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Abstract. Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It
is crucial to develop approaches for critical assessment of the complex model properties in order to understand
key factors contributing to models’ performance. In this study, we applied a traceability analysis which decom-
poses carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA′)
to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with simi-
lar forcing data, CLM-CASA′ predicted ∼ 31 % larger carbon storage capacity than CABLE. Since ecosystem
carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the
predicted difference in the storage capacity between the two models results from differences in either NPP or τE
or both. Our analysis showed that CLM-CASA′ simulated 37 % higher NPP than CABLE. On the other hand, τE,
which was a function of the baseline carbon residence time (τ ′E) and environmental effect on carbon residence
time, was on average 11 years longer in CABLE than CLM-CASA′. This difference in τE was mainly caused
by longer τ ′E of woody biomass (23 vs. 14 years in CLM-CASA′), and higher proportion of NPP allocated to
woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influ-
ences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ ′ E. Overall,
the traceability analysis showed that the major causes of different carbon storage estimations were found to be
parameters setting related to carbon input and baseline carbon residence times between two models.

1 Introduction

Terrestrial ecosystems play a central role in the global car-
bon cycle as both a reservoir for carbon and as a regula-
tor of atmospheric concentrations of carbon dioxide (CO2)
(Sitch et al., 2015). Future concentrations of atmospheric
CO2 strongly depend on the feedbacks between terrestrial
ecosystems and atmosphere; particularly the balance of car-
bon uptake, driven primarily by CO2 in simulations; and loss
of carbon from the ecosystems, driven primarily by tempera-

ture in simulations (Luo, 2007; Luo et al., 2009; Thornton et
al., 2009). Improving our understanding of the processes by
which ecosystems interact with the atmosphere is of funda-
mental importance for improving models’ predictions (Zhou,
et al., 2012). Global land models are the major tools for in-
vestigating the climate impacts on terrestrial ecosystem car-
bon storage capacity (Luo et al., 2012). Today’s land mod-
els have become very sophisticated due to the inclusion of
a multitude of different processes in the hope of simulating
the real world more accurately. However, the addition of new
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processes not only increases the challenge of understanding
the complex model behavior but also hinders the diagnosis
of uncertainty in model outputs (Luo et al., 2009; Xia et al.,
2013; Rafique et al., 2013, 2016a).

Many studies have been conducted on evaluation and in-
tercomparison of carbon cycle components of land models
(Johns et al., 2011; Taylor et al., 2011; Zaehle et al., 2014;
Rafique et al., 2016b), and most of these studies show large
discrepancies in modeled carbon stocks and fluxes. For ex-
ample, the Coupled Model Intercomparison Project (C4MIP)
reported that carbon uptake responses to a doubling of at-
mospheric CO2 concentrations varied from 100 to 800 Gt
carbon amongst 11 models for the period 1850–2100 years
(Friedlingstein et al., 2006; Arora et al., 2011). Similarly,
Todd-Brown et al. (2013) reported that the present-day total
soil organic carbon simulated by CMIP5 models varied six-
fold ranging from approximately 510 to 3040 Pg of carbon.
Most of these studies use a conventional approach for model
intercomparison where models are analyzed by comparing
their outputs among each other and with reference data set;
however this approach is not sufficient for understanding the
causes of discrepancies in model outputs.

There have been a few studies that attempt to explain some
of these differences in model outputs by attributing sources
of variations. For example, Mishra et al. (2013) identified un-
certainties in modeling soil carbon in permafrost regions but
insufficiently attributed these variations to different compo-
nents of their model due to lack of comprehensive tractable
approach. Wang et al. (2011) decomposed ecosystem mod-
els into several components, such as climate forcing, net pri-
mary productivity (NPP) allocation and decomposition rates.
This study was partly successful in diagnosing uncertain-
ties in simulated carbon dynamics. However, the framework
they used could not adequately address the sources of vari-
ations to their origins thoroughly. For example, this frame-
work was not sufficient to explain the variations in respira-
tional fluxes (i.e. whether they were caused by carbon pool
sizes or turnover rates). Similarly, Todd-Brown et al. (2013,
2014) explained the model differences based on the varia-
tions in NPP, bulk soil decomposition rates and temperature
sensitivity. However, they did not describe the effects of pa-
rameterizations such as NPP partitioning, carbon transfer co-
efficients and decomposition rates of individual pools. These
shortcomings can only be addressed after gaining a more
complete understanding of the model’s fundamental struc-
tural differences and its traceable components controlling the
carbon dynamics.

The traceability framework developed by Xia et al. (2013)
provides a powerful method for attributing the sources of
variations to different components of models. This frame-
work, based on fundamental properties of the carbon cycle,
can be decomposed into few traceable components (Luo et
al., 2003; Luo and Weng, 2011). After carbon is fixed by pho-
tosynthesis, its further fate can be summarized by ecosystem
carbon residence time, which is a length of time a carbon

atom spends in an ecosystem before leaving it via respiration
(Luo et al., 2001; Han et al., 2014). The framework traces
modeled ecosystem carbon storage capacity (Xss) to (i) a
product of NPP and ecosystem residence time (τE). The latter
ecosystem residence time can be further traced to (ii) base-
line carbon residence times (τ ′E), which are a function of
model parameters representing vegetation characteristics and
soil types, (iii) environmental scalars (ξ ) including tempera-
ture and water scalars, and (iv) the external climate forcing.

In this study we applied the traceability framework to de-
compose two commonly used complex land models (CLM-
CASA′ and CABLE) at global and biome spatial scales into
traceable components for better understanding of the sources
of variations in modeled carbon storage capacity. The spe-
cific objectives of this study were to (1) quantify the ef-
fects of NPP and ecosystem residence time in determining
the ecosystem carbon storage and (2) investigate the impact
of parameters (relating to NPP partitioning and carbon trans-
fer coefficients) and environmental conditions in determining
ecosystem’s carbon residence time.

2 Methods

2.1 CABLE and CLM-CASA′ models

CABLE is an Australian land model used for the simu-
lation of land atmospheric exchanges (Kowalczyk et al.,
2006). The biogeochemical model in CABLE is adopted
from CASACNP, a model developed by Wang et al. (2010).
CASACNP consists of tightly coupled carbon, nitrogen and
phosphorus cycles. Like most of other land models, CA-
BLE’s carbon cycle also consists of typical pool and flux
structure. There are nine carbon pools in the CABLE model:
three plant pools, three litter pools and three soil pools. The
carbon partitioning of photosynthetically fixed carbon into
plant pools is controlled by the availability of light, wa-
ter and nitrogen. The carbon transfer among pools is deter-
mined by the lignin/nitrogen ratio and the lignin fraction.
The potential decay rates vary with vegetation types, lignin
fraction and soil texture. The environmental scalar regulates
the leaf turnover rates via limitations of soil moisture and
soil temperature conditions. The more detailed description
of CABLE model is given in Wang et al. (2011) and Xia et
al. (2013).

CLM-CASA′ model combines the biogeophysics of the
CLM with Carnegie-Ames-Stanford Approach (CASA) bio-
geochemistry module (Oleson et al., 2008). The CLM, re-
leased in 2008, is a component of the Community Climate
System Model (CCSM) (Oleson, et al., 2007; Leng et al.,
2013, 2014). CLM examines the physical, chemical, and bi-
ological processes through which terrestrial ecosystems in-
teract with climate. CASA′ simulates carbon dynamics at the
plant functional type (PFT) level beginning with carbon as-
similation via photosynthesis, to mortality and decomposi-
tion, and the release of CO2 to the atmosphere. There are
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three plant carbon pools, six litter pools and three soil pools.
A more detailed description of the model is provided by
Doney et al. (2006).

Biomes for both CABLE and CLM-CASA′ were con-
structed from the 1 km International Geosphere–Biosphere
Program Data and Information System (IGBP DISCover)
data set (Loveland et al., 2000). In CLM-CASA′, however,
the above data set was combined with 1 km tree cover data
set published by the University of Maryland (DeFries et al.,
2000). The CABLE model has 9 biomes (8 used in this
study), and CLM-CASA′ has 16 plant functional types. We
aggregated the CLM-CASA′ output from plant functional
types to the scale of biomes as defined in CABLE. The ag-
gregation of CLM-CASA′ plant functional types into CA-
BLE biomes are described in the Supplement for this pa-
per. Furthermore, the photosynthetic parameters, rate of car-
boxylation (Vcmax) and specific leaf areas (SLA) were taken
from the input files included in models’ packages. The preset
value of Q10 in CABLE was 1.72, 14 % lower than the Q10
value used in CLM-CASA′. The Q10 plays an important role
in determining the temperature sensitivity of soil respiration
(Zhou et al., 2009).

2.2 Mathematical description of carbon cycle and
traceability framework

The carbon cycle in most models share four common prop-
erties: (1) photosynthesis as the starting point of carbon flow
in an ecosystem, (2) partitioning of assimilated carbon into
different vegetation components, (3) carbon transfer is con-
trolled by donor pool, and, (4) first order decay of litter and
soil organic matter. These fundamental properties of the ter-
restrial carbon cycle can be described using the following
equation (Luo et al., 2003; Luo and Weng, 2011).

dX(t)
dt
= BU (t)−A(ξ (E)C)X (t) , (1)

where X(t)= (X1(t), X2(t),. . . , Xn(t))T is a vector of length
n representing the carbon pool sizes. B is an n× 1 vector
representing the partitioning coefficients of the photosynthet-
ically fixed carbon into plant pools. U (t) is the photosynthet-
ically fixed carbon (NPP). A is an n× n matrix representing
the carbon transfer between pools. ξ (E) is an n× n diago-
nal matrix of environmental scalars representing the effects
of temperature and moisture on decomposition rates. C is an
n× n diagonal matrix representing the carbon losses through
respiration at each time step.

The mutually independent properties of all these elements
(B, A, C and ξ (E)) enable us to implement the analyti-
cal framework by decomposing the total ecosystem carbon
storage capacity into its traceable components as described
in Xia et al. (2013). The elements in ξ (E) and U (t) in
Eq. (1) vary with time and climatic conditions, but their long-
term averages can be used to calculate steady-state carbon
pool sizes, Xss, by letting Eq. (1) equal zero for a given Uss

and ξss, as described in Xia et al. (2013):

Xss = [AξssC)]−1BUSS. (2)

The vector Xss represents the steady-state carbon pools. Uss
is the steady-state carbon influx in an ecosystem. The parti-
tioning (B), transfer coefficients and respirational losses (A
and C) in Eq. (2) together determine the baseline carbon res-
idence time (τ ′E):

τ ′E = (AC)−1B. (3)

The baseline carbon residence time (τ ′E) in Eq. (3) and en-
vironmental scalar values describe the total ecosystem resi-
dence time (τE):

τE = ξ
−1
ss τ
′
E. (4)

Thus the ecosystem carbon storage capacity is jointly deter-
mined by the ecosystem residence time (τE) and steady-state
carbon influx (Uss):

Xss = τEUss. (5)

Equation (5) also defines the total ecosystem residence time
as the ratio of carbon storage (Xss) to steady-state carbon
influx (Uss) (τE =Xss /Uss).

The environmental scalar is further separated into the tem-
perature (ξT ) and water (ξW) scalar components which can
be represented as

ξss = ξWξT . (6)

The set of Eqs. (2–6) not only decomposes the carbon storage
capacity into different traceable components in a systematic
way, but also explains the mutual relationships among them.
The additional information on the description of traceability
components can be found at http://ecolab.ou.edu/?research_
info&id=36.

2.3 Model simulations and diagnosis

Modeled carbon dynamics heavily depends on the initial con-
ditions of state variables (carbon pools), which, in land mod-
els, are customarily assumed to be steady-state pools (in the
year 1850). In this study, for the estimation of modeled car-
bon storage capacity and other traceable components, the
steady state of the models was obtained through spin up sim-
ulations. The process of spin up was carried out using the
semi-analytical solution (SAS) method developed by Xia et
al. (2012). For spin up, the models were simulated until the
mean changes in carbon pools over each loop (1 year) were
smaller than 0.01 % yr−1 in each cycle. The CLM-CASA and
CABLE models were forced with the climate forcing data
reported in Qian et al. (2006) and Wang et al. (2010), re-
spectively. The CO2 concentration was set at 375 ppm for
both models’ runs. Inputs for soil texture in both models
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Figure 1. Determination of ecosystem carbon storage (kg C cm−2)
capacity (grey contour lines) by carbon influx (Uss; x axis) and
ecosystem residence time (τE; y axis) (at global and biome level)
between CABLE and CLM-CASA′. The contour lines show the
constant values of ecosystem carbon storage capacity. ENF – ev-
ergreen needleleaf forest, EBF – evergreen broadleaf forest, DNF
– deciduous needleleaf forest, DBF – deciduous broadleaf forest,
shrub – shrub land, C3G – C3 grassland, C4G – C4 grassland. Open
squares in the circle show the global values.

 

 

 

 

 

 

 

Figure 2. Spatial distribution of ecosystem residence time (τE) and
baseline carbon residence time (τ ′E) (at global and biome level)
between CABLE and CLM-CASA′. Abbreviations of biomes are
given in Fig. 1. Circles separate the biomes of CLM-CASA′ and
CABLE. Open squares in the circle show the global values.

were taken from IGBP-DIS data set (IGBP-DIS, 2000). For
both models, the lignin content and CN ratios were assigned
for each plant functional type in the source code (therefore
there was no map of them) and lignin to nitrogen ratios were
calculated from PFT-level CN ratios and lignin content. The

models were run on two spatial resolutions of 2.81◦× 2.81◦

(CLM-CASA′) and 1◦× 1◦ (CABLE). After the spin up sim-
ulations, elements of A, C,B, and ξ (E), as well asU (t) were
stored to calculate their mean values. The obtained averages
were used to calculate the carbon residence time and steady-
state carbon pools (Eqs. 2–4).

3 Results

3.1 Carbon storage in CABLE and CLM-CASA′

The ecosystem carbon storage capacity differed substantially
between CABLE and CLM-CASA′ at both global and biome
level. CLM-CASA′ had 31 % higher global carbon storage
capacity compared to CABLE (Circled in Fig. 1). In both
models, evergreen needleleaf forest and evergreen broadleaf
forest showed the highest carbon storage capacity. How-
ever, evergreen needleleaf forest and evergreen broadleaf for-
est in CLM-CASA′ had 63 and 47 % higher carbon storage
capacity compared to respective biomes in CABLE. Shrub
land, C3G and C4G showed the most agreement between
the two models. A substantial variation was observed in the
simulated NPP and estimated ecosystem residence time at
both global and biome level between CABLE and CLM-
CASA′. All biomes in CLM-CASA′ produced higher NPP
compared to the respective biomes in CABLE. The mini-
mum value of NPP (250 g C m−2 yr−1 for deciduous needle-
leaf forest) in CLM-CASA′ was much higher than the mini-
mum value of NPP (61 g C m−2 yr−1 for tundra) in CABLE.
A similar diverse trend was also observed for the ecosys-
tem residence time. In CLM-CASA′, three biomes (decidu-
ous needleleaf forest, evergreen needleleaf forest and tundra)
showed ecosystem residence time of > 100 years compared
to CABLE. However, C4G in both models represented the
shortest ecosystem residence time in CLM-CASA′ (13 years)
and CABLE (18 years).

3.2 Baseline carbon residence time and its components

Both CABLE and CLM-CASA′ showed large variations in
baseline carbon residence times at both global and biome
level (Fig. 2). The global baseline residence time of 20 years
in CABLE was approximately five-fold larger than the global
baseline carbon residence time of CLM-CASA′. The decidu-
ous needleleaf forest and evergreen needleleaf forest in both
models showed the highest baseline carbon residence times.
The tundra in CABLE showed the minimum baseline car-
bon residence time, whereas it was ranked third highest in
CLM-CASA′. Similarly, the baseline carbon residence time
of shrub land in CABLE was 89 % higher than the baseline
carbon residence time of tundra in CLM-CASA′. In general,
five biomes (evergreen needleleaf forest, evergreen broadleaf
forest, deciduous needleleaf forest, deciduous broadleaf for-
est, shrub land) in CABLE showed baseline residence times
of > 15 years compared to the maximum baseline carbon
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Table 1. Photosynthesis parameter values for different biomes in CLM-CASA′ and CABLE. Abbreviations of biomes are given in Fig. 1.
The relative difference is calculated by CLM-CASA′ minus CABLE and then divided by CLM-CASA′.

Biomes CLM-CASA′ CABLE Difference (%)
Vcmax (µmol m2 s−1) SLA (m2 gC) Vcmax (µmol m2 s−1) SLA (m2 gC) Vcmax (µmol m2 s−1) SLA (m2 gC)

ENF 47 0.009 40 0.018 14.90 −100
EBF 72 0.006 55 0.021 23.61 −250
DNF 51 0.024 40 0.025 21.57 −4.17
DBF 47 0.03 60 0.025 −26.76 16.67
Shrubland 22 0.024 40 0.025 −79.10 −4.17
C3G 43 0.05 60 0.028 −39.53 44
C4G 24 0.05 10 0.028 58.33 44
Tundra 43 0.05 60 0.028 −39.53 44

residence time of 9 years for deciduous needleleaf forest in
CLM-CASA′.

The baseline carbon residence time is dependent on NPP
partitioning coefficients (vector B), carbon transfer coeffi-
cients (matrixA) and decomposition rates (matrix C) (Eq. 4).
All these components of B, A, and C showed substantial dif-
ferences between the two models. CABLE allocated 61 % of
NPP to roots, 23 % to wood and 16 % to leaves (Fig. 3a).
CLM-CASA′ allocated 43 % of NPP to leaves, 16 % to wood
and 41 % to roots (Fig. 3b). Similarly, a large difference in
carbon transfers from live plants to litter and soil was also
observed. In CABLE, the live tissues were partitioned into
three litter pools (including CWD). 59 % of leaf carbon par-
titioned to metabolic litter and 41 % to structural litter pools,
while roots transferred 61 % of their carbon to metabolic
and 39 % to structural litter. A major portion of litter carbon
was released into the atmosphere through respiration losses,
while the remaining was transferred into the soil organic mat-
ter pools (Fig. 3a). In CLM-CASA′, the plant tissues dis-
persed to six litter pools (including CWD) after mortality.
The leaves allocated 62 % of its carbon to surface metabolic
litter and 38 % to surface structural litter. Likewise, the fine
roots allocated 62 % of its carbon to soil metabolic litter and
38 % to soil structural litter. All of the litter pools contributed
to three soil carbon pools which were then interlinked for
back and forth movement of carbon until it was respired com-
pletely (Fig. 3b). CLM-CASA′ and CABLE also differed in
representing their C matrix which was a fraction of carbon
leaving from each pool with values in CLM-CASA′ being
higher than in CABLE, in general.

3.3 Photosynthetic parameters

The magnitude of NPP is one of the two factors that con-
trol ecosystem carbon storage capacity in CLM-CASA′ and
CABLE. Differences in NPP between the two models could
have been caused by differences in model structures, forcing,
and in model parameterization of photosynthesis process. As
illustrated in Fig. 4, there were no significant differences
in models’ climatic forcing, whereas, photosynthetic param-
eters differed substantially. For most biomes CLM-CASA′

had higher Vcmax and SLA values (Table 1), which caused
the NPP to be higher than in CABLE. However, NPP sim-
ulated by CLM-CASA′ was higher than NPP simulated by
CABLE for all biomes, therefore differences in the photo-
synthetic model formulations were likely the most significant
contributor to the differences in NPP between the two mod-
els.

3.4 Climate forcing data

The mean air temperature (11.2± 4.9 ◦C) and precipitation
(973± 457 mm) in CABLE was comparable to mean air tem-
perature (11.7± 5.1 ◦C) and precipitation (967± 490 mm)
in CLM-CASA′ (Fig. 4). A strong agreement between cli-
mate forcing was also observed between the biomes of both
models. However, a few biomes showed substantial varia-
tions in climate forcing between CABLE and CLM-CASA′.
The maximum difference between mean air temperatures
of both models was observed for deciduous broadleaf for-
est followed by tundra and deciduous needleleaf forest, re-
spectively (Fig. 4). CLM-CASA′ showed 18 % higher mean
air temperature for deciduous broadleaf forest compared to
CABLE. In both models, tundra (−8.0± 5.2 ◦C in CABLE;
−5.5± 5.2 ◦C in CLM-CASA′) and deciduous needleleaf
forest (−7.0± 1.4 ◦C in CABLE; −9.8± 1.2 ◦C in CLM-
CASA′) showed much lower air temperature compared to
all other biomes. The maximum differences in precipitation
data between both models were found in C4G, tundra and
deciduous needleleaf forest respectively. In CABLE, C4G
(1018± 491 mm) presented 59 % lower precipitation com-
pared to C4G (1622± 765 mm) in CLM-CASA′. However,
CABLE exhibited 46 and 43 % more precipitation for tun-
dra and deciduous needleleaf forest, respectively, compared
to that of comparable biomes in CLM-CASA′.

3.5 Environmental scalars

The lower environmental scalar limits decomposition rates
and turnover time result in increases of the final ecosys-
tem residence time. The environmental scalars at global
and biome level differed substantially between two mod-
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Figure 3. Schematic diagram showing the carbon cycle in CABLE (a) and CLM-CASA′ (b). Carbon enters the system through photosyn-
thesis and is partitioned among live pools. From live pools, carbon is transferred to litter pools, and from litter pools it is transferred to soil
carbon pools. Values in boxes show the pools residence times. Values outside the boxes show the partitioning and transfer coefficients. The
full names of the abbreviated carbon pools are coarse woody debris (CWD), structural litter (surface and soil), metabolic litter (surface and
soil), surface microbial litter, soil microbial carbon, fast soil organic matter, slow, and passive soil organic matter.
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Figure 4. Distribution of climate forcing data (at global and
biome levels) used for CABLE and CLM-CASA′ simulations. Open
square show the global values. Abbreviations of biomes are given
in Fig. 1.

els (Fig. 5). The global average of environmental scalar
in CABLE (0.34) was considerably lower compared to
that of CLM-CASA′ (0.42). In general, CLM-CASA′ sim-
ulated higher environmental scalar values for most of the
biomes compared to CABLE. C4G, shrub land and evergreen
broadleaf forest were least limited by temperature and mois-
ture with environmental scalars of 0.65 and 0.49, respec-

 

 

 

 

 

 

Figure 5. Determination of environmental scalars by the tempera-
ture and water scalars (at global and biome level) between CABLE
and CLM-CASA′. Open squares show the global values. The con-
tour lines show the constant value of environmental scalars. Abbre-
viations of biomes are given in Fig. 1.

tively. Both models simulated tundra with the highest tem-
perature and moisture limitation of organic matter decompo-
sition.

The global temperature and water scalars in CLM-CASA′

were found to be 16 and 4 % higher than that of CABLE.

Earth Syst. Dynam., 7, 649–658, 2016 www.earth-syst-dynam.net/7/649/2016/



R. Rafique et al.: Divergent predictions of carbon storage between two global land models 655

Figure 6. Schematic diagram of the traceability framework along with the summary of the results obtained in this study. The numerical
values show the percentage increase between two models. Xss – ecosystem carbon storage capacity; τE – ecosystem carbon residence time;
τ ′E – baseline carbon residence time; ξ – environmental scalar; ξT – temperature scalar; ξW – water scalar.

The temperature scalars were strongly dependent on the Q10
value, which was 14 % higher in CLM-CASA′ than in CA-
BLE. The C4G, evergreen broadleaf forest and shrubs in
CABLE and C4G, shrubs and evergreen broadleaf forest in
CLM-CASA′, respectively, showed the highest temperature
scalar values amongst all other biomes, (Fig. 5). The min-
imum temperature scalar was observed for tundra in both
CABLE and CLM-CASA′. Overall, organic matter decom-
position (across the biomes) in CABLE was more depen-
dent on temperature than the organic matter decomposition
in CLM-CASA′. The same diverse pattern of biome level
water scalars was observed in both models (Fig. 5). The de-
ciduous needleleaf forest (0.87) in CABLE and EBF (0.98)
in CLM-CASA′ showed the maximum water scalar values.
Similarly, evergreen broadleaf forest (0.65) in CABLE and
tundra (0.16) in CLM-CASA′ showed the minimum envi-
ronmental scalar values. Overall, the lowest water scalar was
observed in the deciduous needleleaf forest for CLM-CASA′

and the lowest temperature scalar was observed in Tundra
for CABLE. In general, CLM-CASA′ presented higher val-
ues of water scalars for most biomes compared to CABLE.
Furthermore, environmental scalars were mainly determined
by temperature rather than water scalar in both models.

4 Discussion

The traceability framework implemented in this study is an
effective method to characterize the major components of
the carbon cycle represented by two widely used land mod-
els, CABLE and CLM-CASA′. We were able to identify the
differences in modeled carbon storage capacity in an inde-
pendent manner through decomposing the carbon cycle into

its major components of NPP, ecosystem residence time and
environmental scalars (Eqs. 1–6). For example, the global
carbon storage capacity in CLM-CASA′ was substantially
higher (31 %) compared to that in CABLE, primarily due to
37 % higher simulated NPP slightly offset by a lower ecosys-
tem residence time (Figs. 1 and 6). The higher NPP in CLM-
CASA′ was partly attributed to the relatively higher rates of
carboxylation and specific leaf areas (Table 1) compared to
CABLE, but for half of the biomes, the cause of differences
in NPP between the two models was not straightforward, and
might have been a combination of models formulation and
assumptions about autotrophic respiration (Kowalczyk et al.,
2006).

Both models showed a distinctive pattern of NPP partition-
ing and transferring carbon among different pools (Fig. 3)
which resulted in different baseline carbon residence times.
The baseline carbon residence time in CABLE was longer
due to more NPP partitioning into roots and wood, which had
higher residence times than in CLM-CASA′. In biomes, de-
ciduous needleleaf and evergreen needleleaf forests showed
the highest baseline carbon residence times because they par-
titioned the largest fraction of NPP to woody biomass. For
tundra the baseline residence times differed also, likely due
to the partitioning coefficients, because both models simu-
lated similar environmental scalars of 0.1. Previous studies
also reported that partitioning of NPP among different pools
is a significant factor in determining carbon residence time
(Todd-Brown et al., 2013; Rafique et al., 2016a). In CABLE,
the allocation of NPP into plant pools was mainly driven
by the availability of water, nitrogen and light (Xia et al.,
2013), whereas CLM-CASA′ considers only water and light
(Friedlingstein et al., 1999). CABLE and CLM-CASA′ also
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differed significantly in transferring carbon among pools, and
their corresponding respiration loss (Fig. 3). The most obvi-
ous difference was the pattern of carbon transfer from live tis-
sues to litter pools. These carbon transfer rates among pools
directly influence the carbon pool sizes and residence time
(Xia et al., 2013). The more complicated interactions be-
tween soil pools in CLM-CASA′ slightly increase the resi-
dence time but not significantly, because instead of leaving
the system, carbon returns to another pool, thus staying in
the system longer (results not shown).

Environmental scalars strongly influenced the actual
ecosystem residence time and varied substantially across the
biomes in both models. Temperature scalars in both models
showed more diverse distribution than water scalars, indicat-
ing that temperature limitation was more important in deter-
mining actual ecosystem residence time than water limitation
(Todd-Brown et al., 2014). However, water scalars were more
variable across biomes in CLM-CASA′ than in CABLE. De-
spite the similarity of air temperature data used in both mod-
els (Fig. 4), the temperature scalars were found to be different
between the two models due to the considerable difference in
Q10 value, which was higher in CLM-CASA′. It should be
noted that there is some difference in the two forcing in cer-
tain regions, which may propagate into the simulations by
the two models. Nevertheless, the main conclusions are ro-
bust since we mainly focused on the long-term global means
of all variables at steady states.

The traceability framework is an effective method for ex-
plaining the models variations, a major issue identified by
previous studies (Friedlingstein et al., 2006; Wang et al.,
2011; Mishra et al., 2013; Todd-Brown et al., 2013; Zaehle
et al., 2014). Overall, our results showed that the major fac-
tors contributing to the differences between the two models
were primarily due to parameter settings related to photosyn-
thesis, carbon input, baseline residence times and environ-
mental conditions. This study provides information on the
relative importance of model components and source of vari-
ations which are useful for model intercomparisons, bench-
mark analyses and evaluation of additional components in
models. Hence, this framework can be applied to other bio-
geochemical models to better characterize and quantify the
processes that contribute to model differences. For example,
CLM4, VEGAS and CENTURY share similar structure of
carbon cycle modules and thus can be diagnosed through
the traceability framework for evaluating the models’ perfor-
mance.

5 Summary

The modeled total carbon storage capacity in CLM-CASA′

was ∼ 31 % higher compared to CABLE, due to the com-
bined effect of higher NPP and lower ecosystem residence
time. The ecosystem residence time was primarily depen-
dent on the baseline carbon residence time and environmen-

tal scalar. Both CABLE and CLM-CASA′ showed large vari-
ations in baseline carbon residence times, which is largely
influenced by NPP partitioning coefficients (vector B), car-
bon transfer coefficients (matrix A), and decomposition rates
(matrix C). The global average of environmental scalar in
CABLE (0.34) was lower compared to that of CLM-CASA′

(0.42). At biome level, CLM-CASA′ exhibited higher envi-
ronmental scalar values for most of the biomes compared
to CABLE. The difference in environmental scalars between
CABLE and CLM-CASA′ was largely due to the differences
in temperature scalars rather than water scalars. Overall, our
results suggested that the differences in carbon storage be-
tween the two models were largely influenced by parameter
settings related to photosynthesis, baseline residence times
and temperature limitation of organic matter decomposition.
The different NPP values were determined by the differences
in Vcmax and SLA, while the differences in baseline carbon
residence times were determined by differences in NPP par-
titioning and carbon transfer coefficients.

6 Data availability

The data produced and used in this study can be obtained on
request from Yiqi Luo (email: yluo@ou.edu). However, the
source codes for the CABLE and CLM-CASA are located
at https://trac.nci.org.au/trac/cable/wiki and http://www.cgd.
ucar.edu/tss/clm/distribution/clm3.5, respectively

The Supplement related to this article is available online
at doi:10.5194/esd-7-649-2016-supplement.
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