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A mechanistic understanding of factors driving forest biomass will help stewards manage carbon storage
in forests. We examined the potential biotic and topographic factors in regulating subtropical forest
carbon storage. We utilized data from the Badagongshan 25 ha (500 � 500 m) forest dynamics plot to
examine the factors regulating the spatial variation of large trees and forest biomass. We mapped forest
biomass and large tree biomass distributions and applied variation partitioning analysis to examine a
suite of topographic and biotic factors related to the distributions. The average biomass of the 25 ha plot
is 252.7 Mg/ha but varied substantially from 39.16 to 1024.53 Mg/ha in the 20 � 20 m quadrats. Overall,
large tree (diameter at breast height P25 cm) density accounted for 71% of variation in forest biomass
distribution. Variance partitioning showed that biotic, topographic and spatial factors altogether
explained 64.8% and 57.5% of the variation in the distribution of forest biomass and large tree density,
respectively. Fractions of variance explained by the convexity and topographic wetness index (TWI) were
much larger than other topographic variables in both distributions. For biotic variables, stem density and
wood specific gravity were important in predicting forest biomass and large tree density distributions.
Both biomass and large tree density showed an increasing trend with increasing convexity, stem density
and wood specific gravity, but decreased as TWI increased. Convexity and TWI explained more variation
among topographic variables, indicating that water deficiency may play an important role in shaping the
distribution of forest biomass and large tree density. In conclusion, the crucial relationship between for-
est biomass and large tree density distribution should attract more attention, and suggests a mechanistic
control of forest carbon storage that may help provide options in forest carbon management.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

A clear understanding of forest carbon balance and its driving
forces at multi-scales is an essential step toward predicting effects
of climate change and formulating policy on forest carbon manage-
ment (Pan et al., 2011; Yu et al., 2014), but also is fundamental for
benchmarking global land models (Luo et al., 2012). Forests have
been shown to be carbon sinks in the Northern Hemisphere, but
their status as sinks remains uncertain (Ciais et al., 1995; Lewis
et al., 2009). Subtropical forests comprise a vast area in China
and have been recognized as important carbon pools and sinks
(Fang et al., 2001; Yu et al., 2014). Overall forest cover is increasing
rapidly due to natural regeneration and reforestation in China’s
subtropical forests in recent years. However, old-growth forests
in this area, which always have high species diversity, are in an
accelerated loss (Brandt et al., 2012). Therefore, there is a pressing
need to quantify and monitor the magnitude of carbon storage or
release during forest recovery (Holl and Zahawi, 2014), both for
natural forests and plantations (Ruiz-Jaen and Potvin, 2011).

Mapping forest biomass spatial distribution is essential for
reducing uncertainties in forest ecosystem carbon cycle models;
it has been studied extensively on continental (Barredo et al.,
2012) and global levels (Kindermann et al., 2008), but seldom been
conducted at the local scale (McEwan et al., 2011; Meyer et al.,
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2013), especially in subtropical forest. Mapping forest biomass
distribution with spatially-explicit information for each recorded
individual can specifically describe biomass variance along a
topographic gradient and detect fine scale relationships of poten-
tial factors influencing the distribution. In recent decades, a large
number of forest dynamic plots have been established with stan-
dard sampling protocols in boreal, temperate, and tropical forest
(Barredo et al., 2012). These plots range from 2 ha to 120 ha (mean
size: 25 ha) in size and are appropriate to characterize the spatial
distribution of forest biomass and examine the factors regulating
forest carbon storage, and provide a platform for monitoring tem-
poral change in biomass pools at larger scale (Anderson-Teixeira
et al., 2015). Despite numerous studies linking environmental
factors to above-ground biomass (AGB) (Laurance et al., 1999;
Holl and Zahawi, 2014), there remains little information on
belowground biomass and forest biomass spatial distribution.

Large trees have attracted considerable attention from ecolo-
gists in tropical and temperate forests, given their disproportionate
importance to structure, function and dynamics in forest
ecosystems (Lutz et al., 2012; McIntyre et al., 2015). Although only
a small proportion of total abundance in a forest, large trees dispro-
portionately possess much of the forest wood volume and biomass
(Slik et al., 2013). Therefore, density of large trees may be a poten-
tial predictor in explaining the observed local to regional-scale dif-
ferences of forest biomass (Paoli et al., 2008; Slik et al., 2010) and
annual net change of AGB (Sist et al., 2014). Further, the proportion
of biomass stored in large trees in mature forest can be tested as a
criterion to assess potential carbon storage for forests in recovery
stages (Brown et al., 1997). Additionally, some studies have found
that large trees were vulnerable to climate change (e.g. drought
stress (Slik et al., 2010)) and thus will potentially lead to loss of
forest carbon as climate changes. Therefore, describing the
distributions of large trees and seeking potential regulating factors
is important to understand forest carbon storage.

Topography is a good predictor in forest ecosystems which usu-
ally relates to other variables that directly influence plant growth,
such as soil type, soil water content, soil nutrients (Luizão et al.,
2004), and light availability (Larsen and Speckman, 2004). Water
tables in transition between slope and valley have been associated
with topographic and soil factors (de Toledo et al., 2012), and more
uprooted and snapped large trees were associated with valleys and
steep slopes (Ferry et al., 2010); especially large trees were more
prone to be uprooted on steep slopes. In this study, we introduced
two topographic variables: topographic wetness index (TWI) and
vertical distance from the channel network (VDCN) (Tarboton,
1997) that have not been previously used in forest biomass studies.
These two variables are important in quantifying effects of topog-
raphy on hydrological processes when hydrological data are lack-
ing (Punchi-Manage et al., 2013). Rainfall is abundant in this
area, so quadrats with better drainage may favor large tree survival
(i.e. less likely to be uprooted). Therefore, we assume that these
two variables could influence distributions of forest biomass and
large trees.

Wood specific gravity is an important functional trait of tree
species and can influences forest ecosystem carbon storage
processes. Small shifts in average wood specific gravity could lead
to large changes in forest carbon storage, which potentially con-
tributes to climate change (Larjavaara and Muller-Landau, 2010).
In an Amazonian forest, wood specific gravity accounted for a large
part of the variance in above-ground biomass along an east–west
gradient (Baker et al., 2004), but Stegen et al. (2009) found no
consistent relationship between wood specific gravity and above-
ground biomass across four Neotropical forests. Intuitively, species
with different functional traits can coexist with each other and bet-
ter partition resources, suggesting species-rich forests can increase
the capacity of carbon storage in forest ecosystems (Kirby and
Potvin, 2007; McEwan et al., 2011). However, the influence of
wood specific gravity and species diversity on subtropical forest
carbon storage has seldom been examined.

The objectives of this study are to: (1) Estimate the forest bio-
mass and map the spatial distribution of forest biomass in the
Badagongshan (BDGS) 25 ha plot; (2) Evaluate how much spatial
variation can be explained by the density of large trees; and (3)
Identify topographic and biotic factors related to the spatial distri-
bution of large trees and forest biomass in subtropical forests.
2. Materials and methods

2.1. Study sites description

Our study site is located in the Badagongshan National Nature
Reserve (BNNR) in the North of Wuling Mountains, central China
(29�46.0410 N, 110�5.2480 E). The forest in the BNNR is a typical
old-growth subtropical evergreen broad-leaved forest that is well
protected. Forest canopy height is about 15 m above the ground
with little human disturbance in the core zone after the 1950s.
This area is characterized as monsoonal humid subtropical climate;
average annual precipitation is 2105 mm, mean annual tempera-
ture is 11.5 �C with a range from 0.1 in January to 22.8 in July,
and average number of rain days is 176, comparable to tropical
rainforest. These meteorological data were obtained at an elevation
about 1300 m in the reserve. Terrain in this area is relatively
complex and undulate characterized by steep slopes, deep valleys,
and flat tops.

The BDGS forest dynamic plot (Fig. 1), a 25 ha (500 � 500 m)
plot in the core zone of BNNR, was established in 2011 as a node
of Chinese Forest Biodiversity Monitoring Network (http://www.
cfbiodiv.org/). Elevation in BDGS plot ranges from 1369.6 m to
1470.9 m and slopes of the 20-m quadrats range from 3.5� to
68.5�. Within the plot, all standing woody stems with
DBHP 1 cm were tagged, mapped, measured, identified to species
and geographic coordinates documented following standard field
procedures (Condit, 1998); liana and bamboo individuals were
not included in this inventory. According to the census, there were
238 tree species belonging to 114 genera and 53 families. A total of
186,556 stems were counted, and the average DBH of BDGS plot
trees was 5.41 cm, while DBH of the largest tree was 117 cm.
Mean stem density was 7418 individuals per ha and mean basal
area was 164.5 m2 ha�1. Dominance of major species in decreasing
order of basal area were Cyclobalanopsis multinervis, Rhododendron
stamineum, Fagus lucida Rehder, Cyclobalanopsis gracilis, Sassafras
tzumu.
2.2. Height–Diameter allometric relationships and wood specific
gravity

AGB models used in this study require height data for each
stem, but measuring individual heights was not practical.
Instead, we measured a subset of individuals’ heights and devel-
oped Height–Diameter allometric models for 25 dominant species
and a community level mixed-species model to estimate height
data for each stem in the plot. Choice of species for height mea-
surement was based on importance values ((relative abundance
+ relative total area)/2) from inventory data. Height was measured
using a measuring pole for trees below 15 m and a Vertex IV
(http://www.haglofcg.com) for taller trees. The Vertex IV
Hypsometer uses ultrasound to measure distances; heights are cal-
culated trigonometrically using angle. In all, 1810 individual
heights were collected for 60 dominant species: at least 20 individ-
uals for each species. We developed Height–Diameter allometric
models with nonlinear equations for 25 dominant species and a
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Fig. 1. Three-dimensional surface topographic map of 25-ha (500 � 500 m) Badagongshan forest dynamic plot (After Wang et al., 2014a.)
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mixed-species model, then selected the best model shape for all
candidate models. Because model shape between DBH and H was
not consistent among species (Feldpausch et al., 2011), five types
of non-linear candidate models were used to predict tree height:
(1) log-linear; (2) log–log; (3) Michaelis–Menten function; (4)
Weibull function; and (5) Gompertz function. Relative squared
error (RSE) and the Akaike information criterion (AIC) were used
to evaluate candidate models. Model comparison based on these
statistics showed that log–log models performed better than the
remaining four models in 15 of the 26 models, so we selected
the log–log model shape as the best model to fit our data for all
25 species-specific models and the mixed-species models
(Table A1).

For the wood specific gravity for each species, we collected 147
samples of 41 species, at least 5 samples each of the 25 dominant
species, and calculated the mean wood specific gravity for these
species. For remaining species, we calculated a mean value for all
species together (Table B1). We used these data sets to estimate
forest biomass for each stem in the plot.

2.3. Forest biomass estimate and mapping

For BDGS plot, we used measurements of diameter, total tree
height and wood specific gravity to estimate forest biomass. A suite
of models were developed to estimate forest above-ground and
belowground biomass of the BDGS plot. Models developed were
based on 147 sampling trees from 25 subtropical common species,
and these sampling trees were selected from around the reserve.
Results of model comparison between the models used in this
study and other subtropical models showed that these models give
a robust estimate for the BDGS plot (Xu et al., accepted for
publication).

Models used in this study were as follows:

AGB ¼ expð�2:334þ 2:118 lnðDÞ þ 0:5436 lnðHÞ
þ 0:5953 lnðqÞÞ; R2 ¼ 0:95: ðA:1Þ

BGB ¼ expð�2:80346þ 2:0441 lnðDÞÞ; R2 ¼ 0:924 ðA:2Þ
DBH is the tree diameter at breast height (cm), H is the total tree

height (m), and q is wood specific gravity (g/cm3).
A correction factor (CF) was used to unbias underestimates

when models were back log-transformed; we calculated the CF
using RSE values from each model based on the Eq. (A.3). The CF
for the AGB model (with height data), AGB model (without height
data) and the BGB model was 1.015, 1.022 and 1.061, respectively.

CF ¼ exp
RSE2

2

 !
ðA:3Þ
2.4. Topographic and biotic factors

The BDGS plot was systematically divided into 625 quadrats
(20 � 20 m). For each quadrat, we estimated six topographic fac-
tors: terrain convexity, slope, aspect, elevation, TWI and VDCN.
The first four topographic factors were computed following the
method in Wang et al. (2014b); another two topographic variables
(TWI and VDCN) were derived using the SAGA GIS software (http://
www.saga-gis.org). TWI is the ratio of upslope area for each quad-
rat to the local slope of that quadrat following Tarboton’s
Deterministic Infinity Method (Tarboton, 1997). The VDCN is the
vertical distance above the channel network in the plot
(Tarboton, 1997; Wang et al., 2014b). Lacking direct hydrological
data, we used these two indexes (TWI and VDCN) to represent
hydrologic processes and as a proxy for plant-available soil mois-
ture (Punchi-Manage et al., 2013).

For each quadrat, we calculated the basal area weighted mean
value of wood specific gravity (WSG). We used basal area, instead
of biomass, to weight wood specific gravity because wood specific
gravity was an input variable in the AGB model (Slik et al., 2013).
Then we calculated species richness and density of stems for all
625 quadrats. We selected wood specific gravity, species richness,
and stem density as biotic factors to examine the relationships to
density of large trees and forest biomass.

2.5. Statistical analyses

Simple definitions of large trees in the literature varied, studies
chose arbitrary thresholds such as DBHP 60 cm (Sist et al., 2014),
70 cm (Slik et al., 2013) or 30 cm (DeWalt and Chave, 2004),
thresholds not favorable for this study. In the BDGS plot, only 31
individuals had DBHP 70 cm and only 105 individuals had
DBHP 60 cm. In this study, the appropriate boundary for distin-
guishing between large and small trees was detected using total
biomass with different sampling scales (0.5%, 1%, 2.5% and 5% of
stems with maximum DBH). The analysis showed that coefficient
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Table 1
Mean forest biomass (Mg/ha�1) (±SD) values (smaller trees and big trees) of the BDGS
plot at different sampling scales.

Percentage
(%)

DBH
(cm)

Forest biomass
smaller trees

CV Forest biomass
large trees

Sample
size

0.5 39.61 190.35 ± 80.83 0.4246 62.32 ± 71.76 625
1 33.1 162.04 ± 68.53 0.4229 90.64 ± 79.47 625
2.5 24.3 115.132 ± 46.71 0.4057 137.54 ± 90.45 625
5 17.95 85.24 ± 37.74 0.4427 167.74 ± 99.78 625

Fig. 2. Distribution of forest biomass among diameter classes in the Badagongshan
plot.
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of variation (CV) for 2.5% of stems was lowest among all four scales
(Table 1). The DBH for 2.5% of stems was 24.3 cm, so we selected
25 cm as a logical DBH threshold to distinguish large and small
trees (Table C1). A simple linear regression was conducted to test
the strength of the relationship between forest biomass and the
density of large trees (DBHP 25 cm).

In order to quantify the relative contribution of topographic and
biotic factors to the spatial distribution of large trees, a variance
partitioning method with multiple regressions was used to
separate the pure and shared fractions for each group of factors
(Borcard et al., 1992). Specifically, we estimated the fraction of spa-
tial variance in large tree density explained by six topographic
variables (convexity, slope, aspect, elevation, TWI and VDCN),
three biotic variables (WSG, richness and density) and two spatial
variables (x and y coordinates). Due to the spatial autocorrelation
of large tree density and the inherent interrelation among biotic
factors and topographic factors, variation partitioning is the
prevailing method to separate the pure and shared proportions
explained by each set of factors.

To account for spatial autocorrelation, a principal coordinate
neighbor matrix (PCNM) was applied to assess the spatial variation
on a 20 m � 20 m scale. Eigenfunctions were computed using a
principal coordinate analysis (PCoA) from a truncated Euclidean
distance matrix, and then filtering negative values because only
positive values can be used as predictors in regression and canon-
ical analyses. Forward selection was used to select the significant
(P < 0.05 after 999 simulations) biotic, topographic and PCNMs,
and adjusted R2 was computed to explain pure effects and joint
effects for each group of factors.

All statistical analyses were conducted in R software
(R Development Core Team, 2012). Community wood specific
gravity was calculated by using the FD package (Laliberté et al.,
2010). The ‘pcnm’ function in the vegan package (Oksanen et al.,
2007) was used to create the PCNM variables and the ‘forward.
sel’ function in the ‘packfor’ package (Dray et al., 2009) was used
to perform the forward selection. Variation partitioning analyses
were computed using the ‘varpart’ function in the vegan package
(Oksanen et al., 2007).
3. Results

Total forest biomass ranged widely from 39.16 to 1024.53
Mg/ha with a mean of 252.7 ± 108.7 Mg/ha in the 20 � 20 m quad-
rats of the BDGS plot; the maximum value of biomass was 26 times
of that the minimum. In order to facilitate comparison with other
studies, we estimated AGB of the BDGS plot at 214.3 ± 94.3 Mg/ha.
Biomass among different diameter ranges followed a normal distri-
bution (Shapiro–Wilk test; p = 0.25), and trees in the 20–25 cm
DBH range accounted for more biomass than other diameter
classes (Fig. 2). Although trees from 1 to 5 cm DBH accounted for
68.78% of stems, they accounted for only 3.35% of biomass.

Forest biomass and large tree biomass were highly variable in
the BDGS plot (Fig. 3a and b). However, biomass changes were
related to topography; the ridges always had higher biomass and
the valleys lowest. Thus, topography, especially convexity may
play an important role in regulating the spatial distribution of for-
est biomass (Fig. 3a). Further, the spatial pattern of forest biomass
and large tree biomass were highly overlapping. Patches with lar-
ger biomass always had higher densities of large trees (Fig. 3b).

Overall, large tree (DBHP 25 cm) density accounted for 71% of
variation in forest biomass (Fig. 4; liner regression results:
y = 0.03x � 0.6785; R2 = 0.7102, p < 0.001).

Variance partitioning of forest biomass showed that 64.8% of
the variation was explained by biotic, topographic and spatial fac-
tors together. Specifically, 43.3% of the variation was explained by
biotic variables, 41.9% by topographic variables and 52% by spatial
variables (76 PCNMs) (Fig. 5a). Among seven topographic variables,
convexity and TWI were significant (p < 0.01) and explained 38.1%
and 4% of biomass spatial variance, respectively. Stem density and
WSG were significant (p < 0.01) biotic variables that explained
39.6% and 3.8% of biomass spatial variance, respectively
(Table 2). Scatter plots of four significant predictors of biomass
showed an increasing trend with increasing convexity, stem
density and wood specific gravity, but decreasing trend as TWI
increased (Fig. 6a–d).

Variance partitioning of the density of large trees showed that
57.5% of variance was explained by biotic, topographic and spatial
factors together; 27.4% of variance was explained by biotic vari-
ables, and 32.3% and 47.3% of variance was explained by topo-
graphic and spatial variables (59 PCNMs), respectively (Fig. 5b).
Factors related to large tree biomass distribution matched those
of forest biomass. Convexity and TWI were significant (p < 0.01)
and explained 30.7% and 1.8% of large trees distribution variance,
respectively. Stem density and WSG were significant (p < 0.01)
for biotic variables and explained 22.1% and 5.5% of large tree dis-
tribution variance, respectively (Table 2). Scatter plots showed that
the same trends as between positive environment variables and
large tree biomass, but the trends were not so obvious (Fig. 6e–h).
4. Discussion

4.1. Forest biomass in subtropical forest of China

One goal of this study was to estimate biomass density for the
BDGS 25 ha plot, an old-growth subtropical evergreen and decidu-
ous broad-leaved forest and compare the estimate with existing
studies for the same forest type. Our estimate assumes that all bio-
mass of each stem is located at the base of the tree. Lin et al. (2013)



Fig. 3. Spatial distribution of forest biomass (Mg/ha) (a) and large trees biomass (DBHP 25 cm) (b) in the BDGS 25 ha plot. Contour lines in the map indicated elevation and
the colors indicate biomass values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Linear regression relationship between large tree density and forest biomass.
The fitted line explained 71% of biomass spatial variance.
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found a 4 ha sampling area effectively captured biomass spatial
variances (error ±10%) in a 24 ha (400 m � 600 m) subtropical for-
est, so we believe our result from such a large sampling was a
robust estimate for the same forest type in this area. A previous
meta-analysis of subtropical forest biomass showed that AGB
Fig. 5. Variance partition results of the forest biomass (a) and large tree
ranged from 169 to 485 Mg/ha (Lin et al., 2012), but most of the
estimates from these studies were based on only a few small and
unrepresentative plots. According to the sampling method in Lin
et al. (2013), only two of the 25 published studies met their crite-
rion. To reduce sampling bias, combined with FDPs which have
reported biomass in subtropical forest (McEwan et al., 2011; Lin
et al., 2012), we suggest that the above-ground biomass value of
subtropical old-growth evergreen broad-leaved forest in China is
210–230 Mg/ha.
4.2. Large trees as drivers of variation in forest biomass

In this study, the density of large trees accounted for more than
70% of spatial variation of forest biomass in subtropical forest,
comparable to the results of Slik et al. (2013) which drew from
three tropical forests. Thus, large trees capture most of the variance
in biomass distribution in various geographic regions. Large trees
stored 52.81% of forest biomass in the BDGS plot, but represented
only 2.32% of stems larger than 1 cm DBH. Therefore, any factors
that influence abundance and mortality of large trees likely plays
an important role in carbon cycling in forest ecosystems. Forests
with more large trees may have larger pools of stored carbon,
and their preservation would protect most of the carbon pools in
world forests (Lutz et al., 2012).
density (b) against topographic, biotic and selected spatial variables.



Table 2
Topographic and biotic factors regulated the distribution of forest biomass and large
tree density.

Forest biomass (Mg/ha�1) Density of large tree

Factors R2 F p value R2 F p value

Topography
Convex 0.381 382.7 <0001 0.307 276.3 <0001
TWI 0.04 42.99 <0001 0.018 16.64 <0001
Biotic factors
Stem density 0.396 409 <0001 0.221 177 <0001
WSG 0.038 42.03 <0001 0.055 47.43 <0001

Fig. 6. Scatter plots demonstrating relationships of forest biomass (a–d) and
density of large trees (e–h), and to four significant environmental predictors
(convexity, TWI, stem density and wood specific gravity).
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4.3. Topographic factors

Topography is a composite variable and can directly and indi-
rectly affect the distribution of forest biomass, the density of large
tree and stand dynamics due to plant physiological limitations (de
Castilho et al., 2006; Baraloto et al., 2011). Species preference to a
specified environmental variable would potentially affect forest
biomass distributions. Therefore, the effects of topography on large
trees and biomass distributions described here were not singly due
to topography itself, but to several environmental factors related to
topography (such as soil fertility and light condition). The BDGS
plot provided explicit description of topographic conditions (six
topographic variables) which we used as surrogates for environ-
mental data (e.g. soil) lacking detail in this study. Partition varia-
tion results showed that topography explained 41.9% and 32.3%
of variation in forest biomass and the density of large tree, respec-
tively (Fig. 5a and b). Of the six topographic variables, convexity
and TWI explained the majority of variation (Table 2).

In the BDGS plot, convexity indices varied from �0.21 to 0.245
with a mean of 0.00014, indicating an undulating topography in
the plot. Forest biomass increased with convexity increasing;
indicating that high biomass occurred in the quadrats with large
convexity located the ridges, and ridges in the BDGS plot were rel-
atively flat. McEwan et al. (2011) also found above-ground biomass
was higher in quadrats with flat ridge terrain at a relatively low
elevation in three FDPs. This result was further corroborated with
above-ground biomass peaked on low ridges (Lin et al., 2012) and
shallow slope in Marshall et al. (2012). Consistent results suggest
that maximum biomass occurs on topographically flat ridges in
subtropical forest.

Convexity is an important variable in regulating large tree den-
sity and indirectly affects biomass distributions. In the BDGS plot,
large trees occurred more on the ridges than in the valleys (Fig. 6).
Ferry et al. (2010) found more uprooted and snapped large trees
along the steep slopes and in valleys perhaps due to shallow soil
and steep slopes. Convexity also influenced dominant species’
abundances and distribution in the BDGS plot (Wang et al.,
2014a). For example, the ridge habitats were favorable for
slower-growing species such as Schima parviflora, which can reach
large sizes and thus large biomass in this area. However, hetero-
geneity of valley topography was greater (exposed large rocks
and small streams are common), the shrub species Hydrangea stri-
gosa and Ficus heteromorpha were common on down slopes and
valley bottoms. Due to frequent disturbances, such as falling trees
and streams flooding in the rainy seasons, these areas had a rela-
tively high density of juvenile pioneer species and overall lower
forest biomass (Ferry et al., 2010).

In this study, TWI also displayed a negative relationship with
forest biomass and large tree density. Areas with a low potential
for water accumulation had a high probability of maintaining high
forest biomass and more large trees (Fig. 6). During rainy seasons,
the rainfall in this area is heavy and soils are saturated. If the rain-
fall rate exceeds the limit of soil can infiltration, surface runoff
occurs and loosened soil particles are transported down the val-
leys. The different waterlogged soil conditions may influence tree
survival of the ridges, slopes and valleys differently (Marshall
et al., 2012). In the plot inventory, we found more uprooted large
trees in the slopes and valleys, but standing dead trees were more
common on the ridge perhaps due to dry soil conditions, this also
been found in Ferry et al. (2010). TWI also influenced tree species
distributions in the BDGS plot, a previous study showed that seven
of the ten dominant species were significantly associated with TWI
and VDCN (Wang et al., 2014b). These common species typically
accounted for a large fraction of biomass.
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4.4. Biotic factors

In the BDG 25 ha plot, stem density varied markedly among
quadrats from 68 to 647 stems and explained 39.6% of biomass
variance. Within a certain range, forest biomass and large tree den-
sity increased with stem density increasing, and then decreased
(Fig. 6). Therefore, maximum forest biomass can be predicted in
the area based on certain stems and more large trees. Paoli et al.
(2008) found that soil fertility had a significant effect on stem
density and aboveground biomass, but the same soil variables
may have opposite effects on different size classes. Therefore, we
speculated that the large variation in stem density and forest bio-
mass could be partly explained by soil fertility. On fertile soils,
relaxed nutrient limitations could facilitate tree growth and
increase tree size and/or stem density, and thus lead to higher bio-
mass: e.g. soil C: N ratio and soil texture coarseness were positively
correlated to stem density in a study by Slik et al. (2010). However,
forests on fertile soil may be more dynamic; tree mortality rate
was high and lead to low biomass when the mortality rate was fas-
ter than growth rate (Russo et al., 2005). In addition, ter Steege
et al. (2003) found that more productive forests always had
relatively higher stem density. Therefore, future work is needed
to explore the effect of soil factors on stem density and forest
biomass.

Community average wood specific gravity (weight by basal
area) explained part of the variation in the distribution of forest
biomass and large tree density and showed positive correlations
in both distributions. The community average wood specific
gravity was also positively related to VDCN (R2 = 0.07, p < 0.001)
and convexity (R2 = 0.035, p < 0.001). The results suggest that ridge
quadrats with many large trees had higher community average
wood specific gravity. Slik et al. (2013) speculated that this vari-
ance may due to species with wind-dispersed seed which needed
large statures to dispersal seeds. In the BDGS plot, the dominant
wind dispersal species were mostly Acer. However, it was still
unclear how these wind-dispersed species influence biomass, so
future work is needed to reveal the mechanism. In addition, wood
specific gravity owing to its wide range also affected forest biomass
and large tree density distributions (Chave et al., 2009). It should
be noted that wood specific gravity is an important variable of
AGBmodels to estimate forest biomass, but the portion of variation
explained by wood specific gravity is minimal, so the effect of this
potential artifact may be limited.

Although species richness did not explain much variation in
either forest biomass or large tree density in this study, it may still
be an important issue in biodiversity and forest ecosystem func-
tion. A growing question in the literature is whether forests with
high diversity are greater sinks sequestering more carbon.
Ruiz-Jaen and Potvin (2011) found that biodiversity can substitute
for allometry models to estimate forest biomass, and the propor-
tion of large trees and forest biomass increases as species richness
increases. In a recent study, species richness significantly predicted
above-ground biomass in two forest plots (McEwan et al., 2011),
which implies that complementarity among tree species for
resource use may affect total accumulated forest biomass. In
addition, discovering the relationship between tree species
diversity and biomass is helpful for understanding biodiversity
and ecosystem function (e.g. productivity), although the relation-
ship between diversity and biomass is controversial (Vance-
Chalcraft et al., 2010). The controversy in part from a pervasive
unimodal pattern (Huston and DeAngelis, 1994) that a
meta-analysis revealed was suitable in all conditions (Mittelbach
et al., 2001). Confounding results suggest that more research is
needed to explore the role of biodiversity regulating forest carbon
storage.
5. Application for forest carbon management

This study suggested that an efficient way to improve forest car-
bon balance could be to preserve large trees from logging (Sist
et al., 2014). As previously discussed, large trees play an important
role in forest community structure and ecosystem nutrient cycling
(Lutz et al., 2012). If these large trees were logged, a large amount
of carbon would be released to the atmosphere. In general, small
young trees may absorb more carbon than large older trees due
to their more vigorous growth. However, a recent study showed
that most species mass growth rate and carbon accumulation rate
in tropical forest increased continuously with tree size
(Stephenson et al., 2014). This indicates that large trees also fix car-
bon compared to small young trees. Large trees not only acted as
carbon reservoirs but also actively carbon sinks in forest, and thus
deserve more attention and protection. Thus, we need to under-
stand old-growth forest processes and how they contribute to
the regional forest carbon cycle.
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