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Abstract. Subtropical forests are important carbon sinks and have a huge potential for mitigating
climate change. However, few studies have developed biomass models to give robust estimates of
subtropical forest aboveground and belowground biomass. Although wood density (WD) can greatly
reduce the uncertainty in aboveground biomass (AGB) estimates in tropical forest, it has never been
applied in other ecosystems. In addition, crowns hold a large component of tree biomass and vary among
forest types, so crown dimensions as new variables have been recommended for AGB models. To test the
role of wood density and crown dimensions and to select the best AGB model in subtropical forest, we
harvested and weighted dry mass of 147 trees from 41 dominant species in subtropical forest. In order to
account the belowground biomass (BGB) of these forests, 23 roots systems were excavated following
aboveground harvest. Models with wood density performed better than all those without wood density,
and models with height performed better than those without height, indicating wood density and tree
height (H) are crucial factors in AGB models of subtropical forest. Adding crown radius (CR) did not
improve the model performance. The BGB models with diameter at breast (DBH) in power form were
significant (***p < 0.001). The new AGB models presented here, with wood density and tree height, and
BGB models substantially improve biomass estimates in subtropical forest.
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INTRODUCTION

Accurately quantifying forest carbon stocks
and flux is crucial for understanding the forest
ecosystem services and the importance of forests
on global climate (Watson 2000, Fang et al. 2001).
The forest sink is large based on recent studies,
but varies with locations (Pan et al. 2011).
Previous results show that the forests in high
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latitudes are carbon sinks (Myneni et al. 2001),
but data on carbon circles of subtropical forest
are lacking. A recent study shows that average
net ecosystem productivity (NEP) of East Asian
subtropical forest is 362 = 39 g C m > yr |,
higher than Asian tropical and temperate forest,
and even higher than forests at the same latitudes
in North America, Europe and Africa (Yu et al.
2014). So there is a pressing need to accurately
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quantify and monitor carbon dynamics in sub-
tropical regions.

Due to the uplift of the Tibetan-Himalayan
Highland and moisture supplied by the East
Asian monsoon (Kira 1991), the subtropical
region has four distinct seasons and is character-
ized by two humid, warm summer and a dry,
cold winter. The main forest types are evergreen
broad-leaved, deciduous broad-leaved and
mixed (Yu et al. 2014). China has the largest
subtropical evergreen broad-leaved forest in the
world, which occupies about one-fourth of the
total forest area in China and covers 2.5 X 10°
km? between 23° and 34° N and 102°31’ and 122°
E (Wu 1980). Due to human activities and forest
degradation, the subtropical forests have been
severely fragmented and large areas of forest
changed to farmland over the last century.
However, forest protection and reconverting
farmland to forests have been widely applied
and thus forest cover in some region is increasing
rapidly. Despite the assumed critical role of
subtropical forest in regulating climate change,
there are only rough estimates (based on limited
data) of carbon cycling.

Most biomass studies only focus on above-
ground component, while other pools such as
belowground biomass, coarse debris and litter
have rarely been studied. Tree roots also contrib-
ute significantly to total biomass and forest
carbon storage (Norby and Jackson 2000). Due
to the high labor cost and limited knowledge
about the distribution of root biomass (Bolte et al.
2004), it is very difficult to directly estimate
belowground biomass. Unlike the aboveground
component, studies of belowground biomass
estimates are seldom documented, and models
of belowground biomass are lacking (Lai et al.
2013). In the past few decades, due to a lack of
the information about the size dimensions of
root, tree species, sampling location and climatic
conditions (Bolte et al. 2004). Methods using
ratios of belowground to aboveground compo-
nents have been suggested. These ratios vary
among forest types and this may lead to
extremely biased estimates of total biomass.
One allometric relationship, between stem diam-
eter and coarse root biomass, is recommended
for estimating root biomass estimate.

Many studies have developed biomass models
for different forest types throughout the world.

ECOSPHERE % www.esajournals.org

XU ET AL.

However, predicted biomass values vary greatly
when applying different models, and the greatest
uncertainties are the lack of a standard biomass
model and sampling at different scales (Chave et
al. 2004). Models with just a few sample trees, or
sample trees that are poorly representative, such
as those with crown damage (Chambers et al.
2001), and those with bent, askew or hollow
trunks, can render very different biomass esti-
mates. In addition, some published equations are
several decades old, and specific information
about the models, such as number of sample
trees, species information, location and residual
sum of errors (RSE, very important for calculat-
ing the correction factor when applying log-
transformed models), are lacking and result in
severely biased model estimates of forest bio-
mass.

Allometric scaling laws are often expressed as
a scaling exponent on mass and size and applied
in forest studies (Niklas 2004, Dietze et al. 2008).
For trees, this power relationship between
biomass and covariates such as DBH, tree height
and other variables is prevalent. Diameter is the
most common factor because it is easily acquired,
and because it explains most of the variance in
aboveground models (Goodman et al. 2014).
Thus, diameter is an essential variable in all
AGB models. Although it is more difficult to
measure tree height than diameter, tree height
and diameter are highly correlated for each
species, so we can measure height for a subset
of trees and develop models to estimate all trees
in the forest. Species composition (Baker et al.
2004) and forest structure across subtropical
forests may differ within a region. A potential
adjustment includes using wood density and
crown dimensions in models. Wood density has
been successively applied in one model of
tropical forest (Chave et al. 2014). Likewise,
Goodman et al. (2014) tested the role of crown
dimensions in biomass models, and showed that
models with crown dimensions improved trop-
ical forest biomass estimates. However, wood
density and crown dimensions have never been
incorporated into models for tree biomass esti-
mates of subtropical forest.

In this study, we aimed to (1) test the
importance of wood density and crown dimen-
sions on AGB models; (2) examine the suitability
of published allometric models in subtropical
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Fig. 1. Geographical location of study site compiled
from published literature. The red dot is the study
location, and blue dots are locations of published
literature for estimating forest biomass.

forest; and (3) develop a suite of AGB and BGB
models for the subtropical forest, with a focus on
AGB models with wood density and crown
dimensions which have practical application in
AGB estimates.

MATERIALS AND METHODS

Study sites and data description

Study sites.—This study was carried out in the
Badagongshan National Nature Reserve (BNNR)
in Hunan province, central China (Fig. 1). The
BNNR became a National Nature Reserve in 1983
and is fairly well protected. The forest vegetation
type is broadly classified as evergreen and
deciduous broad-leaf mixed forest (Guo et al.
2013), which covers a large part of China. The
BNNR is characterized by undulating terrain and
the forest is characterized by high diversity,
uneven vertical structure and closed forest
canopy with a canopy height greater than 15 m.
Mean annual temperature is 11.5°C, mean pre-
cipitation ranges from 2105.4 mm to 2840.1 mm,
and rainy days occur about 176 d a~* (Wang et al.
2014).

One 25-ha (500 X 500 m) forest permanent
dynamic plot was established in 2012 in the core
zone of the reserve, with elevation ranging from
1355 m to 1456 m (Lu et al. 2013). Within the plot,
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all standing woody stems with diameter at breast
height (DBH) >1 c¢m were tagged, measured,
identified to species, and mapped based on
geographic coordinates following standard field
procedures (Condit et al. 1998). According to
census data set, 238 species and 186,556 stems
occurred within the plot. The dominant species
include Fagus lucida Rehder. & E.H. Wilson,
Castanea sequinii Dode, Carpinus viminea Wall.ex
Lindl., and Sassafras tzumu (Hemsl.) Hemsl (Guo
et al. 2013). These inventory data were used to
calculate the most common species in the plot
and to develop biomass models.

Destructive sampling.—Due to the high diversi-
ty in the plot, it is logical to develop a simple and
general way to model AGB. Ideally, each species
should have its own AGB model; however, it is
not practical. In total, 147 trees from 41 species
(based on their importance; see Wang et al. 2014)
were destructively sampled from August to
September in 2012. When choosing the time of
harvest, we avoided the period in which leaves
were not matured or had fallen. Due to the
restriction of destructive sampling even for
scientific purposes, we harvested all sample trees
outside of the reserve and did not harvest
protected species.

Before felling, selected trees were identified to
species and DBH was measured. In addition,
height was measured at the top of tree crown
using Vertex IV (http//www.haglofcg.com) and
crown radius was measured as the length from
the midpoint of the trunk to the edge of crown in
four cardinal directions. Crown radius was
calculated as the mean value of the four
directions. Any tree with damaged, hollow
trunks or crown irregularity was avoided. Se-
lected trees were cut down at ground level and
then separated into module large branches (>5
cm diameter), small branches (<5 cm diameter),
bole, leaves and fruit (if present). Fresh mass of
each module was weighed in the field using a
portable electronic balance with a 100-kg capac-
ity scale and 20-g precision; large boles were cut
down and weighted separately.

After felling, four common species (Cyclo-
balanopsis multinervis Cheng et T. Hong, Quercus
serrata Thunb., Machilus ichangensis Rehd. et Wils.
and Carpinus viminea Wall.) were selected for root
extraction. A total of 23 roots from eight species
were sampled. Of these roots, there were five
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deciduous and three evergreen species. We dug a
round hole with radius of 1 m around the stem
and a depth of 0.2 m, removing the upper soil
and exposing the main roots, and then carefully
pickaxed to extract all root components including
minor roots. Roots were then separated into large
roots (>2 cm diameter), small roots (<2 cm
diameter) and stump and weighed. Samples of
each were packed and taken back to the
laboratory.

To calculate moisture content, samples (mini-
mum 300 g) of each module were weighed.
Wood samples were taken as a disk with 3-5 cm
thickness from large branches, small branches
and stems. For stems, two disks were collected,
one for calculating moisture content and the
other for determining wood density. Fresh mass
of each sample was measured with an electronic
balance with 0.1-g precision.

Laboratory work.—A cuboid (minimum 100 g)
was taken across the center of the stem disk. The
fresh volume of each cuboid was measured by
water displacement with a 1000 ml measuring
cylinder. All samples were dried at 103°C to
constant weight, measured and recorded. Wood
density was calculated as dry wood mass
divided by fresh volume, and moisture content
was calculated as fresh mass minus dry mass,
divided by fresh mass (Chave et al. 2009). Tree
crown mass was estimated as the sum of large
and small branches, fruit and leaves.

Assessment of existing models

Based on literature search, there were 19
published equations for estimating AGB in
subtropical forest of China. Of those, 18 estimat-
ed subtropical forests AGB, and one was a global
AGB model (Table 1). For equations published in
1990s, important information was missing, such
as the harvest method, sample size and RSE
values (for calculating the correction factor (CF)
value when models back-transformed). Ten
models contained separate sub-models for leaf,
branch and stem, so we calculated biomass for
each module and summed for total AGB.

We compared the predicted value (pred) of
each model to the observed value (obs) in this
study. Error (kg) was calculated as AGBpreq —
AGB,,,, and relative error was calculated as
(AGBprea—AGBbs)/AGB,ps X 100%. Positive val-
ues mean that the model overestimates AGB and
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negative values indicate underestimates (Good-
man et al. 2014). Models were compared and the
best existing model selected based on these
criteria sum, mean and standard deviation of
true error, mean and standard deviation of
relative error.

Biomass modeling

Based on comparing a large number of
regression models for estimating forest biomass
in published papers, a subset of these model
shapes were chosen for their simplicity and
applied relevance. Allometry relationships be-
tween mass and measure factors DBH, H (total
tree height), WD (wood density) and CR (crown
radius), is often expressed as a power law:

y=ax’+&,e ~N(0,5?%) (1)
or in a logarithmic form:
logy = loga + blogx + & ,&¢ ~N(0,5°) (2)

y represents biomass and x represents variables, a
is the model constant and b is the scaling
exponent of the law (Huxley 1932).

Biomass models in this study were separated
into AGB models and BGB models. For AGB
models, we tested the importance of H, WD and
CR, respectively. Tree height was not always
available from the forest inventory, so we
considered this practical restriction in model
fitting procedure. MCMC methods are primarily
used for calculating the parameter value as we
state in Bayesian rules description later.

Testing the importance of wood density (model I).—
Wood density is an essential explanatory variable
but a new variable for subtropical forest allome-
tric models. Thus, it is necessary to test its
importance in models. Five candidate models (as
follows) were put forward to test the importance
of wood density in model fitting. Wood density
as a single variable or joint with other variables
existed in all five models, given here in decreas-
ing complexity.

In(AGB) = a + bIn(D) + cIn(H) + din(WD) (L.1)

In(AGB) = a + bIn(D*H) + cIn(WD) (1.2)
In(AGB) = a + bIn(D’H X WD) (1.3)
In(AGB) = a + bIn(D) + cIn(WD). (L4)
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Table 1. Summary of errors and relative error s of various models for estimating aboveground biomass in

subtropical forests.

Error (kg) Rel. err (%)
Forest type
Model and location n Variables Form Sum Mean SD Mean SD
QCI EBF, Zhejiang 20 D w! —929.52 —6.32 45.54 —413 2057
ZH1 EBF, Guangdong 15 D C 447.76 3.05 29.91 —-0.76 29
WFI EBF, Hubei ... D w 2239 15.23 35.39 32.6 30.5
X 1T EBF, Hunan D C 2213 15.06 27.51 131 163
ZI'1 EBF, Global o D W 712.89 4.84 28.37 144 25.9
JLI DBF, Fujian 7 D C 326.2 2.22 38.81 —-13.7 26.1
LZI EBF, Guangxi 6 D C —1442 —-9.81 27.73 —-9.63 20.3
FJI EBF, Guizhou 21 D C —1352 —-9.20 27.47 —11.59 19.63
ZHII EBF, Guangdong 45 D W —-9106 —61.95 85.65 —88.16 291
YCI EBF, Fujian 13 D W 1891 12.87 48.16 2.70 28.72
QC I EBF, Zhejiang 20 D’H w 26.69 0.18 81.45 79.3 72.96
SJ1 EBF, Hunan o D*H C 24026 163.5 150.8 464 303
HKI DBF, Subtropical D*H W 3367 229 41.99 39.13 29.31
XYI EBF, Guangdong ... D*H C 92763 631 833 996 236
JI EBF, Zhejiang 52 D’H W 162.95 1.11 25.98 23.4 32.6
X1 EBF, Hunan o D*H C —1613.8 —10.98 39.81 32.2 61.9
LZIT EBF, Guangxi 6 D*H C —2483 —16.89 34.92 —14.61 19.63
XYI DBF, Hubei 6-12 D*H C —1356 -9.23 29.48 —27.82 22.01
YCII EBF, Fujian 13 D’H W —1426 -9.7 27.53 —18.64 18.70

Notes: In the model column, the author name and number together represent the name of model; in the forest type column,
EBF = evergreen broad leaved and DBF = deciduous broad-leaved forest; the location is the province name; n = the number of
sampled trees; see text for variable abbreviations. Ellipses in row of TX I and TX II indicates missing data. For XYI, 6-12
indicates that the exact number of sampled trees was not known. “W” represents a whole tree model and C represents
combined sub-models. The “1” in the first row means that the model is a linear model. The data sources and references are

listed in Appendix: Table A1.

Model I.1 is the full model with three variables
and four parameters in which variables were
independently fit. D°H as a compound variable
combined with wood density was incorporated
in model 1.2. Model 1.3 is a simplification of
model 1.1, but assumes that ; =2, f,=1and ;=
1lin model I.1. Model L3 for its simplicity was
widely applied in tropical forest biomass esti-
mates (Chave et al. 2005, 2014); it was worth
testing its power in subtropical forest. Model 1.4
has diameter and wood density only and
assumes height data are unavailable.

Testing the importance of crown dimensions (model
II).—In addition to wood density, the importance
of crown dimensions for predicting AGB was
tested using the following four models. Model
II.1 is the most robust model using four
independent explanatory variables. Model I1.2
assumes that height data are unavailable. Model
IL.3 is like model II.1, but the three variables (D,
H, WD) are compounded.

In(AGB) = a + bIn(D) + cln(H) + dln(WD)

+ eln(CR) (I.1)
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In(AGB) = a + bIn(D) + ¢In(WD) + dIn(CR)
(I1.2)

In(AGB) = a + bln(D*H X WD) + cIn(CR). (IL3)
AGB and diameter relationship (model 11I).—

In(AGB) = a + bIn(D*H) (IIL.1)
In(AGB) = a + bIn(D) + ¢(In(D))* + d(In(D))’.
(II1.2)

Model IIL1 is the most popular model type in
previous forest biomass studies, because species
identification can be difficult and other variables
are relatively difficult to acquire. As previously
mentioned, total tree height data are not always
available from field inventories. However, the
relationship between diameter and total tree
height can be described by a power law (Niklas
2004), so we can use a polynomial model with a
single variable (model I11.2) to solve the problem
of missing tree height data.

BGB models with diameter (model IV).—1It is very
difficult to measure the architecture of roots as is
done with trees even when roots are extracted,
but the aboveground part and belowground part
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of trees are highly correlated. Thus, we can
develop a relationship between root biomass and
DBH using the following simple model

In(BGB) = a + bln(D). (IV.1)

Bayesian rules description

MCMCregress function in “MCMCpack”™ was
used to update the parameters in R version 3.1.1
(R Development Core Team 2014). This function
simulates from the posterior distribution by
standard Gibbs sampling, the prior for beta
vector using a multivariate Gaussian prior, and
the conditional error variance for inverse Gamma
prior.

The model used in this study was

yi=xB+e

where error term g; is assumed to be Gaussian
distribution g; ~ N(0, 6®). In this study, y; is mass
for tree with DBH > 1 cm, and variables of the
model included diameter at breast (D), height
(H), wood density (WD) and tree crown radius
(CR).

The B vector is assumed to be of standard,
semi-conjugate priorsc—2 ~ gamma(% %)

22
BNN(b07Bal)
and
2 € do
G gamma(z,z)

where B and o are assumed to be independent;
only starting values for B are allowed because
simulation is done using Gibbs sampling with
the conditional error variance as the first block in
the sampler.

For each model in this study, 1000 iterations
were burned in and 10000 iterations were
retained for each parameter. In order to guaran-
tee that each Markov chain converged to a
unique stationary state, Gelman-Rubin diagnos-
tic method was used to ensure that the within-
chain variation was roughly equal to the be-
tween-chain variation (Gelman and Rubin 1992,
Liang et al. 2015). The “chi95” was chosen to
calculate marginal likelihood of each model.

Selection of candidate models

To ensure accuracy and efficiency, several
evaluation criteria were considered when select-
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ing the best model to estimate tree biomass: (1)
statistical significance of each parameter and the
model itself; (2) minimum residual standard
error; (3) homogeneity of variance and normal
distribution of residuals; (4) non-biasness; and
(5) parsimony (de-Miguel et al. 2014). We used
six kinds of criteria to evaluate all candidate
models. These criteria are (1) R? (2) residual
standard error (RSE), (3) F value, (4) Deviance
Information Criterion (DIC); (5) Bayes Factor
(BF), and (6) model prediction. The DIC value is
similar to Akaike information criterion (AIC) and
commonly used for model selection in Bayesian
methods; the model with the lower DIC score is
better (Spiegelhalter et al. 2002). WinBUGS
software was used to calculate DIC values for
each model in this study. The BF also provides a
way of comparing pairs of competing models, a
likelihood ratio for candidate models. For exam-
ple, the Bayes factor BF;; quantitatively measures
the strength of model i against model j. The
larger the value of BF;, the greater weight of the
data supported by model i to model j (Link and
Barker 2009). We used the same methods for
evaluating the existing models.

REesuLTs

Wood density information

In this study, all sample trees (n = 147) were
identified to species and a total of 41 species were
harvested. Most harvested individuals were of
the 25 most dominant species (>5 individuals of
each) in the BNNR subtropical forest plot. Large
differences in wood density values among
species were found, ranging from 0.43 to 0.699
g/m® with a mean value of 0.569 g/m>. Only eight
species were in the wood density global database
(Chave et al. 2009).We compared the relative bias
of the measured data and the database; seven
species had estimates of wood density 2-10%
lower than the database. In all sample trees,
wood density increased as DBH (<25 cm)
increased to 25 c¢m, but decreased with DBH >
30 cm (Fig. 2).

Evaluating existing models

We found that most published equations were
poor predictors of AGB for our tree samples
(Table 1), primarily due to using combined sub-
models. Only nine models were whole-tree
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Fig. 2. Wood density for different diameter classes from 147 sampled trees in BNNR, China.

models, but QC I was a linear model which was
uncommon in estimating forest biomass. AGB
estimates were better with whole-tree models
than combined sub-models (branch, leaf, stem
sub-models) based on our criteria. True errors
and relative errors (mean and standard error
values) showed large differences between whole-
tree and combined sub-models, but the values
were smaller and ranges were narrower in
whole-tree models.

We show here that models developed from the
same data but using different variables resulted
in very different predictions (e.g., QCI and QClII,
ZHI and ZHII). All models with diameter as the
single variable poorly predicted AGB; both

severe underestimation and overestimation oc-
curred. Models with tree height improved the
estimate in QCII and TXI, but also led to greater
bias.

New models with diameter, height and wood
density

Within our data set (Tables 2 and 3), models
with wood density performed better than all
those without wood density (IIL.1 and 1.3; II1.2
and I4), and models with height performed
better than those without height (II1.2 and III.1;
L4 and 1.1). In addition, the variation explained
by wood density was slightly lower than height
(Fig. 3). All nine models and variable parameters

Table 2. Model parameters for above-ground biomass (AGB; kg dry mass) estimate using diameter (D;
centimeter), total tree height (H; meters), wood density (WD; g em ™) and crown radius (CR; meters)

developed from 147 trees and 41 species.

Code Model type a b c d e
L1 In(AGB) = a + bIn(D) + cIn(H) + din(WD) —2.334 2118 0.544 0.595

12 IN(AGB) = a + bln(D°H) + cIn(WD) —2.672 0.944 0.615

13 In(AGB) = a + bin(D*H x WD) —2.456 0.939

14 In(AGB) = a + bIn(D) + cIn(WD) ~1.823 2411 0578

IL1 In(AGB) = a + bIn(D) + cIn(H) + dIn(WD) + ¢In(CR) ~2.29 2.07 0.555 0.603 0.088
.2 In(AGB) = a + bIn(D) + cln(WD) + dIn(CR) ~1.793 2.385 0.583 0.055

L3 IN(AGB) = a + bIn(D°H X WD) + cIn(CR) —2.373 0911 0.155

1.1 In(AGB) = a + bIn(D*H) —3.062 0.949

1.2 In(AGB) = a + bIn(D) + c(In(D))* + d(In(D))* ~1.959 1.906 0.315 ~0.056
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Table 3. Results of model comparison among nine
candidate models.

Code R? RSE F DIC BF df

L1 0950 0.173 9131 —340.8 3216 3,143
1.2 0939 0.193 1113 —3108 —92.6 2, 144
L3 0987 0.197 2128 —3025 19.08 1,145
14 0932 0207 9882 -—266.6 9.62 2,144
1.1 0949 0.173 6404  —336  29.76 4,142
1.2 0929 0207 6146 —2857 608 3,143
1.3 0997 0.193 1047 —309.8 1959 2,144
IIL.1 0924 0209 1723 —285 992 1,145
1.2 0911 0220 4859  —269 —486 3,143

were significant. Among all models, model 1.1
(with D, H and WD) performed the best; five of
six criteria for model 1.1 were better than model
1.3, but the R? of model 1.3 was higher than
model 1.1, and model 1.3 was the reduced model
of model 1.1 with three coefficients given fixed
value (D=2, H=1, WD =1). The results of trace
plot and Gelman-Rubin diagnostic method for
parameters in model 1.1 also showed that model
L.1 was stable in MCMC simulation (Appendix:
Figs. Al, A2). For those models without height,
model 1.4 was best.

New models with crown radius incorporated

On the basis of the former seven models
(Tables 2 and 3), we added crown dimensions
to the models and results are shown in Table 4
and Fig. 4. The three models (models II.1-11.3)
with crown radius were significant (***p <0.001),
but did not greatly improve AGB estimates. All
model criteria with CR (model I1.1) were slightly

In(DBH)(77.17%)
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lower in CR models than models without CR
(model 1.1), and the coefficients of the three
variables were very close. However, the relation-
ship was reversed when comparing model II.1
and model 13. In general, models with four
variables (D, H, WD and CR) performed better
than models with three variables (D, H and WD),
but the difference was minimal.

Evaluation of all AGB models

Finally, we evaluated the performance of the
nine new equations of this study to estimate tree
AGB on the log-transformed scale (Table 4).
Despite the old models also incorporating vari-
ables D or D?H, our new models performed
better, and the new models were more stable in
predictions of AGB than the older models.
Moreover, the performances of models with
height were more stable than models without
height, but the values may be overestimates. In
addition, models with CR just slightly improved
model performance (Fig. 4). Taken together, with
little improvement to models, crown dimensions
variables do not seem worth the effort for
estimating AGB after tradeoff with measure
error. We will discuss this more in the Discussion.

Above all, model 1.1 with three variables (D, H,
WD) performed the best of all new models, and
model 1.1 with brevity and convenience some-
times performed well. Model 1.4 performed best
when height data were not available from forest
inventories. The recommended models, depend-
ing on whether tree height is available, are as

Intercept(15.55%)

Residuals(4.35%)

In(WD)(1%
|n?£l)(1 .)§§5%;

Fig. 3. Partial variations explained by each of the three variables in the log-transformed AGB models In(AGB) =
a-+bIn(D) + cIn(H ) + dIn(WD) + ¢; the area in pie represented by (type III sum of squares)/(total sum of squares) X

100%.
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Table 4. Errors for each model developed in this study.

XU ET AL.

Error (kg) Rel. err (%)

Model Form Sum Mean SD Mean SD
11 D + H + WD —233.989 —1.592 21.06 1.41 17.01
2 D*H + WD —354.058 —2.409 23.247 1.76 18.88
13 D?’H X WD —385.235 —2.621 23.80 1.84 19.10
14 D + WD —-97.971 —0.667 24.70 2.11 21.31
111 D + H + WD + CR —187.839 —1.278 21.41 1.39 16.79
112 D + WD + CR —63.925 —0.435 25.015 2.1 21.2
113 D?H X WD + CR —299.906 —2.040 23.521 1.71 18.68
1111 D’*H —281.504 —1.915 26.00 2.17 21.56
1112 D+ D*+D? —212.714 —1.447 25.222 2.36 22.34
follows. and BGB was clear (Fig. 5).

When the height data was available, model 1.1
was suggested:

AGB = exp(—2.334 + 2.118In(D) + 0.5436In(H)
+0.5953In(WD)).

When the height data was not available, model
1.4 was suggested:

AGB = exp(—1.8226 + 2.4105In(D)
+0.5781In(WD)).

BGB models with diameter
The model between the BGB and diameter was

BGB = exp(—2.80346 + 2.0441In(D)).

Both parameters in the model were significant
(**p <0.001), the residual sum of error (RSE)
was 0.3437, and the R* value was 0.9241. The
relationship between log-transformed diameters

IN(DBH)(77.17%)

DiscussioN

Evaluating existing models for subtropical forest

We used 19 published equations mainly from
subtropical forest to estimate AGB of 147 sample
trees and test model performance in estimating
AGB. As assumed, most of the models produced
large bias in estimating AGB of these sample
trees. Estimates were particularly poor for
summed sub-models, and these models were
more prone to bias than whole-tree models.
Using sub-models to estimate each module
(stem, branch, leaf and fruit) of tree biomass
was common for subtropical forest, but these
sub-models lacked a theoretical basis to develop
a relationship between each module and mea-
sured variables. The amounts of error propagat-
ed in a suite of sub-models were larger than one
single whole-tree model (Chave et al. 2005). We

Intercept(15.55%)

In(CR)(<1%)
Residuals(5.59%)

In(WD)(1%)
In(H)(1.95%)

Fig. 4. Partial variations explained by each of the four variables in the log-transformed AGB models In(AGB) =
a+bIn(D) + cIn(H) + dIn(WD) + fIn(CR) + ¢; the area in pie represented by (type III sum of squares)/(total sum of

squares) X 100%.
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log(DBH)

2.0 3.0

Fig. 5. Linear relationship between the CR (crown
radius) and DBH (diameter at breast); R* = 0.556, **p
< 0.001.

also tested models with different variables (D,
D?H). Models with just a single variable (D) were
always biased, but models with total tree height
improved AGB prediction.

Our results suggest that AGB predictions from
published models were poor also because there
was not a standard sampling procedure to fit
models for subtropical forest. Some equations
were published several decades ago; they always
chose one or two sample trees with diameters
near the mean value of each plot, resulting in too
few replicates with too little range of size to
produce unrepresentative models. Moreover, all
published models did not provide an RSE value,
so it was difficult to correct the underestimates
when models were back log-transformed. Al-
though significant models can be produced by
these data, models were not suitable for estimat-
ing biomass in other forests. In addition, most
previous models were fit with just a few species,
but the dominant species may change radically in
different subtropical forests within the same
climate zone, so lack of species-specific parame-
ters in models may also lead to biased estimates
when models are applied to new areas. These
biases limit the usability of these models across
the subtropical forest.

In this study, we adopted the method of
sampling trees throughout climate zones of a
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forest type as has been successfully done (good
AGB predictions) in tropical forest (Chave et al.
2004).This new data set includes 147 samples
from 41 species to estimate forest AGB from a
previously unstudied geographic region, and
these species are common species dominating
subtropical forest throughout China. The BGB
model was developed from eight common
species, so these models should provide a better
prediction of subtropical forest biomass.

Variables in AGB models

Wood density is a crucial variable in carbon
cycle studies (Chave et al. 2009) and has been
successively applied to estimate tropical forest
biomass. Wood density can greatly improve
model predictions and produce pool estimate
without it. Ketterings et al. (2001) added wood
density to Brown equations and found that wood
density can reduce 12-18% of total variance and
7-10% of absolute uncertainty. The important
role of wood density in AGB models also was
certified by Chave et al. (2005). Furthermore,
many studies suggest that wood density is more
important as a variable in mixed-species AGB
models than species-specific models because
species differ in functional traits (e.g., wood
density) and tree architecture. In this study, the
coefficient of wood density was about 0.6 and the
value of models with a single compound variable
was as high as 0.94, comparable to Chave (2005).
What’s more, models with wood density can
greatly reduce the RSE and DIC and increase the
R? and the explanation of variance by wood
density was just less than total tree height (Figs.
3, 4). Wood density also improved predictions of
AGB in this study (Table 4). We can thus infer
that wood density plays an important role in
AGB models, and models with wood density
perform better than those without.

Wood density varies strongly among different
geographical regions. Significant decreases were
found in wood density as altitude increased in a
geographical analysis, and there were additional
differences among regions (Baker et al. 2004,
Chave et al. 2009). Wood densities also correlated
to tree architecture and functional traits; for
example, wood density was positively and
significantly correlated to crown radius (Good-
man et al. 2014). In our regression analysis, wood
density was little correlated to crown radius but
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CR-DBH relationship

CR(m)

0 10 20 30 40
DBH(cm)

Fig. 6. Linear relationship between the CR (crown
radius) and H (total tree height); R? = 0.329, <
0.001.

showed a significant and positive relationship to
diameter. This is supported by the decrease in the
coefficient of diameter when wood density was
included in models. So again, models with wood
density can improve AGB predictions.

Tree crown dimensions measures species com-
petition in communities (Gill et al. 2000), but is
seldom adopted as a variable in AGB models
(but see Goodman et al. 2014). Goodman et al.
(2014) found crown radius was an important
predictor of AGB, explained more variation than
any other single predictor, and could replace
total tree height if crown radius existed in
models. In this study, we found that crown
radius generally did not improve model perfor-
mance in models with single variables (Tables 2
and 3); a little improvement was seen in models
in which D, H, WD and CR were together as a
single variable. Variance explained by crown
radius was also limited and less than other
variables (Fig. 4).

Trees always exhibit a positive relationship
between CR and D, and this relationship has
been tested in tropical and temperate broad-
leaved and coniferous forest with a high good-
ness of fit (Hemery et al. 2005). However, the
coefficient of CR is relatively small to other
variables in this study. We assume that the
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CR-H relationship

CR(m)

H(m)

Fig. 7. Log-transformed relationship between be-
lowground biomass and diameter at breast height; R*
=0.924, **p < 0.001.

collinearity between crown radius and other
variables may exist in regression models. We
have tested the linear relationship between CR
and diameter and total tree height, and found
that the R? for each model was 0.556 and 0.329,
respectively (Figs. 6, 7), so the collinearity of
these two variables may be minimal. What’s
more, the relationship between CR and D is
strongly stand-independent (Bartelink 1996) and
dependent on life-history stages. Small trees may
have thinner stems with narrow crowns, whereas
large trees may have wider crowns (lida et al.
2011). However, trees show large plasticity to the
environment especially in different light environ-
ments, altering the relationship between tree
architecture and AGB (King 1996). Thus, the
importance of crown radius as a variable in AGB
models needs further study.

Another important aspect to consider is the
measurement error when applying AGB models
with crown dimensions. Measurement error for
crown dimensions may be larger than error for
diameter, total tree height and wood density. For
example, crown radius should measure the
distance from tree midpoint to edge of crown in
four directions, but on steep slopes, this error
may increase biasing AGB estimates. The error
may be larger than 16%, which is stated in Chave
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et al. (2004) and sometimes even exceed the
range of confidence intervals. Thus, caution
should be taken when incorporating crown
dimensions into AGB models.

Besides wood density and crown dimensions,
total tree height may be a critical variable in AGB
models. Previous studies have shown that AGB
models with total tree height, compared to
models without, improved the accuracy of AGB
estimates. Hunter et al. (2013) found that AGB
values predicted by model with height were 21%
and 25% lower in two sites. In this study, we also
found height improved AGB models based on
our evaluation criteria, and the proportion of
variance explained by height was only a little
lower than that explained by diameter and
higher than variance explained by two other
variables (D and CR).

However, tree height data are difficult to
acquire, especially in dense forest. Treetops may
hide in the forest canopy, and hence height data
are lacking in most previous forest inventories.
Based on this constraint in many studies, we
provided two kinds of models, one model with
height and the other without.

Belowground biomass

In previous studies, diameter at breast (DBH)
was a reliable predictor for estimating coarse root
biomass, and has been tested on many species
(Drexhage and Colin 2001, Bolte et al. 2004). The
relation of root systems to DBH is remarkably
consistent (Santantonio et al. 1977); coarse root
biomass exponentially increases with DBH (Om-
dal et al. 2001). In this study, based on allometry
theory, the relationship between DBH and root
biomass was significant (R*> = 0 .9241, **p <
0.001) and supported our hypothesis.

However, the relationship between root bio-
mass and DBH also shows regional variance.
Drexhage and Colin (2001) compared 11 BGB
models from different tree species in different
sites and found scale constants of the models
ranged from 1.81 to 2.7. Four factors can
influence the relationship. First, it is very difficult
to accurately estimate coarse root mass. Some
fine roots are lost in spite of careful extraction
and the proportion of missing roots increases as
diameter increases. Moreover, a considerable
number of roots suffer from infections by fungi
or pathogens. Omdal et al. (2001) found 42 of 89
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roots with less than 5% of root cross-sectional
area were affected by disease. Some scientists
have assigned a small proportion of biomass to
correct for missing portions, e.g., by 13% (Le Goff
and Ottorini 2001) or 10.8-15.1% (Santantonio et
al. 1977), but these are guesses. In this study, we
carefully extracted the fine roots, and hope that
this reduced ‘missing’ root biomass to an
insignificant quantity.

Second, the relationship between root biomass
and DBH is species-specific. Root structure and
biomass are species-dependent (Vennetier et al.
2014), and large trees may need large coarse
roots to provide structural support. In a recent
study, BGB models from three canopy tree
species were studied in subtropical forest, and
results showed that the scale parameter varied
greatly among species, ranging from 2.15 to 2.69
(Lai et al. 2013). In this study, the root/shoot of 23
roots from eight species ranged from 0.12 to 0.208
kg kg '. So the species factor may play an
important role in root biomass estimates for
forests in different climate zones, but this
influence is not clear and needs further study.

Third, the choice of linear regression on log-
transferred data or nonlinear regression also
influences root biomass estimates (Lai et al.
2013). The most common allometry relationship
uses a simple linear regression on log-transferred
data, but nonlinear regression has also been
recommended (Packard et al. 2011). Lai et al.
(2013) evaluated both methods using a large data
set and analyzed the distribution of statistical
error; linear regression provided a better estimate
of BGB than nonlinear regression for all three
species. However, the reverse transformation
always underestimates biomass and correction
factors should be multiplied (Thies and Cunning-
ham 1996).

CONCLUSIONS AND [MPLICATIONS

Studies of forest biomass are not distributed
evenly throughout the globe, and models with
large datasets have only been developed for
tropical forests (Chave et al. 2014). However,
subtropical forests deserve more attention be-
cause of their large carbon sink and dynamic
carbon cycle. There is an urgent need to develop
a suite of robust allometric models to estimate
forest aboveground and belowground biomass.
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This study shows that allometric models with
wood density included can improve model
performance over those without wood density.
Crown dimension was tested as a new variable
which further improved model estimates (Good-
man et al. 2014). A model for estimating
belowground biomass of subtropical forest was
also developed in this study.

By testing the published models on new data,
we found that most of the existing equations
rendered poor estimates for AGB for our 147
trees, primarily due to using combined sub-
models. Models developed from the same data
set but using the different variables showed
major differences in model predictions. Models
with height data did not consistently improve
model performance. The new models, which
combine diameter, total tree height and wood
density, performed better than models without.
Although substantial differences in species com-
position and forest structure occur geographical-
ly, AGB and BGB models developed in this study
contained most of the dominant species in
subtropical forest and showed promise for
improving subtropical forest biomass estimates.
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