming

conservation of mass. The calculation of the yearly av-

erage of vegetation carbon and NPP of model outputs

and sums of vegetation carbon and NPP for each biome

and globe, as well as the regridding of all data were

performed with the NCAR Command Language, ver-

sion 6.1.2 (UCAR/NCAR/CISL/VETS 2013).

g. Statistical analysis

The goodness of fit of vegetation carbon of ESMs

simulated at the grid and biome scale was quantified by

the coefficient of determination of linear regressions (R2)

and root-mean-square error (RMSE). Slopes and in-

tercepts of linear regressions were also shown as addi-

tional indicators for bias. At the biome scale, fewer data

points (eight biomes) may have some limitation on the

linear regressions in our analysis. The calculation

of RMSE followed Janssen and Heuberger’s (1995)

equation:
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where P and O are modeled and observed data values,

respectively, and N is the number of data points. The

significance level of the linear relationships was ana-

lyzed with MATLAB. At the global scale, goodness of

fit was assessed by the absolute differences in the global

sums between ESMs and the observations.

3. Results

a. Goodness of fit of ESMs at grid scale

The spatial distribution of global vegetation carbon

density simulated by ESMs showed consistent patterns

to those in the observations (Fig. S2 in the supplemen-

tary material), with maximum density generally simu-

lated in the tropical rain forest andNorthernHemisphere

boreal forest biomes. Analogously, the biggest biases in

biomass carbon between ESMs and the observations

were located in these regions because of large vegetation

carbon stocks there (Figs. 1 and S3). Overall, simulations

of vegetation carbon density by ESMs were poor at the

grid scale, with large differences in absolute values be-

tween ESMs and the observations at grid cells and with

low R2 (Table 2; Figs. 1, 2 and Figs. S3–S5 in the sup-

plementary material). RMSE ranged from 3.01 to 7.18,

which generally agreed with R2 (i.e., higher R2, lower

RMSE). The maximum values of vegetation carbon

densities at grid cells varied substantially across ESMs,

but all ESMs overestimated the maximum vegetation

carbon densities (Figs. 1, S3, and S4). The models

MIROC-ESM and BCC_CSM1.1 (both had maximum

values around 20kgCm22) were the closest to the ob-

servations (16kgCm22). The greatest overestimations

were produced by CESM1(BGC) (47kgCm22) and

NorESM1-ME (49kgCm22).

At grid scale, MPI-ESM-MR, MIROC-ESM, and

INM-CM4.0 were the best-performing models with

lower RMSE and higher R2, which explained 38.0%,

36.9%, and 33.6% of the observed spatial variation, re-

spectively (Table 2; Fig. 2); but slopes of MIROC-ESM

and MPI-ESM-MR were much lower than 1, a sign of

systematic bias. Agreement across ESMs was also poor,

as indicated by the low R2 of paired comparisons be-

tween ESMs (Figs. 2 and S5), with 48 out of 55 R2 values

being lower than 0.5. A very high R2 was found between

CESM1(BGC) and NorESM1-ME, which shared the

same land carbon cycle model.

b. Variability of vegetation carbon at the biome scale

Most carbon-rich areas in the observations and ESMs

were located in tropical and boreal regions (Fig. S2). It

should be noted that the boreal biome in our classifica-

tion included the temperate rain forest of the North

American Pacific Northwest, which inflated the carbon

content of this otherwise moderate biome. At the biome

scale, vegetation carbon exhibited large variability between

FIG. 1. Maps of vegetation carbon density of the observations and differences of vegetation carbon between historical simulations of

CMIP5 ESMs and the observations (kg Cm22).
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ESMs and the observations and across ESMs (Fig. 3 and

Fig. S6 in the supplementary material). Coefficients of

variation across ESMs (calculated as standard deviation

divided by mean) ranged from 33.0% in temperate for-

ests to 115.7% in the tundra regions. The multimodel

median of vegetation carbon was close to the reference

data in temperate forests and permanent wetlands but

higher in tropical rain forests and lower in the remaining

biomes, especially in boreal forests.

Goodness of fit for ESM simulations at the biome scale

was greatly improved compared to the grid scale, with

more than double R2 for most ESMs (Table 2; Table S2

and Fig. S7 in the supplementary material). Overall,

goodness of fit indicated by R2 at the biome scale was

similar with those at the gridcell scale: MIROC-ESM,

INM-CM4.0, and MPI-ESM-MR were still listed among

the best-performing models. However, R2 of CanESM2

was dramatically enhanced at the biome scale. CESM1

(BGC), HadGEM2-ES, and NorESM1-ME over-

estimated the vegetation carbon in tropical rain forests

but underestimated carbon stocks in boreal forests

(Fig. S7). MIROC-ESM and MPI-ESM-MR under-

estimated vegetation carbon for all biomes. While BNU-

ESM greatly overestimated vegetation carbon for the

majority of the biomes, it underestimated carbon stocks

of boreal forests. GFDL-ESM2Gperformedwell at other

biomes, but it overestimated vegetation carbon in tropi-

cal rain forests, grassland and savanna, and tundra.

CanESM2 and INM-CM4.0 simulated similar carbon

stocks in relation to the observations in all biomes.

c. Global sums of vegetation carbon

Out of 11 ESMs, 8 reproduced global totals within

620%of the observation-based estimate (5606 112PgC;

Fig. 4 and Fig. S8 in the supplementarymaterial). Global

vegetation carbon totals simulated by ESMs varied

between 340 (MPI-ESM-MR) and 930PgC (BNU-

ESM) with a multimodel mean and standard deviation

of 550 6 160PgC. It should be noted that some ESMs

showed nearly opposite performance at the global scale

to those at the other spatial scales (Tables 2 and S2).

MIROC-ESM and MPI-ESM-MR, which performed

very well at the gridcell scale, had very large biases in the

global sums (underestimated by 36.6% and 38.1%,

respectively). In contrast, CESM1(BGC) and NorESM1-

ME simulated very similar global sums as the observa-

tions (within 65%), although their agreements with the

observations at the other two scales were poor.

d. Global NPP and residence time of vegetation
carbon

Global annual NPP simulated by ESMs was generally

of the same order of magnitude as MODIS NPP (Fig. 5

FIG. 2. A matrix of the coefficient of determination R2 of linear

regression of vegetation carbon density between each CMIP5 ESM

and the observations and between CMIP5 ESMs at the grid cells.

TABLE 2. Coefficient of determination R2 of linear regression and RMSE between vegetation carbon of the observations and historical

simulations of 11 CMIP5 ESMs at gridcell (including slopes and intercepts) and biome scales and the absolute differences in vegetation

carbon at global scale.

Models

Grid cell Biome Global

R2 (slope, intercept) RMSE R2 RMSE Absolute differences

BCC_CSM1.1 0.2665 (0.46, 1.22) 3.14 0.7725 24.96 75.35

BNU-ESM 0.1474 (0.85, 2.18) 7.14 0.6380 94.22 374.21

CanESM2 0.1867 (0.51, 1.60) 4.50 0.9396 12.51 18.71

CESM1(BGC) 0.2810 (0.89, 0.10) 4.96 0.5338 67.98 25.83

GFDL-ESM2G 0.1448 (0.48, 3.50) 5.16 0.8669 24.39 105.00

HadGEM2-ES 0.2952 (0.62, 0.72) 3.58 0.7608 31.50 99.39

INM-CM4.0 0.3363 (0.64, 1.55) 3.74 0.9234 15.59 52.68

IPSL-CM5A-MR 0.2927 (0.87, 1.94) 5.28 0.6712 37.61 87.83

MIROC-ESM 0.3685 (0.42, 0.57) 3.01 0.9825 31.83 203.89

MPI-ESM-MR 0.3796 (0.44, 0.32) 3.04 0.8494 32.07 212.12

NorESM1-ME 0.1545 (0.79, 1.11) 7.18 0.5283 66.68 3.53
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and Fig. S9 in the supplementary material), but BCC_

CSM1.1, GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-

MR, andMPI-ESM-MRmodels simulated considerably

higher NPP than the reference data. The residence time

of vegetation carbon of ESMs ranged from 3.7 to 13.6 yr.

Most models had similar or much shorter residence

times than the observations, except for BNU-ESM.

Variation of the global vegetation carbon storage be-

tween CMIP5 models exhibited a more pronounced

relationship with the vegetation residence time than

with NPP (Figs. 5 and S9). After excluding BNU-ESM,

which might contribute too much to the high R2, we

observed a substantial reduction in the R2, but it re-

mained significant at the 0.1 level (R2 5 0.30, P, 0.10).

4. Discussion

Hoffman et al. (2014) found that much of the inter-

model variation in the projected CO2 during the twenty-

first century was tied to the biases that existed during the

contemporary period. Because of this relationship, re-

liable historical simulations of land carbon storage by

ESMs would increase our confidence in the projections

of future land carbon storage and, hence, the future

climate. Overall, vegetation carbon produced by CMIP5

ESM historical simulations had poor agreement with

the observational data. Moreover, we observed little

agreement in the simulations between ESMs. Below, we

discuss the factors contributing to the inconsistencies in

model predictions.

a. Divergent performances of ESMs at different scales

In our study, we found that the relative performance

of ESMs in simulating vegetation carbon depends

strongly on scale (Tables 2 and S2). Completely op-

posite conclusions about the performance of ESMs

could be inferred when evaluating them at different

scales. The performance of BCC_CSM1.1 and BNU-

ESM were the most consistent across all scales. CESM1

(BGC), MIROC-ESM, MPI-ESM-MR, and NorESM1-

ME exhibited opposite performance at the global scale

compared to the other scales. MIROC-ESM and MPI-

ESM-MR performed well at the grid scale and could well

catch spatial distribution patterns of the observations at

FIG. 3. Variability in vegetation carbon of different biomes of the observations and CMIP5

ESMs. Horizontal lines inside the boxes are medians of ESMs for each biome. The bottom and

top edges of boxes stand for the first and third quartiles, respectively. The bars represent the

extreme values (within 1.5 times the interquartile range from the upper or lower quartile).

Color-filled circles represent those models for which estimates were greater or less than 1.5

times the interquartile range from the median. The black triangles represent the observational

values for each biome.

5224 JOURNAL OF CL IMATE VOLUME 28



the biome scale (indicated by higher R2), but they

substantially underestimated the global sums. In con-

trast, the global vegetation carbon stocks simulated by

CESM1(BGC) and NorESM1-ME were very close to

the observed data, even though they had low R2 and

high RMSE at the other two scales. Therefore, it is

critical to apply multiple metrics and criteria when

evaluating the performance of multimodel ensembles.

It should be noted that goodness of fit measured by R2

at grid and biome scales emphasized the match of

spatial distribution between ESMs and the observa-

tions. Thus, if the absolute differences are the major

interest, the slopes and intercepts should be assessed as

well. In contrast, goodness of fit at the global scale re-

ferred to the absolute difference in the global vegeta-

tion carbon between ESMs and the observations.

At the grid scale, it is hard to compare plant functional

types (PFTs) and climate forcing between ESMs and

observations, as well as between ESMs, because each

modeling center adopts its own grid configuration and

representation of PFTs, which can differ considerably

from one another. Greater agreement could be reached at

the biome scale because well-developed satellite-derived

data products for land use and land cover become

available, and climate forcing is better represented at a

larger scale. However, relatively better performance of

ESMs at the grid scale did not necessarily result in better

performance at the biome or global scales. Similarly,

good performance of an ESM at the biome scale might

not guarantee a comparable global vegetation carbon

stock to the observations. This could partly be attributed

to the fact that we calculated the sums of grid carbon

density over a specific region or the globe to get the

respective total carbon storage for a specific biome or

the globe. Aggregation at a coarser scale missed the

variations at a finer scale. High R2 and low RMSE im-

plied that a model captured the observed spatial distri-

bution well, although the slope and intercept of the

regression might deviate away from 1 and 0, re-

spectively, indicating a bias in the model.

There was a large divergence betweenmodel simulations

and the observations and across the models at each scale,

although 8 out of 11 ESMs could reproduce the global

vegetation carbon within the 20% uncertainty range of the

reference data (Fig. 4). We should direct more studies on

the vegetation carbon in tropical and boreal forests (the

latter included temperate rain forests), where higher vege-

tation carbon stocks were observed. Tropical regions may

experience the earliest emergence of historically unpre-

cedented climates (Mora et al. 2013) and, as a result, lose

large amounts of carbon (Ahlström et al. 2012). Boreal re-

gions have been predicted to undergo considerable changes

in NPP over the next century, which, in turn, may change

future vegetation carbon stocks (Todd-Brown et al. 2014).

FIG. 4. Cumulative global vegetation carbon stocks of the observations and CMIP5 ESMs. The

area with diagonal gray lines stands for 620% of the observation value.
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b. Comparison with simulations of soil organic carbon

Since the soil carbon pool and vegetation carbon pool

together determine the bulk fraction of the land carbon

storage, it is useful to compare the performance of CMIP5

ESMs in simulating both vegetation and soil carbon

(Todd-Brown et al. 2013). The performance of ESMs in

simulating historical vegetation carbon was quite similar to

their performance in simulating soil organic carbon: that is,

therewas a poor ability to reproduce the spatial distribution

FIG. 5. (a) Relationship between global NPP and residence time of vegetation carbon from

both the observations and CMIP5 ESMs; (b) relationship between vegetation carbon and NPP;

and (c) relationship between vegetation carbon and residence time of ESMs. The dashed curves

in (a) represent constant values of global vegetation carbon.

5226 JOURNAL OF CL IMATE VOLUME 28



of the observed data at grid cells, but this was improved

greatly at the biome scale. The R2 of the regression for

vegetation carbon simulations ranged from 0.14 to 0.38 at

the grid scale and from 0.53 to 0.98 at the biome scale. The

R2 for soil carbon simulationswas between0.004 and0.15 at

the grid scale (calculated as the square of Pearson corre-

lation coefficients in Todd-Brown et al. 2013) but was en-

hanced to 0.38–0.95 at the biome scale. The grid-scale

simulations of vegetation carbon were better than simula-

tions of soil carbon overall in terms of R2. Interestingly,

large variability of simulated vegetation carbon was found

in tropical and boreal forests with higher vegetation carbon

stocks, similar to the large bias in soil carbon simulated by

ESMs at high northern latitudes, where greater soil carbon

stocks existed (Todd-Brown et al. 2013) andwere subject to

complicated thawing-relevant physics and soil hydrology in

permafrost (Koven et al. 2013).

At the global scale, most ESMs also performed better

in simulating vegetation carbon than soil organic car-

bon, according to the percentage differences between

modeled values and the observations (Figs. 4 and S8;

Anav et al. 2013; Todd-Brown et al. 2013), with the ex-

ception of GFDL-ESM2G, HadGEM2, and IPSL-CM5.

Better performance of ESMs in simulating vegetation

carbon than in simulating soil carbon could be attributed

to better understanding of aboveground than below-

ground processes, as well as better availability of

aboveground data products to tune the models for ac-

curate simulations of the respective key processes.

While Wieder et al. (2013) improved global soil carbon

projections with a newmodel that explicitly represented

microbial mechanisms of soil carbon cycling, such im-

provement might have resulted from an unrealistic

process representation, since the microbial models of

soil decomposition exhibited some properties that have

not been observed (Wang et al. 2014).

It was interesting that MPI-ESM-LR and MIROC-

ESM (average of MIROC-ESM and MIROC-ESM-

CHEM) greatly overestimated the global soil organic

carbon by 143.3% and 103.6%, respectively (Todd-

Brown et al. 2013), but they underestimated the vege-

tation carbon by 39.9% forMPI-ESM-LR and 37.0% for

the average of MIROC-ESM and MIROC-ESM-

CHEM (Fig. S8). Another noticeable phenomenon

was that CCSM4 and NorESM1 (average of NorESM1-

M and NorESM1-ME), both having CLM4 for a land

carbon cycle component, simulated extremely low

global soil carbon (Todd-Brown et al. 2013). However,

CESM1(BGC) (the analogs of CCSM4) and NorESM1

simulated reasonable global vegetation carbon. On the

other hand, GFDL-ESM2G and HadGEM2 simulated

global soil carbon that was close to the observations, but

they got much higher (GFDL-ESM2G) or lower

(HadGEM2) global vegetation carbon than the obser-

vations. When adding soil carbon (data from Todd-

Brown et al. 2013) and vegetation carbon to get overall

land carbon storage, MPI-ESM-LR and MIROC-ESM

(average of MIROC-ESM and MIROC-ESM-CHEM)

overestimated the total land carbon storage by 83.5%

and 60.2%, respectively, compared with the observa-

tions. CESM1(BGC) [using soil carbon of CCSM4 to get

total land carbon for CESM1(BGC)] and NorESM1

underestimated the total land carbon storage by 42.2%

and 39.3%, respectively, indicating that bias in the land

carbon storage was dominated by bias in soil carbon. We

further explored the correlation between simulated veg-

etation carbon and soil carbon of 10ESMs:BCC_CSM1.1,

CanESM2, CESM1(BGC) (using soil carbon of

CCSM4), GFDL-ESM2G, HadGEM2 (average of

HadGEM2-CC and HadGEM2-ES), INM-CM4.0,

IPSL-CM5 (average of IPSL-CM5A-LR, IPSL-CM5A-

MR, and IPSL-CM5B-LR), MIROC-ESM (average of

MIROC-ESM and MIROC-ESM-CHEM), MPI-ESM-

LR, and NorESM1-M (average of NorESM1-M and

NorESM1-M E). We found that the simulated soil car-

bon was negatively correlated with simulated vegetation

carbon (R25 0.53,P, 0.05). This might partly make the

total land carbon stocks more comparable among the

models, even though the total land carbon stocks were

more dominated by soil carbon. Causes for the differ-

ences in soil or vegetation carbon across ESMs could

vary. NPP and soil temperature can explain the differ-

ences in soil carbon between models (Todd-Brown et al.

2013), but, in this study, no significant correlation was

found between vegetation carbon and NPP.

c. Factors determining modeled vegetation carbon

1) CARBON CYCLE STRUCTURE AND

PARAMETERIZATION

Structures of the land carbon cycle in the ESMs

adopted in this study were similar (most with 3 or 4

biomass pools; Tables 1 and S1). Thus, it appeared that

the uncertainties in the simulated vegetation carbon

were not affected by the structures of the land carbon

cycle models. However, at all scales, two models

[CESM1(BGC) and NorESM1-ME] that used the same

land submodel (CLM4) always exhibited very similar

behaviors in simulating vegetation carbon, as shown

both in this study and in Anav et al. (2013). The same

phenomenon was observed for their performance in

simulating soil carbon (Todd-Brown et al. 2013). This

may indicate that parameterization related to model

structures for the land carbon cycle plays an important

role in simulating land carbon storage, but this statement

needs to be confirmed by a separate study, as CMIP5
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protocol does not require models to provide parameter

values. A useful method to test this would be to perform

sensitivity experiments by changing various factors keep-

ing the model structure and the rest of the model param-

eterization fixed, as Ahlström et al. (2013) have done to

determine the roles of climate and atmospheric forcing.

2) NPP AND RESIDENCE TIME

Ecosystem carbon storage is codetermined by NPP

and residence time (Luo et al. 2003; Luo and Weng

2011; Xia et al. 2013). For example, despite the in-

creased carbon input to soils under rising atmospheric

CO2, reduced soil carbon residence time resulted in the

insignificant net effect of increased atmospheric CO2

on the equilibrium soil carbon storage (van Groenigen

et al. 2014). In this study, however, the variability of

modeled vegetation carbon across the ESMs was pre-

dominantly explained by the residence time of vege-

tation carbon and not by NPP (Figs. 5 and S9). Such a

phenomenon was also found for uncertainty in the

projected terrestrial vegetation (Friend et al. 2013). In

this study, NPP of BNU-ESM was close to the obser-

vations, but it had much longer vegetation carbon

residence times, resulting in a substantially higher

vegetation carbon pool size than observed (Figs. 4, 5).

The shorter vegetation carbon residence time of

MIROC-ESM and MPI-ESM-MR made their total

vegetation carbon pools very low, although MPI-ESM-

MR had relatively high NPP. Disagreements still ex-

isted in simulations of NPP between CMIP5 ESMs

(Fig. 5 and Todd-Brown et al. 2013) and were even

worse in simulations of vegetation or ecosystem resi-

dence time (Fig. 5 and Yan et al. 2014); therefore,

improvement of simulations of vegetation carbon

residence time would be crucial for reducing the bias in

the projections of vegetation carbon storage (Luo and

Weng 2011; Friend et al. 2013; Todd-Brown et al. 2013;

Yan et al. 2014). Improved representation of PFTs, allo-

cation coefficients, and longevity of different biomass

pools in models could improve simulations of vegetation

carbon residence time [see also section 4c(3)].

3) PLANT FUNCTIONAL TYPES

As discussed above, variability of the simulated

vegetation carbon storage by ESMs could be explained

by the residence time, a trait related to PFTs (i.e.,

longevity of individual pools). Within a specific PFT,

different biomass pools have different residence times,

so allocation of NPP to different pools will also affect

residence times of vegetation carbon substantially.

Therefore, improved representation of regional PFTs

and their respective prescribed allocation coefficients

and longevity of different biomass pools are critical

components for improving ESMs’ performance. The

number of PFTs represented in these ESMs varied

from 5 to 15 (Table 1), and the combinations within

grid cells differed considerably between ESMs (please

refer to the references listed in Table 1 for each ESM).

Therefore, improvements in the representation of

PFTs toward better agreement between models might

be a first step. The use of the same land-cover dataset

between models is also important to elucidate other

sources of models’ uncertainty (e.g., model structures).

Agreement is likely to be achieved with remote sensing

land-cover products. Syntheses of published literature

on allocation coefficients and the longevity of each

biomass pool would be a useful way to improve their

realistic representation in the ESMs. Data assimilation

is a potential method to help optimize the parameter-

ization associated with the allocation coefficients and

longevity of biomass pools, given that we can generate

enough observational datasets.

From the above discussion, we recommend that ESM

developers use consistent and well-developed land-

cover products together with compiled datasets on al-

location coefficients and the longevity of different

biomass pools to improve the accuracy of vegetation

carbon projections at the regional scale first (e.g., the

biomes). This is feasible because there are more avail-

able datasets at regional scales, especially for those

critical biomes, such as the tropical rain forests and

boreal forests. Reich et al. (2014) used temperature-

dependent needle longevity and nitrogen concentration,

as well as biomass allocation in a land surface model

instead of constant values. They found the realistic pa-

rameterization of these variables improved predictions of

carbon cycling processes, such as leaf area index and gross

primary production in boreal forests, compared with ob-

servations from flux sites. Next, model developers can

tune the ESMs to fit the global value. At a finer scale (i.e.,

at grid cells) it is currently not realistic to reach a very

ideal goodness of fit because of the lack of global data-

bases of biomass in which thousands of site-level mea-

surements are compiled into grid values and can be used

as benchmarks.

4) OTHER FACTORS

Because of the tremendous challenges in conducting

investigations of vegetation carbon at the global scale,

the benchmarks for evaluating performance of ESMs in

simulating global vegetation carbon storage are highly

limited, although biomass has been studied for quite a

long time. As the only available contemporary dataset at

the global scale, it is likely that the Gibbs (2006) dataset

had uncertainties related to measurements or estimates,

although the global vegetation carbon storage and the
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spatial distribution were reasonable based on our knowl-

edge of biomass carbon. However, this dataset was

compiled using multiple approaches, and it was prob-

lematic to quantify the uncertainties. The lack of un-

certainty analysis of the observations might impose some

limitations but will not change our major conclusions.

Moreover, our results from model intercomparisons can

provide insights into the uncertainties in the simulated

vegetation carbon and possible causes. While further ef-

forts are needed to develop more robust global biomass

databases with well-demonstrated uncertainties, the use

of regional datasets is an alternative option to move

forward, in particular those from important regions in

terms of vegetation carbon storage, such as data products

for the tropical regions (e.g., Saatchi et al. 2011).

For selected benchmarks, the metrics adopted to

evaluate model performance could affect the outcome

differently (Luo et al. 2012). Using the same reference

data, we obtained slightly different performance in

vegetation carbon simulations by CMIP5 ESMs from

those found in Anav et al. (2013). Both studies have

found that the goodness of fit changed considerably at

different scales, but the goodness of fit at the global scale

showed some difference between the two studies. Given

the small difference in time of output of the ESMs se-

lected, the global sums were very close between the two

studies, and, therefore, the selected metrics are another

factor that could bring a different understanding of

model behaviors. They used the normalized mean bias

between the models and the reference data to compute

skill scores of ESMs at four scales: global, Southern

Hemisphere, Northern Hemisphere, and tropics.

One possible contribution to the uncertainties across

the models is climate forcing, such as temperature and

precipitation (Piao et al. 2009; Xia et al. 2013). For ex-

ample, simulations by dynamic global vegetationmodels

often resulted in substantially varying results for carbon

balance depending on the choice of forcing from the

general circulationmodels (GCMs;Ahlströmet al. 2012,

2013). GCMs explained the majority of uncertainty in

the projected twenty-first-century terrestrial carbon

balance (Ahlström et al. 2013). Climate forcing alters

the carbon budget through influencing the simulated

NPP and residence time, highlighting again the urgent

demand to improve model representations of NPP and

residence time.

5. Summary

This study evaluated the performance of 11 ESMs

that were involved in CMIP5 in simulating terrestrial

vegetation carbon at grid, biome, and global scales

through model–model and model–data comparisons.

Large disagreements were found between modeled

vegetation carbon and the observations. The simulated

maximum carbon density at grid cells varied by as much

as a factor of 3 relative to the observed values. Perfor-

mances of ESMs at the biome scale were better than at

the grid scale. Even so, the absolute amounts of vege-

tation carbon in different biomes, particularly in tropical

and boreal regions, varied greatly between ESMs. The

global vegetation carbon stocks differed nearly three-

fold among ESMs.

The goodness of fit changed depending on the chosen

spatial scales. For example, the performance of

MIROC-ESM was better at the gridcell and biome

scales thanmost other models in terms ofR2 andRMSE,

but its global sum was very low compared to the ob-

servations. In contrast, global sums of CESM1(BGC)

andNorESM1-MEwere very close to the observed data,

but they had low R2 and high RMSE at finer scales. It

should be noted that R2 and RMSE at the grid and bi-

ome scales emphasized the goodness of fit of spatial

distribution between ESMs and the observations,

whereas goodness of fit at the global scale referred to the

absolute differences between simulations and the

observed data.

We found that the vegetation carbon residence time

(i.e., plant longevity) explained the majority of the

variability in vegetation carbon across ESMs. This

means that the vegetation carbon storage depends

mostly on how long the carbon will remain in the veg-

etation. These findings indicate that parameterization of

residence time and its spatial distributions in ESMs may

be a key factor in controlling the vegetation carbon

simulations. Improvement of other drivers and pro-

cesses that have effects on the residence times, including

harvesting and natural disturbances, are also important

for ESMs to get more accurate predictions of biomass

carbon stocks.
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