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Abstract

Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with

possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous

analysis (Van Groenigen et al., 2014), we used experimental data to inform a one-pool model and showed that ele-

vated CO2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two-

pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO2 on decomposition

rates. To address this issue, we refit our data to a two-pool soil C model. We found that CO2 enrichment increases

decomposition rates of both fast and slow C pools. In addition, elevated CO2 decreased the carbon use efficiency of

soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical

studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest

that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates.

Keywords: carbon cycle, data assimilation, data-model fusion, priming, soil carbon model

Received 14 April 2015 and accepted 7 July 2015

Introduction

Soils contain about twice as much C as the atmosphere

and three times as much C as live vegetation, and soil

respiration forms a principle component of the global C

cycle (Cias et al., 2013). The soil C pool may therefore

play a key role in modulating climate change, but its

response to future atmospheric conditions is uncertain.

We previously synthesized data on soil C contents, soil

respiration, and soil C inputs from CO2 enrichment

experiments to determine whether the decomposition

rate (k) of soil organic C changed under elevated atmo-

spheric CO2 (Van Groenigen et al., 2014). We offered

two possible explanations for the observed increase in

decomposition: priming (i.e., increased decomposition

of soil organic matter due to increased soil C inputs), or

a CO2-induced increase in soil water content which in

turn stimulated microbial activity. Georgiou et al.

(2015) offer another possible explanation: the increase

in k may have been an artifact resulting from fitting a

one-pool model to data from a multi-pool system. In

this alternative explanation, actual decomposition rates

may not have changed; rather the size of the labile

(hereafter, ‘fast’) C pool may have increased relative to

that of the recalcitrant (i.e., ‘slow’) pool, giving the

impression of a change in k. To determine whether this

mechanism could explain our results, we here estimate

parameters in a two-pool model using data from our

original meta-analysis.

Application of a two-pool soil C model

For our new analysis, we used a two-pool model which

was introduced by Andr�en & K€atterer (1997) (Fig. 1). It

is the same model that was used by Georgiou et al.

(2015) to illustrate the theoretical possibility of the arti-

fact described above. Unlike the models used in Van

Groenigen et al. (2014), this model includes pools with

different turnover rates and it allows for C transfer

from the fast pool to the slow pool; these properties are

essential for the alternative hypothesis proposed by

Georgiou et al. (2015).

To estimate model parameters, we followed the data

assimilation approach outlined by Van Groenigen et al.

(2014). Briefly, the two-pool model was fitted to the

observed soil C data for both the ambient and the
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increased CO2 treatments for each experimental site in

our dataset. We constructed a joint probability density

function (PDF) for the model parameters using proba-

bilistic inversion (Xu et al., 2006). Samples were taken

from the joint PDF using a Markov chain Monte Carlo

technique and were then used to construct marginal

distributions for model parameters. We calculated a

cost function J expressing the difference between mod-

eled and observed soil C data (Luo et al., 2003):

J ¼
Xn

i¼1

CmðtiÞ � CoðtiÞ2
� �

ð1Þ

where n is the total number of sampling dates, each of

which occurred ti years after the start of CO2 enrich-

ment, and Cm and Co are the modeled and observed

soil C pool at time ti, respectively. The cost function

was minimized with a Metropolis-Hastings algorithm,

combined with a convergence test.

The prior distributions of model parameters I, k1 and

k2, and CUE1 were chosen to be uniform between a

lower and upper limit (Table 1). These limits represent

constraints based upon prior knowledge about the

approximate ranges of soil C input (Raich & Sch-

lesinger, 1992), decomposition rates of fast and slow

soil C pools (Trumbore, 2000; Six & Jastrow, 2002; Man-

zoni et al., 2012a), and carbon use efficiency of soil

microbes (Andr�en & K€atterer, 1997; Manzoni et al.,

2012a,b). The application of a two-pool model requires

data on the initial distribution of soil C among the

pools, information that was not available for any of the

studies in our dataset (Van Groenigen et al., 2014). We

solved this issue by introducing an additional model

parameter in our analysis: f, the fraction of the initial

soil C stock presents in the fast soil C pool (Table 1).

The lower and upper limits of the prior distribution of f

were based on the partitioning of soil C between labile

and recalcitrant pools used in conceptual models

(Andr�en & K€atterer, 1997; Trumbore, 1997). We

assumed that within each experiment, f was the same

for ambient and elevated CO2 treatments. We further

constrained model parameters by observations on soil

or microbial respiration and plant growth, see Van

Groenigen et al. (2014) for details. All analyses were

performed in MATLAB R2012b (Mathworks, Natick, MA,

USA).

The model parameters were estimated as the mean of

the sampling distribution generated by the Metropolis–
Hastings algorithm. We then used meta-analysis to

summarize the CO2 effects on model parameters across

our dataset (e.g., Osenberg et al., 1999), using the natu-

ral log of the response ratio as the effect size (Hedges

et al., 1999). METAWIN 2.1 was used to generate mean

effect sizes and 95% bootstrapped CIs (4999 iterations)

(Rosenberg et al., 2000). Effect sizes were weighted by

replication (to give more weight to better estimates),

adjusted by the number of comparisons per experimen-

tal site (to downweight studies with multiple effect sizes

and thus avoid pseudoreplication: Van Groenigen et al.,

2014). Treatment effects were considered significant if

the 95% CI of the effect size did not overlap with 0.

Applying our two-pool approach to the 53 studies in

our original dataset, we found that elevated CO2

increased the decomposition rates of both the fast and

slow C pools (Fig. 2). Elevated CO2 increased the

decomposition of slow C, the dominant C pool, to

almost the same extent as it did the single decomposi-

tion rate, k, in the one-pool model (Van Groenigen et al.,

2014). In addition, CUE1 decreased under elevated CO2,

Fig. 1 Schematic representation of the two-pool soil C model

used in our analysis. This model was adopted from Andr�en &

K€atterer (1997).

Table 1 Prior distributions of parameters (and associated

units) of the two-pool model used in our data assimilation.

For each parameter, the prior distribution was uniform

between the upper and lower limit

Parameter Description

Lower

limit

Upper

limit Unit

I Soil C input 50 650 g C m�2 yr�1

k1 Decomposition

rate of fast pool

0.1 0.9 yr�1

k2 Decomposition

rate of slow pool

0.001 0.1 yr�1

CUE1 Carbon use

efficiency of fast

pool

0.1 0.8 –

f Fraction of

initial C stock

in fast pool

0.001 0.1 –
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a response that further limits soil C storage (because

low CUE1 values cause more C to be respired during

transfer from the fast to the slow pool). Averaged across

all experiments in our dataset, f (the initial allocation of

C to the fast pool) equaled 0.05 (results not shown).

In general, simple models fit to complex dynamics

can yield parameters that are inconsistent with the

inferred mechanistic controls (e.g., �Agren, 2000; David-

son & Janssens, 2006). Thus, in theory, our previous

finding that elevated CO2 induced an increase in the

decomposition rate k (Van Groenigen et al., 2014) could

have been an artifact of applying a one-pool model to a

two-(or multi-) pool system (Georgiou et al., 2015).

However, further analysis (Fig. 2) suggests this was not

the case: decomposition rates in a two-pool model also

increased with elevated CO2. The fact that our one-pool

and two-pool analyses yield similar results further sug-

gests that adding more pools with even faster decom-

position rates (representing labile material such as fine-

root necromass and root exudates) would not greatly

affect the outcome either. The significant drop in CUE1

values under elevated CO2 could possibly be an indica-

tion of increased C expense for N priming, but may also

indicate C overflow respiration due to increased C

availability to soil microbes (Craine et al., 2007;

Manzoni et al., 2012a).

Georgiou et al. (2015) described the possible bias in

applying a one-pool model by estimating k by dividing

soil respiration by the size of the soil C stock. However,

our data assimilation method used a fundamentally dif-

ferent approach (Luo et al., 2011); we directly estimated

k from the change in soil C contents over time and con-

strained these estimates based on the observed

responses of plant growth and microbial respiration.

The two approaches yield different results; for example,

simply dividing respiration rates by soil C stocks yield

an apparent average CO2 effect on k of +21% for the

studies in our dataset, larger than that reported by Van

Groenigen et al. (2014). This suggests that much of the

artifact arises from the estimation methods, and not

necessarily, from the application of a one-pool model.

Consistent with our results, numerous empirical

studies indicate that decomposition rates are not fixed.

For example, meta-analyses show that despite

increased soil C input under elevated CO2, sites with

low N availability accumulate little or no soil C (Hun-

gate et al., 2009), a result that strongly suggests an

increase in decomposition rates. A large body of scien-

tific evidence also shows an increase in soil organic

matter decomposition following the addition of organic

substrate (Kuzyakov, 2010). Collectively, these data

provide strong support for the interpretation that

increased CO2 leads to an increase in decomposition

rates. Trying to fit models with fixed decomposition

rates to these results may therefore lead to incorrect

conclusions, just as fitting oversimplified models may

yield erroneous inferences.

What microbial response caused the increase in

decomposition rates under elevated CO2? Recent stud-

ies suggest that multiple mechanisms might be respon-

sible. For instance, elevated CO2 has been shown to

increase the activity of enzymes associated with decom-

position of recalcitrant soil organic matter (Carney

et al., 2007; Phillips et al., 2011) and to increase decom-

position of soil organic matter by stimulating the

growth of mycorrhizae (Cheng et al., 2012). Our two-

pool analysis does not explicitly represent these or

other microbial responses; rather, it assesses the result-

ing effect of such responses on decomposition rates

(i.e., k1 and k2). As such, our approach provides no new

insights in microbial mechanisms involved in decom-

position processes. It builds upon the approach in

which time series of soil C data are used to estimate

how k-values vary with environmental conditions (e.g.,

Andr�en & K€atterer, 1997; Luo et al., 2001, 2003). We

fully agree with Georgiou et al. (2015) that models

explicitly representing the relation between microbial

dynamics and decomposition rates may increase pre-

dictive power. Such models may also provide mecha-

nistic insight in the role of microbes in mediating the

effect of CO2 on decomposition rates (e.g., Sulman

et al., 2014; Tang & Riley, 2014; Wieder et al., 2015).

Fig. 2 Results of a data assimilation analysis of our soil C data-

set using a two-pool soil C model. The effect of increased CO2

on soil C input (I), decomposition rate of the fast soil C pool (k1),

decomposition rate of the slow soil C pool (k2), and carbon use

efficiency of the fast soil C pool (CUE1), based on a two-pool soil

C model (Fig. 1). Averaged across our dataset, I equaled

283 � 78 g C m�2 yr�1, k1 equaled 0.51 � 0.21 yr�1, k2 equaled

0.06 � 0.02 yr�1, and CUE1 equaled 0.43 � 0.18 under ambient

CO2 conditions (average � standard deviation of posterior dis-

tribution). Results are based on 53 experimental comparisons.

All error bars represent 95% confidence intervals.
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Indeed, earth system models will best capture the

response of decomposition to elevated CO2, if the

mechanisms that alter decomposition rates are known

and incorporated into the models.

Conclusion

Our analyses suggest that decomposition rates of soil

organic matter change after a step increase in atmo-

spheric CO2, for both a one-pool model (Van Groenigen

et al., 2014) and a two-pool model (Fig. 2). Both types of

models are used in earth system models to simulate soil

C changes with climate change (Friedlingstein et al.,

2006), but these models assume that decomposition

rates (k’s) are invariant and do not change with CO2.

This could lead to serious problems with predictions

about long-term soil C storage; constant k’s mean that

increased inputs to soil will lead to proportionate

increases in soil C, whereas increases in k will reduce

the C storage potential of soils and thus the ability of

soil to buffer the Earth from releases of CO2 into the

atmosphere.

What can be done to improve predictions of soil C

dynamics under elevated CO2? We suggest that data

assimilation efforts on soil C dynamics make use of

multi-pool models with flexible decomposition rates.

We also support the suggestion of Georgiou et al.

(2015) to inform models with the use of isotopic data,

and we agree that models that explicitly represent

microbial dynamics may yield important insights. Sev-

eral of these models include equations that can capture

priming effects (e.g., Wutzler & Reichstein, 2013).

However, as the models become more complicated,

they must also be better constrained by empirical data.

For instance, future experiments should include mea-

surements that can be used to estimate CUE (e.g.,

microbial specific respiration) and the decomposition

rates of labile vs. recalcitrant organic matter pools

(e.g., activity of enzymes associated with the decompo-

sition of labile or recalcitrant pools). That said, many

long-term CO2 enrichment experiments have already

finished and can no longer contribute data. As such,

estimation methods (like ours) will be needed that can

deal with the limited data streams. Incorporating

diverse types of data and approaches will be essential

for progress. This integration of models of different

complexity with data of different dimensionality poses

a significant challenge for the global change research

community.
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