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Abstract Forests have been recognized to sequester a substantial amount of carbon (C) from the
atmosphere. However, considerable uncertainty remains regarding the magnitude and time course of
the C sink. Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties
in prediction of forest C sink potential. In this study, we developed a stepwise data assimilation approach to
combine a process-based Terrestrial ECOsystem Regional model, observations from multiple sources, and
stochastic sampling to inversely estimate carbon cycle parameters including carbon sink at different forest
ages for evergreen needle-leaved forests in China. The new approach is effective to estimate age-dependent
parameter of maximal light-use efficiency (R2 = 0.99) and, accordingly, can quantify a relationship between
forest age and the vegetation and soil C sinks. The estimated ecosystem C sink increases rapidly with age, peaks
at 0.451 kgCm�2 yr�1 at age 22 years (ranging from 0.421 to 0.465 kgCm�2 yr�1), and gradually decreases
thereafter. The dynamic patterns of C sinks in vegetation and soil are significantly different. C sink in vegetation
first increases rapidly with age and then decreases. C sink in soil, however, increases continuously with age;
it acts as a C source when the age is less than 20 years, after which it acts as a sink. For the evergreen
needle-leaved forest, the highest C sink efficiency (i.e., C sink per unit net primary productivity) is approximately
60%, with age between 11 and 43years. Overall, the inverse estimation of carbon cycle parameters can make
reasonable estimates of age-dependent C sequestration in forests.

1. Introduction

The forest ecosystem plays a significant role in long-term carbon (C) sequestration [Pan et al., 2011] and the
mitigation of global warming caused by anthropogenically emitted carbon dioxide [Intergovernmental Panel
on Climate Change, 2007]. However, considerable uncertainty remains regarding the fate of this forest C sink
over both short and long timescales [Luyssaert et al., 2007]. And the best way tomanage forests to store C and
to mitigate climate change is hotly debated [Bellassen and Luyssaert, 2014]. Because the net C accumulation
by an ecosystem depends more heavily on forest age than on climate over long time scales [Chapin et al.,
2002], the improved understanding of forest age in influencing forest production, decomposition, and net
C gain/loss is crucial for both quantification of long-term forest C sequestration and forest management
under climate change [Pregitzer and Euskirchen, 2004; Hui et al., 2012; Anderson-Teixeira et al., 2013]. The
quantitative relationship between the C sink (i.e., net ecosystem production (NEP)) and forest age is also
important for parameterization of forest growth processes in carbon cycle models [Ryan et al., 1997; Williams
et al., 2012] and for determination of relative influence of climate and disturbance on C stocks and fluxes
[Law et al., 2004].

The magnitude of a forest C sink is determined by a combination of intrinsic factors, which are commonly
represented by the empirical relationship between C sink and stand age [Acker et al., 2002; Ryan et al., 2004;
Wirth, 2009; Hudiburg et al., 2009], and extrinsic factors, which reflect the integrated effects of environmental
conditions [Law et al., 2002; Hember et al., 2012]. Forest successional dynamics is related with forest age and
the successional stages usually covary with age. In most cases, the age response of a C sink consists of a rapid
initial increase followed by a gradual decline to a new steady state [Chen et al., 2003; Hudiburg et al., 2009].
Although this pattern is widely supported by chronosequence observations of C stocks [Thornton et al., 2002;
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Bond-Lamberty et al., 2004; Pregitzer and Euskirchen, 2004; Gough et al., 2007; Yang et al., 2011] and forest-
atmosphere net CO2 exchange [Barford et al., 2001; Amiro et al., 2010; Goulden et al., 2011], the precise
relationship between forest C sink and forest age remains poorly characterized because it varies with spatially
heterogeneous climate, terrain, and soil properties [Williams et al., 2012; Kashian et al., 2013]. A large number of
field observation sites are necessary to distinguish the potential impacts of these extrinsic factors.

Several methods are commonly used to estimate the relationship between the C sink and forest age. One basic
approach is the chronosequence approach [Kashian et al., 2013], which is based on the observations of carefully
selected age sequences of forest stands. Based on the field observations (e.g., tree diameter, height, wood incre-
ment, age, coarse woody debris, and species), the species-specific allometric equations were used to estimate
live and dead biomass stores, net primary productivity (NPP), and mortality [Hudiburg et al., 2009]. The plot
locations were usually selected using a hierarchical random sampling design based on climate, forest type,
and age [Law et al., 2006]. However, at the biome level, this approach is inevitably limited by the cost of
establishing the many replicate chronosequences necessary to understand biome variability and the inter-
annual variability caused by short-term climatic variability [Pregitzer and Euskirchen, 2004].

Another method is the eddy covariance method [Baldocchi et al., 2001; Baldocchi, 2008], which uses flux
towers to monitor and quantify net C exchange between forests and atmosphere and then build the
statistical relationship between C sink and age [Peichl et al., 2010; Coursolle et al., 2012; Baldocchi, 2008].
For example, Yu et al. [2014] built a NEP-age statistical model based on 34 forest sites of net C exchange
observation in the East Asian monsoon region and found that 48.7% variation in observed NEP could be
interpreted by forest age. However, the number of forest flux towers is quite small, and the distribution of
observation sites is quite uneven around the world. For instance, there are only two evergreen needle-leaved
forest sites located in China [Yu et al., 2013]. Therefore, the potential impacts of local environmental factors, such
as terrain and soil properties, may be high [Peichl et al., 2010]. In addition, as the observed value from flux tower
is the net C exchange between atmosphere and ecosystem that contains all components of vegetation,
litter, and soil carbon pools [Baldocchi et al., 2001], its observation alone was impossible to directly estimate
the relative contributions of carbon sinks for vegetation and soil pools. As a result, the observations from
flux towers were usually used in conjunction with ecosystemmodels or biometric data and remote sensing
to improve the modeled carbon fluxes [Baldocchi, 2008].

Process-based models represent another method used to simulate the age-related C sink or fluxes [Williams
et al., 2012; Raymond and McKenzie, 2013]. Ecosystem C sink can be characterized in models by two sets of
parameters related to C influx, residence time, and state variables of pool sizes at a given time [Luo and
Weng, 2011]. The magnitude of C pool at steady state is determined by its C influx and residence time
[Carvalhais et al., 2014]. When themodeled pool sizes at the time are below the steady state pool sizes, forests
sequester C. The difference between the steady state pool sizes and modeled pool sizes at a given time is the
sink capacity, or disequilibrium [Luo and Weng, 2011]. Thus, to simulate age-dependent forest C sink, it is
essential to not only estimate C influx and residence time but also the age-dependent parameters (e.g., max-
imum of light-use efficiency).

Data assimilation is currently a potential approach to quantify the dynamic disequilibrium (i.e., age-dependent
C sink) of the terrestrial carbon cycle [Luo et al., 2011; Luo and Weng, 2011]. It assimilates multiple sources of
information, such as ground-based field observations, remote sensing-based satellite monitoring, andmechan-
istic process models together to estimate C influx, residence times, and the disequilibrium [Raupach et al.,
2005; Wang et al., 2009; Luo et al., 2011; Kuppel et al., 2012]. Our previous study indicated that the widely
available but spatially isolated biometric observations (i.e., NPP, biomass, litter, and soil organic carbon)
can be effectively integrated to estimate the magnitudes of C sinks at nonsteady state [Zhou et al., 2013].
Biometric observations are much easier to measure than NEE observation by flux towers and thus available
atmany geographic regionswithmuch rich site information. Based on the samples of age-dependent biometric
observations, the age-dependent C sink can be inversely estimated.

To better simulate the dynamics of carbon cycle in a process-based model, we need to explicitly express the
quantitative relationships (e.g., what kind of function form) between forest age and the age-related fluxes
and parameters. As a result, one of the main objectives in the present study was to inversely estimate these
feasible age-dependent relationships using the age-specific observation subsets and then to build suitable
statistical relationships among them. Specifically, we aim to inversely estimate a quantitative relationship
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between the magnitude of the C sink and forest age from multiple sources of data and to address two
scientific problems for evergreen needle-leaved forests in China: (1) the temporal dynamics of ecosystem
C sink, i.e., the quantitative relationship between the forest C sink (i.e., the magnitude and efficiency) and
forest age, and (2) the differences in the C sink rate and duration between vegetation and soil pools and
their implications for C sink evaluation and long-term forest C management.

2. Data and Methods
2.1. Assimilated Data

Eleven data sets related with forest age were used in this study to estimate age-related C sink parameters
and to build the statistical relationship between ecosystem C sink and age. These data sets included three
age-related NPP data sets (i.e., NPP in leaves, stems, and roots), each containing 588 data points [Luo, 1996],
five age-related biomass data sets (i.e., biomass of leaves, stems, and roots in three soil layers), each con-
taining 588 data points [Luo, 1996], and three SOC data sets for the three soil layers, originating from the
spatially explicit SOC map with 1 km spatial resolution, which was generated by Shangguan et al. [2013]
from 8979 soil profiles. There are two main reasons for us to use this gridded SOC data set. First, it con-
tained the most extensive observation sites and therefore could better represent spatial heterogeneity.
Second, this data set was developed for land surface modeling and therefore contains comprehensive
information on physical and chemical attributes of soils and on vertical distribution that meets the soil
submodel scheme (i.e., 0–100 cm). Because information on forest age was unavailable for most of the soil
profiles, the spatial grids around the locations of NPP and biomass observations were used to represent the
forest age-related SOC. That is, we first obtained latitude and longitude values from NPP and biomass
observation sites where forest ages were available and then extracted the corresponding SOC values from
9 × 9 grids centered on these sites (Figure 1). We used the means of the 9 × 9 grids to represent the SOC of
corresponding sites, instead of one grid per site location, to diminish possible errors in the spatial data pro-
cesses. The detailed distribution of these forest age-related site observations (NPP and biomass) and their
corresponding SOC map are illustrated in Figure 1, and the summarization of data sets list in Table 1.

To estimate age-independent baseline C residence times for litter and SOC pools under steady state
assumption, 27 litter and 15 SOC observations at the old forest site were collected from the literature

Figure 1. The observations of NPP, biomass, and SOC that used to inversely estimate themodel parameters. There are extensively distributed 588 field sites for forest
biometrical observations (i.e., NPP and biomass in leaves, stems, and roots), which comes from the literature by Luo [1996]. The site-related SOCwere extracted from a
spatially explicit SOC map with 1 km spatial resolution, which generated by Shangguan et al. [2013] from 8979 soil profiles.
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(reference Zhou et al. [2013]). In addition, the flux tower observation data of net ecosystem exchange in
ChinaFLUX [Yu et al., 2013] were collected at two sites of evergreen needle-leaved forests, Qianyezhou
(QYZ, latitude 26.73°, longitude 115.02°, forest age 21 years) and Huitong (HT, latitude 26.83°, longitude
109.75°, forest age 13 years). We used these data for verification and not for parameter estimation.

2.2. Model Drivers

To drive the model, this study used spatially explicit remote sensing and GIS data sets, including (1) the
advanced very high resolution radiometer/normalized difference vegetation index (AVHRR-NDVI) continental
subsets of 8 km spatial resolution from 1982 to 2000 available from the Global Inventory Modeling and
Mapping Studies [Tucker et al., 2004]. As one of themain objectives was to optimize and evaluate model para-
meters, we used the original satellite-derived NDVI data set instead of the NDVI-based fPAR products to
model the NPP. (2) GIS data sets of monthly solar radiation, temperature, and precipitation from the China
Meteorological Data Sharing Service System [China Meteorological Administration, 2015], which are site obser-
vations from 1982 to 2000 and we interpolated them using kriging method to produce gridded images with
the same spatial resolution (i.e., 8 km) as AVHRR-NDVI. And (3) a 1:14,000,000 soil texture map of China.

All of those auxiliary data sets were resampled to a common geographic (latitude/longitude) projection and
spatial resolution (0.08°) using Bilinear Interpolation in ERDAS Imagine software (Leica Geosystems Geospatial
Imaging, LLC). Most of the ground-based observations of NPP and biomass were measured during the 1980s
and 1990s, so we applied the same time period of NDVI and climate factors and used their multiyear monthly
means for 1982–2000 to model NPP and biomass and compare with ground-based observations. The model
simulates the monthly NPP based on monthly NDVI and climate data, which were then summed to yearly
total NPP before estimation of the parameters.

2.3. Model

The process-based Terrestrial ECOsystem Regional (TECO-R) model [Zhou and Luo, 2008; Zhou et al., 2010,
2013] was used in the data assimilation to synthesize information from the model, field observations, and
spatially explicit satellite data. The TECO-R model contains three sequential submodels that determine
ecosystem C input (i.e., net primary production), the C allocation of NPP to different vegetation C pools
(i.e., leaves, stems, and roots) and the turnover and decomposition of the litter and soil organic C. TECO-R uses
a light-use efficiency (LUE) scheme of the CASA model [Potter et al., 1993; Field et al., 1995] to simulate the
spatially specific NPP pattern at the regional scale. The NPP is determined from the satellite-based normalized
difference vegetation index (NDVI) and climate driving factors. The estimated NPP is allocated to different
vegetation C pools (leaves, stem, and roots) based on NPP allocation coefficients (αL, αW, αR, ξR1, ξR2, and ξR3)
(Table 2). Then, the C enters carbon pools of the litter and soil organic carbon and is eventually released from
the ecosystem though heterotrophic respiration. The model structure is illustrated in Figure 2, and the key
parameters related to this study are listed in Table 2. Details about the TECO-R model’s structure,
parameters, and processes were described in Zhou and Luo [2008] and Zhou et al. [2013].

Table 1. Summarization of Field Observations Used for Parameters Estimation

Data Type Unit Minimum Maximum Mean Standard Deviation Source

NPP in leaves kg Cm�2 yr�1 0.0380 0.6626 0.2093 0.1151 Luo [1996]
NPP in stems kg Cm�2 yr�1 0.0442 1.0778 0.2488 0.159 Luo [1996]
NPP in roots kg Cm�2 yr�1 0.0052 0.209 0.0491 0.034 Luo [1996]
Biomass of leaves kg Cm�2 0.0974 1.8744 0.4801 0.2429 Luo [1996]
Biomass of stem kg Cm�2 0.6303 66.4544 5.7471 4.7393 Luo [1996]
Biomass of root (0–20 cm)a kg Cm�2 0.0945 2.8459 0.5551 0.415 Luo [1996]
Biomass of root (20–50 cm)a kg Cm�2 0.0675 2.0320 0.3963 0.2963 Luo [1996]
Biomass of root (50–100 cm)a kg Cm�2 0.0353 1.0637 0.2075 0.1551 Luo [1996]
SOC (0–20 cm) kg Cm�2 0.7455 18.3359 4.4625 2.6494 Shangguan et al. [2013]
SOC (20–50 cm) kg Cm�2 0.6753 15.5689 2.9303 1.4433 Shangguan et al. [2013]
SOC (50–100 cm) kg Cm�2 0.6941 8.1891 2.2743 0.858 Shangguan et al. [2013]
Flux tower observationb kg Cm�2 yr�1 0.3130 0.4880 - - Yu et al. [2013]

aEstimated with root biomass [Luo, 1996] and root distribution model [Jackson et al., 1996].
bTwo flux tower sites of evergreen needle-leaved forest (QYZ and HT), used only for validation.
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As optimization of different parameter subsets against different data streams helps to counteract the
problem of transfer of model uncertainty [Wutzler and Carvalhais, 2014], we divided the model parameters
into three groups to effectively estimate age-dependent forest C sink. The first group (P0) defines carbon
cycle at a steady state forest ecosystem, including C residence times of 10 pools (i.e., τL; τW ; τR1 ; τR2 ; τR3 ; τ

�
F ; τ

�
C

; τ�S1 ; τ
�
S2 ; and τ�S3 ) and five related partition coefficients among C pools (i.e., θF ; θC; η; θS1 ; and θS2 ), which

define the proportions of C entering into the next pools. These parameters are commonly set as constants
in process-based models. The second group (P1) includes the potential maximum light-use efficiency and
allocation coefficients of NPP among different live biomass pools (i.e., ε*, αL, αW, and αR), which are age
dependent and control input of C into various plant pools. The third group of parameters (P2) includes 10
nonsteady state C sink parameters (i.e., ΔL;ΔW ;ΔR1 ;ΔR2 ;ΔR3 ;ΔC;ΔF ;ΔS1 ;ΔS2 ; and ΔS3 ), which define the net
C gain or release for corresponding pools, and 3 NPP allocation coefficients to roots (i.e., ξR1, ξR2, and ξR3).
Those parameters are also age dependent and related to both C input parameters (P1) and output para-
meters (P0). The three root allocation coefficients were included in P2 due to the absence of NPP observations
for roots in different soil layers. The detailed algorithms to describe the relationships of modeled C fluxes and
pools with these parameters were presented in Zhou et al. [2013].

2.4. Stepwise Data Assimilation: General Procedure

The stepwise approach is developed from the two-step data assimilation method [Zhou et al., 2013]. The
reason we used a stepwise data assimilation approach, instead of a one-step approach, is based on the
consideration that the number of parameters constrained by the observation data sets is limited, typically
from several parameters to less than 20 parameters [Wang et al., 2001; Braswell et al., 2005; Xu et al., 2006;
Yuan et al., 2012]. If we use a one-step approach, 32 model parameters would need to be simultaneously
estimated; and it is difficult to constrain all those parameters [Zhou et al., 2013]. To illustrate the uncertainties

Table 2. Definitions of Parameters in TECO-R Model and the Lower and Upper Limits

Symbol Definition Unit Lower Limit Upper limit

ε* Maximum light-use efficiency g CMJ�1 0.0 2.76
αL Allocation of NPP to leaves Dimensionless 0.0 1.0
αW Allocation of NPP to wood Dimensionless 0.0 1.0
αR Allocation of NPP to roots Dimensionless 0.0 1.0
ξR1 Allocation proportion of NPP for roots(0–20 cm) Dimensionless 0.0 1.0
ξR2 Allocation proportion of NPP for roots(20–50 cm) Dimensionless 0.0 1.0
ξR3 Allocation proportion of NPP for roots(50–100 cm) Dimensionless 0.0 1.0
θF Carbon partitioning coefficient of the fine litter pool Dimensionless 0.0 0.5
θC Carbon partitioning coefficient of coarse litter pool Dimensionless 0.0 0.5
θS1 Carbon partitioning coefficient of SOC (0–20 cm) Dimensionless 0.0 0.1
θS2 Carbon partitioning coefficient of SOC (20–50 cm) Dimensionless 0.0 0.1
η Fraction of mechanical breakdown for coarse litter pool Dimensionless 0.0 0.1
τL Site specific carbon residence time of leaves Year 0.0 10.0
τW Site specific carbon residence time of wood Year 0.0 500.0
τR1 Site specific carbon residence time of roots (0–20 cm) Year 0.0 10.0
τR2 Site specific carbon residence time of roots (20–50 cm) Year 0.0 20.0
τR3 Site specific carbon residence time of roots (50–100 cm) Year 0.0 50.0
τ�F Baseline residence time of fine litter Year 0.0 10.0
τ�C Baseline residence time of coarse litter Year 0.0 50.0
τ�S1 Baseline residence time of SOC (0–20 cm) Year 0.0 100.0
τ�S2 Baseline residence time of SOC (20–50 cm) Year 0.0 250.0
τ�S3 Baseline residence time of SOC (50–100 cm) Year 0.0 500.0
ΔL Net carbon gain or release for leaf pool g Cm�2 yr�1 �200 200
ΔW Net carbon gain or release for wood pool g Cm�2 yr�1 �1000 1000
ΔR1 Net carbon gain or release for roots (0–20 cm) g Cm�2 yr�1 �200 200
ΔR2 Net carbon gain or release for roots (20–50 cm) g Cm�2 yr�1 �200 200
ΔR3 Net carbon gain or release for roots (50–100 cm) g Cm�2 yr�1 �200 200
ΔF Net carbon gain or release for fine litter pool g Cm�2 yr�1 �200 200
ΔC Net carbon gain or release for coarse litter pool g Cm�2 yr�1 �200 200
ΔS1 Net carbon gain or release for SOC pool (0–20 cm) g Cm�2 yr�1 �500 500
ΔS2 Net carbon gain or release for SOC pool (20–50 cm) g Cm�2 yr�1 �500 500
ΔS3 Net carbon gain or release for SOC pool (50–100 cm) g Cm�2 yr�1 �500 500
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of parameters, the histograms of the optimized 32 parameters were produced. Specifically, we ran the
genetic algorithm 500 times and obtained 500 optimal parameters, each representing a combination of
parameters of similar cost function value, from which we could judge whether and what parameters were
well constrained by the observations (Figures S1–S3 in the supporting information).

In this study, we use a stochastic sampling from observation data sets to generate samples of age-related
observations, from which the forest age-related C sink parameters were inversely estimated from different
samples with a genetic algorithm [Zhou and Luo, 2008]. Then we build a statistical relationship between
estimated C sink and forest age. The detailed flow chart illustrated in Figure 3.

Step 1. Estimating the age-independent parameters of C residence times for individual pools (P0) from field
observations (NPP, biomass, litter, and SOC) of old forests (age> 100 years) under the steady state assump-
tion by minimizing the following cost function (reference Zhou et al. [2013]):

J ¼
X12
m¼1

λm
XNm

n¼1

ynm � bynm xn;P0; að Þ½ �2
( )

; (1)

where ynm is the nth observed data point in the mth data set; ŷnm(xn, P0, a) is the modeled value that
corresponds to the observation ynm; Nm is the total number of data points in the mth data set; xn is an
auxiliary forcing vector that includes NDVI, solar radiation, air temperature, precipitation, and soil
texture, in a spatial grid where the nth observation was measured; a is a vector consisting of seven old

Figure 2. The structure of the Terrestrial ECOsystem Regional (TECO-R) model and its key parameters. NPP is modeled by
the light-use efficiency model, and it allocated to plant tissues on the basis of allocation coefficients. Plant tissues enter into
fine litter, coarse litter, and soil organic carbon pools through litterfall. Decomposed litter releases part of the carbon to the
atmosphere, and the rest transfers into the soil. For the steady state, the carbon sink parameters (i.e., net carbon gain/release)
equal zeros. For the nonsteady state, however, the carbon sink parameters were inversely estimated to match the
observed NPP and carbon pools in vegetation and SOC.
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forest-related parameters: a = {ε*, αL, αW, αR, ξR1, ξR2, ξR3}; and λm is a weighting factor of the partial cost
function, which is inversely proportional to the variance of each data set [Luo et al., 2003; Zhou and
Luo, 2008]. These estimated values of P0 were used as known age-independent constants in the rest
of the data assimilation.

Step 2. Establishing data sets of age-related variables, such as NPP, biomass, SOC, and relevant driving variables
(i.e., NDVI, temperature, precipitation, solar radiation, and soil texture) based on site observations.

Step 3. Randomly sampling a fraction (e.g., 20%) of data of the age-dependent variables from the data sets
(reference Figure 4) with four substeps. One objective of this study was to derive a suitable statistical model
between NEP and forest age. Considering that NEP is related to both forest age and environmental factors
(e.g., climate and terrain) that have a high spatial heterogeneity and potentially impact the inference of
NEP-age relationship, a key step was to diminish the interference of site-specific environmental factors.
The observation subset, which had similar forest age but different environmental factors, was suitable to
eliminate the interference of environmental factors, as the mean of multiple sites tends to weaken the
potential impact of a single site and highlight the common age effect of multiple sites.

Step 3.1. Determining subsample size d (d= 0.2) and total times of random sampling (t= 500).

Figure 3. Flow chart of stepwise data assimilation.
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Step 3.2. Sorting the data sets based
on forest age to build a cumulative
distribution function (CDF). As each
site in data set of Luo [1996] simulta-
neously contains the information of
forest age, NPP, and biomass, we just
need one CDF.

Step 3.3. Producing a random num-
ber (ri) between 0 and 1 from a
uniform distribution.

Step 3.4. Producing an age-related
subsample Si from CDF, d, and ri
(reference Figure 4). The low bound
(Agemin, i) and upper bound (Agemax, i)

correspond with the random numbers ri – d/2 and ri+ d/2. If the value of ri – d/2< 0 or ri+ d/2> 1, then the
value of Agemin, i is assigned to the minimum or Agemax, i is assigned to the maximum of the observed data
sets. In this situation, the size of subsample is between d/2 and d.

Step 4. Estimating the nonsteady state C sink parameters from the subsample Si with the stepwise
data assimilation.

Step 4.1. Estimating the age-dependent parameters of productivity and its allocation parameters (P1, i) from
the subsample Si by minimizing the cost function J′ as

J′ ¼
X3
u¼1

λu
XNu

n¼1

ynu � bynu xn;P1ð Þ½ �2
( )

; (2)

where ŷnu(xn,P1) is the modeled value that corresponds to the observation ynu of subsample Si, Nu is the
observation number of subsample Si, and λu is a weighting factor, which is inversely proportional to the
variance of each data set. Accurately simulating the primary productivity of the ecosystem is crucial because
errors in simulated NPP propagate through the model to introduce additional errors in simulated biomass
and other fluxes [Schaefer et al., 2012; He et al., 2014].

Step 4.2. Estimating the age-dependent C sink parameters of pools (P2, i) under the nonsteady state condition,
from the same subsample Si and the known parameters P0 and P1, i by minimizing the cost function J″ as

J″ ¼
X8
v¼1

λv
XNv

n¼1

ynv � bynv xn;P2ð Þ½ �2
( )

; (3)

where ŷnv(xn, P2) is the modeled biomass or SOC that corresponds to the observation ynv of subsample Si,
Nv is the number of subsample Si, λv is a weighting factor, which is inversely proportional to the variance of
each data set. Because the P1 parameters control the basic C input and the P0 parameters control the basic
C output, the observations of biomass and SOC may well constrain parameters P2, i [Zhou et al., 2013].

Step 4.3. Summarizing the age-dependent ecosystem total C sink (i.e., NEPi) of the subsample Si from 10C
sink parameters.

Step 5. Repeating the random sampling and stepwise estimations of nonsteady state parameters (Steps 3.3
to 4.3) 500 times and then determining the statistical relationship between C sink and forest age from all
500 subsamples.

As a genetic algorithm was used in our study, we need to run the model iteratively for each new parameter
vector until the optimized one was obtained (Steps 1, 4.1, and 4.2). Considering that too much simulation was
required, we applied an analytical solution [Zhou et al., 2013] instead of spin-up, to get the modeled values
and compared them with the corresponding observations.

2.5. Sensitivity Analysis of Subsample Size on Parameter Estimation

To assess the potential impacts of sample size (i.e., d value) on the relationship of C sink and age, we
performed a sensitivity analysis for different subsample sizes on parameter estimation. We assigned values

Figure 4. Schematic diagram for stochastic sampling of subsample with similar
forest age.
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0.025, 0.05, 0.10, 0.20, and 0.30 (i.e., the subsample size is 2.5% to 30% of the total number of observations)
to the parameter d and then compared the differences in the estimated relationships between C sink and
age in five scenarios.

3. Results
3.1. Comparisons Between Modeled and Observed Values

The comparisons indicated that the modeled means of NPP and biomass very closely matched the corre-
sponding observations of subsamples (Figure 5). The good match between observed and modeled biomass
pools was mainly due to the nonsteady state scheme, as we added 10 adjustable C sink parameters that
would significantly decrease the deviation between modeled and observed value (i.e., through adjusting
the values of carbon sink parameters to make the modeled pools match with their observed pools). The pre-
vious study of Carvalhais et al. [2008] showed that adding one adjustable parameter to relax the constraints of
the steady state assumption could lead to a 92% decrease in the normalized average error. These compari-
sons showed that the estimated optimal model parameters are effective to help fit the model with data of
the C fluxes and pools.

The observed and modeled values for soil organic carbon are also matched well, but the goodness of fit is
somewhat lower than for NPP and biomass. One possible cause of the relative higher uncertainty of soil
carbon estimation is likely due to the higher uncertainties of their related model parameters, such as much

Figure 5. Comparisons between the modeled and observed means (±1 standard error) of random subsamples.
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higher variations in the optimal para-
meters of soil carbon residence time
(Figure S1). In addition, change in soil
carbon stock is controlled by other
processes of the carbon cycle such
as photosynthesis, litter fall, and
decomposition, and therefore, much
more uncertainty is transmitted from
upstream processes. The other cause
is that the SOC observations were not
directly measured at forest sites but
were derived from the observation-
based map of soil organic carbon
[Shangguan et al., 2013], which un-
avoidably increased the error. Due to
the higher spatial heterogeneity and

the relative sparse observation sites, the highest uncertainties of the modeled carbon storage and fluxes
in current studies were usually related with SOC [Viscarra Rossel et al., 2014; Tian et al., 2015]. To decrease
the uncertainty of modeled SOC, not only the complete information (e.g., vertical distribution of SOC) but
also the extensive distribution of sites was needed to diminish the potential impacts of its spatial hetero-
geneity [Scharlemann et al., 2014].

3.2. Age Dependence of Light-Use Efficiency and NPP Allocations

For a certain subsample (Si), its age-specific parameters and uncertainties could be estimated based on
stepwise data assimilation (Figure S3). As a result, the relationship of age dependence of light-use effi-
ciency and NPP allocation could be obtained from a series of subsamples produced by the stochastic
sampling. Our study indicated that the parameter of maximum light-use efficiency depends on forest
age, with higher light-use capacity for young forests and lower capacity for old forests (Figure 6;
R2 = 0.99). The value is the highest at approximately 0.78 g CMJ�1 at age 17 years and then decreases
rapidly to approximately 0.37 g CMJ�1 when forest age exceeds 50 years; it is more constant when age
> 50. The changing trend of the inversely estimated maximum light-use efficiency matches well with
the theoretical interpretation that foliage of older trees shows lower photosynthetic capacity and lower
diurnal assimilation than foliage of younger trees [Ryan et al., 1997], and it is also consistent with the field
observations showing that growth efficiency declines along a chronosequence of forest age [Kashian
et al., 2013].

Based on a similar data set of NPP field observations, Zhu et al. [2006] estimated the maximum light-use
efficiencies (ε*) by a modified least squares function and found that its value was 0.389 g CMJ�1 for ever-
green needle-leaved forest, similar to our previous estimation of 0.378 g CMJ�1 using a genetic algorithm
[Zhou et al., 2013]. Similar maximum light-use efficiency of evergreen needle-leaved forest (0.36 g CMJ�1)
was found in the conterminous United States [Zhou and Luo, 2008]. In this study, we further investigated
the age dependence of light-use efficiency and found that ε* decreased with forest age, with values in the
range of 0.352–0.782 g CMJ�1. That is, if the age-related difference in light-use efficiency was ignored, NPP
would be underestimated for young forests but overestimated for old forests. Wang et al. [2011] also inves-
tigated the age dependence of NPP and found that the highest NPP was at age of 13 years, comparable to our
estimated 17 years when ε* was at a maximum.

The results of C allocation among different pools indicate that the ratio of NPP allocated to leaves increases
with age, while allocations to stem and roots decrease with age (Figure 7). These results also indicated that C
allocation to roots in the top-soil layer (0–20 cm) increases with age. The allocation parameter to roots was
constrained partly by the observed SOC, as it affected the modeled SOC and the cost function. The observed
SOC data set indicated that the ratio of SOC in lower soil layer decreased with increasing age. The ratio of
SOC3 (bottom, 50–100 cm) to SOC1 (top, 0–20 cm) was 0.59 ± 0.05 in young and middle-aged forests (age
< 100 years), and this ratio decreased to 0.39 ± 0.01 in old forests (age ≥ 100). The trend of NPP allocation
obtained in this study is consistent with the theoretical interpretation that the fraction of assimilation

Figure 6. Relationship between maximum light-use efficiency and forest
age (R2 = 0.99).
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available for wood production declined as woody biomass increased [Ryan et al., 1997] and the observation
that younger forests dominated by small trees yield more wood [Caspersen et al., 2011]. Litton et al. [2007]
reviewed observation studies of carbon allocation in forest ecosystems and found that carbon allocation
varies with stand age with increased allocation to leaves and decreased allocation to roots, which is similar
with our results.

Our results indicated that young forests had a relative higher NPP allocation to wood and, accordingly, a
relative lower allocation to leaves, which is matched with the trend for field observations [Luo, 1996].
Chronosequences using wood increment cores also indicated that young forest stands have a higher

Figure 7. Relationship between NPP allocation coefficients and forest age.

Figure 8. Relationship between carbon sink parameters (i.e., net carbon gain/release) and forest age.
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aboveground wood production than mature forests [Law et al., 2004]. The relatively higher values of light-use
efficiency and C allocation to wood give young forests a significantly higher C sink potential.

3.3. Age Dependence of Carbon Sink Parameters

The parameters of C sink (i.e., magnitude of net C gain/release) for different pools are also related with forest
ages (Figure 8). The C sink parameter for the leaf pool first increases with age, peaks at 0.092 kg Cm�2 yr�1 at
age 27, and then decreases toward 0. The C sink parameters for stem and roots have similar age-dependent
patterns. The C sink parameters for the soil and litter pools have a different age-dependent pattern. In general,
they increase with forest age but peak at an age near 30 years, three years later than the maximum for the
vegetation C sink parameters. For young forest (age< 20 years), soil acts as a C source and after that becomes a
C sink with the intensity increasing with age. Similar trends were found in boreal forests where C storage
deceased with age for forest age < 10 years and then increased with age [Chen and Shrestha, 2012] and
in hardwood forests where SOC stock declined with age for forest age < 20 years [Covington, 1981].

3.4. Age Dependence of Ecosystem Carbon Sink

The dynamics of vegetation, soil, and the total ecosystem C sink are illustrated in Figure 9. For a subsample
(i.e., Si), we randomly selected 30 parameter vectors of P0 from Figure S1 and then estimated 30 parameter
vectors of P2, from which the means and uncertainties of C sinks for vegetation, soil, and the whole ecosys-
tem caused by parameters P0 could be derived. The result indicated that the magnitude of uncertainty for
ecosystem carbon sink did not apparently change with forest age, which implied that the observations of
different ages were satisfactory to constrain the parameters.

The dynamic patterns of C sink differ between vegetation and soil. The vegetation C sink first increases with
forest age, peaks at 0.436 kg Cm�2 yr�1, and then decreases. Soil C sink, however, increases continuously
with forest age, but with a slight decrease between 30 and 50 years due to the rapid decrease of NPP. The
age of 20 years is a turning point of soil C uptake, before which soil acts as a C source.

Figure 9. Relationships of vegetation, soil, and ecosystem total carbon sinks and forest age. Each gray point repre-
sents an inversed carbon sink from a subsample Si and a randomly selected parameter vector P0 in Figure S1. For
each Si, 30 carbon sinks were estimated to reflect the uncertainty caused by the parameters of carbon residence
times. Each blue point is the averaged value of 30 estimations for a certain Si. The red circle is carbon sink obser-
vations by flux tower in QYZ (latitude 26.73°, longitude 115.02°, age 21 years), and the green circle is observation
in HT (latitude 26.83°, longitude 109.75°, age 13 years) [Yu et al., 2013]. Vegetation carbon sink first increased with
forest age and then decreased after peaking at 0.436 kg Cm�2 yr�1. Soil carbon sink, however, increased continuously

with forest age. The estimated ecosystem carbon sink (i.e., NEP) showed a good statistical relationship with forest age:

NEP Ageð Þ ¼ 0:1323� 1þ 1:0642� Age=6:3342ð Þ3:4550�1
e Age=6:3342ð Þ

� �
.
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The estimated ecosystem C sink (i.e.,
NEP) shows a good relationship with for-
est age (Figure 9) and can be expressed
by a nonlinear equation:

NEP Ageð Þ ¼ a� 1þ b� Age=cð Þd � 1
e Age=cð Þ

 !
;

(4)

where parameters a–d are 0.132, 1.064,
6.334, and 3.455, respectively, and the
coefficient of determination (R2) is
0.987. As forest age increases, the eco-
system C sink increases rapidly and
peaks at 0.451 kg Cm�2 yr�1, ranging
from 0.421 to 0.465 kg Cm�2 yr�1, near
the age of 22 years before gradually
decreasing. The fluxes observed C sink
in QYZ (latitude 26.73°, longitude
115.02°, age 21 years) and HT (latitude
26.83°, longitude 109.75°, age 13year) are
0.488±0.052 and 0.313 kgCm�2 yr�1,

respectively [Yu et al., 2013], similar to our estimated C sink of 0.449 kg Cm�2 yr�1 at age 21 and
0.332 kg Cm�2 yr�1 at age 13.

The dynamics of the vegetation, soil, and ecosystem C sinks in Figure 9 indicated that the absorbed C is
mainly stored in vegetation pools when the forest age is less than 50 years. After that, C is mainly stored in
the soil and litter pools. The distinct roles for vegetation and soil pools at different forest ages indicate that
long-term forest management tends to increase the soil C sink while short-term afforestation and reforesta-
tion mainly affects C sink in vegetation pools.

3.5. Age Dependence of Ecosystem Carbon Sink Efficiency

Although net primary production (NPP) is an input to drive ecosystem C sink, the magnitude of the ecosystem
C sink (i.e., NEP) depends on a balance between C input (i.e., NPP) and C output (i.e., heterotrophic respiration

Figure 10. Age dependency of carbon sink efficiency (%) and forest age.
The carbon sink efficiency is the ratio of carbon sink and NPP [i.e., carbon
sink per unit NPP, Fang et al., 2007]. The carbon sink efficiency for China’s
evergreen needle-leaved forests changes with forest age, which first
increases and then decreases with age, with the highest carbon sink
efficiency of about 60% that occurs in young and half-mature forests of
ages between 11 and 43 years.

Figure 11. Sensitivities of the estimated relationship of carbon sink and forest age with different size of subsamples.
Although a large sample tends to weaken the influences of site-specific geographic factors (e.g., climate, terrain, and
soil properties) and then provide a smoother scatterplot than those from smaller samples, the fundamental statistical
relationship between carbon sink and forest age is little impacted by the sample size.
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(Rh)). Given the positive correlation between NPP and Rh, the ratio of NEP over NPP is commonly used to reflect
the efficiency of a C sink per unit NPP [Fang et al., 2007]. For evergreen needle-leaved forest in China, the C sink
efficiency changes with forest age, first increasing and then decreasing (Figure 10). The highest efficiency is
above 60%, occurring in young and half-mature forests with ages between 11 and 43 years. After that, the
efficiency value decreases rapidly.

To evaluate the accumulated effect of multiyear C sink, we calculated the multiyear-averaged efficiency
(i.e., the ratio of multiyear total C sink to multiyear total NPP), which is a reference index of optimal forest
management (e.g., forest harvest time) from biological viewpoint [Tietenberg, 2005], and found that the

Figure 12. Illustration of different sizes of subsets on the apparent relationship between NEP and age. (a–d) Interactions of forest age and temperature on NEP
and their change with subset sizes (i.e., d values) of 2.5, 5.0, 10, and 20% of total observations, respectively; (e–h) corresponding three-dimensional profiles, from
which the long-term relationship between carbon sink and forest age could be illustrated. In general, forest age was the main factor controlling the long-term trend
of the carbon sink.
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peak multiyear mean C sink efficiency appears at a forest age of 42 years, after which the yearly C sink effi-
ciency is less than the multiyear-averaged values (i.e., 61.5%).

3.6. Sensitivity Analysis of Sample Size on Parameter Estimation

We conducted a sensitivity analysis to evaluate impacts of sample size (i.e., d value) on estimated age-
dependent C sink. The sample size does not impact the relationship of C sink with forest age, although a large
sample size tends to generate a smoother scatterplot than that with a small sample size (Figure 11). For
instance, the variation of scatter points estimated by a sample size of 30% of total observations is much
smaller than that for a 2.5% sample size. Nevertheless, the statistical curves inferred from the two sets of scat-
ter points do not differ much (Figure 11). Thus, the estimated relationship between C sink and age is stable for
different d values. A small sample with fewer sites tends to reflect more spatial heterogeneity of the local
environment, increasing the variation of the estimated C sink. Large samples with more sites, however, tend
to diminish these extrinsic environmental factors andmake the estimated values closer to the expected value
that controlled by the intrinsic age factor.

The potential impact of subset sizes on the NEP-age relationship (Figure 12) indicated that the interaction
between forest age and temperature was related with the size of subset. In general, the long-term trend of
the C sink was controlled by forest age and not impacted by the size of the subset (Figures 12e–12h).
When forest age was the same, the temperature determined the NEP variations, especially for young and
middle-aged forests. The interaction between forest age and temperature indicated that when the size of
the subset increased, the impact of temperature on NEP decreased (Figures 12a–12d) and the intrinsic
relationship (e.g., a suitable function) between NEP and age could be more easily revealed.

When the curve derived from a sample size of 20% is used as a reference, the root-mean-square error
of the estimated C sink from sample sizes of 2.5%, 5%, 10%, and 30% is 0.006, 0.0084, 0.0055, and
0.0084 kg Cm�2 yr�1, respectively. Those amounts for only 3.2%, 4.5%, 2.9%, and 4.5% of the mean value
of C sink (0.188 kg Cm�2 yr�1) for the ages from 0 to 160 years. Their variation ranges caused by sample sizes
are comparable to the magnitude caused by climatic factors. A previous study found that climate explained
approximately 5 ± 1% of the variability in C sink [Luyssaert et al., 2007].

4. Discussion
4.1. Age Dependence of Carbon Sink and NPP

NPP is one of themost important driving forces on C sequestration [Zhou and Luo, 2008; He et al., 2012; Xia et al.,
2013]. Our results indicated that NPP and C sink are strongly correlated (R2 = 0.94, p< 0.001) (Figure S4), which is
consistent with the synthesized result from multisites conducted by Pregitzer and Euskirchen [2004] that
revealed that the median NPP and C sink are strongly correlated (R2 = 0.83, p< 0.001) across all biomes and
age classes. A similar linear correlation has also been reported between the gross primary production and C sink
across terrestrial vegetation types [Law et al., 2002; Luyssaert et al., 2007]. The correlation between gross ecosys-
tem productivity (GEP) and NEP was also shown by flux tower observations. For example, observed NEP was
significantly correlated with GEP, with 29% of the per-unit GEP contributed to NEP [Yu et al., 2013]. The high
correlation between the modeled NPP and NEP is partly related to the model structure, where baseline
C residence times are constants. Thus, the NPP-age relationship will propagate into the NEP-age relationship.

A suite of changes in structure and function is associated with age-related growth decline [Tang et al., 2014].
Foliage on older trees shows lower photosynthetic capacity and lower diurnal assimilation than foliage of
younger trees [Ryan et al., 1997]. A synthesized result frommultisites conducted by Luyssaert et al. [2008] indi-
cated that both temperate and boreal forests show a pattern of declining NPP with forest age. Reduced leaf
area and reduced photosynthetic capacity appear to be the most consistent features of this pattern, but the
causes of these reductions in efficiency remain elusive and require direct examination and experimentation
[Ryan et al., 1997; Kashian et al., 2013; Stephenson et al., 2014]. Research has indicated that the decline in pine
NPP could be explained by reduced stomatal conductance and photosynthesis [Drake et al., 2011], which
decreases the amount of C fixed per unit of light absorbed.

In this study, we applied a satellite-based light-use efficiency model, where the leaf area index was implicitly
represented by the remote sensing-based NDVI, to optimize the photosynthetic capacity parameter (i.e.,
maximum light-use efficiency). Our results indicated that the decline in NPP was promoted by the decline
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in growth efficiency (i.e., maximum light-use efficiency) and the decrease in NDVI. These results indicated
that NPP is strongly correlated with the parameter of maximum light-use efficiency (R2 = 0.996, p< 0.001)
(Figure S4). The increase in NDVI also enhances the NPPwith a high correlation (R2 = 0.93, p< 0.001) (Figure S4).

4.2. Age Dependence of Vegetation and Soil Carbon Sink

Integrated analysis of the literature indicated that net ecosystem productivity (i.e., C sink) shows a rapid
increase in young forests and then decreases gradually after reaching a peak [Luyssaert et al., 2008].
Biomass accumulation of vegetation pools declines after reaching a peak, but the degree and timing of
the decline vary [Ryan et al., 1997]. Studies have indicated that the precise C dynamics vary by forest type,
and the details remain poorly characterized [Williams et al., 2012]. In general, landscapes dominated by older
stands are likely to be small C sinks with large C storage, even when current production declines [Kasischke
et al., 1995; Euskirchen et al., 2002; Pregitzer and Euskirchen, 2004; Luyssaert et al., 2008].

Our results indicated that the forest age at the peak C sink (0.45 kg Cm�2 yr�1) is 22 years for evergreen
needle-leaved forest in China, which is comparable with research conducted by Thornton et al. [2002], who
reported that evergreen needle-leaved forests in the U.S. reach peak C sink values at ages of 8–19 years
and only 2–7 years after becoming sinks. Similar results were found by Coursolle et al. [2012], indicating that
the afforested white pine stands quickly became C sinks and offset initial C losses after 4 years and that the
peak C sink for the afforested white pine was 0.69 kg Cm�2 yr�1 at 15–20 years.

In this study, we found that the dynamic patterns of C sinks in vegetation and soil pools are significantly
different at different stages. The vegetation C sink first increases with age and then decreases gradually.
Soil C sink, however, increases continuously with forest age, with a role as a C source when the age is less than
20 years and a role of C sink after that.

The amount of the vegetation C sink and its change trend depends on the total C input (i.e., NPP) and the
ratios of C allocation to slow turnover pools (i.e., stem), which have higher potential to sequester C in vegeta-
tion than other pools. Currently, C allocation is poorly understood, particularly in woody plants, where
storage is large [Cannell and Dewar, 1994; Zhou and Luo, 2008]. The fraction of assimilated C available for
wood production declined as woody biomass increased [Ryan et al., 1997]. Dense stands dominated by small
trees yield more wood than stands dominated by fewer large trees, both because the relative growth rate of
small trees is higher and because they are less likely to die [Caspersen et al., 2011].

Our study indicated that the high vegetation C sink for young forests and for half-mature forests is related to
the higher maximum light-use efficiency, which decreases with age (Figure 6), and to the higher NPP alloca-
tion to wood, which also decreases with age (Figure 7). That is, the decreasing amount of ecosystem C input
and the decreasing ratio of the wood pool, with a higher residence time, function together to decrease the
magnitude of the vegetation C sink with age.

Although NPP and C sink in biomass decline rapidly with age, we found that the soil C sink persistently
increases with age. Our results indicated that the soil of evergreen needle-leaved forest in China exhibits
net soil C efflux when the forest age is less than 20 years, after which it becomes a C sink. This is comparable
with the worldwide mean illustrated by the synthesized result frommultisites, which indicated that the soil
of young needle-leaved forests (age < 30 years) worldwide exhibits net C release [Paul et al., 2002; Li et al.,
2012]. The rapid decrease of the ecosystem C sink after 20 years is related to the rapid decrease in input C
(i.e., NPP). Soil C uptake has a lag effect, even when the vegetation C sink decreases, and the higher C input
through litterfall and higher residence time in soil tends to produce a net C uptake. Because evergreen
needle-leaved forest in China is a major forest type for the national afforestation projects and because most
of these forests were planted in the past 10–30 years [Zhou et al., 2013], the long-term potential of the soil C
sink is significant.

4.3. Efficiency of Ecosystem Carbon Sink and Its Implications for Forest Management

During the past few decades, the world’s forests absorbed 2.4 Pg C yr�1 [Pan et al., 2011], and two thirds of
these forests are managed [Bellassen and Luyssaert, 2014]. Because C sequestration in vegetation and soil
pools show substantial differences in its magnitude, duration, and short- and long-term dynamics, the best
way to manage forests to store C and to mitigate climate change has been hotly debated [Bellassen and
Luyssaert, 2014]. Making good decisions about how to cultivate forests for climate change mitigation, such
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as whether it is better to harvest or conserve trees, requires better understanding of the temporal patterns of
forest C sinks in different pools.

Because increasing the size and age of trees and stands tends to reduce C assimilation [Ryan et al., 1997] and
because forest wood can be a substitute for fossil fuels and carbon-intensive materials such as concrete and
steel, one proposed forestry management strategy is to increase both forest stocks and timber harvest
through measures such as protecting trees from herbivore consumption or replacing dying or low-
productivity forests [Bellassen and Luyssaert, 2014]. In this study, we found that the temporal dynamics of
vegetation C sink decrease greatly after approximately 50 years, and the harvest and reforestation would
tend to increase C uptake efficiency and absorb more C from atmosphere if the harvested timber was used
for long-lasting wood products. The highest C sink efficiency (i.e., the ratio of C sink to NPP) is approximately
60%, which appears in young and half-mature forests with ages between 11 and 43 years. In contrast, the
maximum multiyear mean C sink efficiency appears at a forest age of 42 years, after which the yearly C sink
efficiency drops below the multiyear-averaged values.

The timber harvest strategy, however, is most likely not feasible for soil C sequestration. The temporal
dynamics of soil C sinks in this study indicated that soil acts as a C source when forest age is less than 20 years,
after which it could constantly absorb C. The repeated deforestation and reforestation will negatively affect
soil C uptake. Therefore, an optimal forest management for C sequestration must consider the dynamic
patterns of both vegetation and soil pools, as well as the short-term and long-term efficiency of C uptake.

4.4. Sensitivities of Age-Dependent Carbon Residence Times on NEP Estimation

The parameters of residence times are quite crucial for modeling and predicting C dynamics [Luo et al., 2014;
Carvalhais et al., 2014]. However, few studies revealed the quantitative relationship of C residence time and
age at a large spatial scale; they usually estimate under steady state assumptions at regional [Barrett, 2002;
Zhou and Luo, 2008] and global scales [Chen et al., 2013; Carvalhais et al., 2014]. Some studies found that C resi-
dence times for biomass pools were age dependent, as forest mortality increases with stand age [Wirth et al.,
1999; Xu et al., 2012], but this relationship was found to saturate in very old forests [Hudiburg et al., 2009].

To reveal the potential impacts of age-dependent C residence times on estimations of C sink parameters and
on the statistical model between NEP and forest age, we conducted a sensitivity analysis. We assumed that
the parameters of C residence times for vegetation pools changed with age. That is, when forest age was
> 100 years, the parameters of C residence times for five biomass pools (i.e., stems, leaves, and three root
pools) were constants; otherwise, their values increased linearly with decreasing age (i.e., young forest had
relative higher residence times and lower mortality) at different rates (Formula 5):

τage ¼
τ0� 1þ r� 100� ageð Þ½ �; age < 100

τ0; age ≥ 100

�
; (5)

where τage is age-specific C residence times for vegetation pools; τ0 is residence time for old forest that
estimated from steady state assumption; and r is the rate of residence time change with age, respectively,
equaling 0, 0.1, 0.2, 0.3, 0.4, and 0.5%. The age-specific residence times were used to estimated C sink
parameters at step 3 and then compared with values estimated from the age-independent scheme.

The results indicated that when r increases from 0 to 0.5% (i.e., the possible maximum of τ increases from τ0 to
1.5 τ0), themagnitude of vegetation C sink increases, and accordingly, soil C sink decreases, especially for young
forests (Figure S5). That is, the relatively higher C residence time for young forests tends to storemore C in vege-
tation pools instead of soil pools. Revealing the age-dependent C residence times will help to evaluate the
relative contribution of vegetation and soil C uptakes. Our sensitivity analysis also indicated that although
age-dependent C residence time affected the proportion of vegetation and soil C sinks, it had little impact
on the ecosystem total C sink (i.e., NEP) and the statistical relationship between NEP and age (Figure S5).

5. Conclusions

Forest ecosystem plays a significant role in C sequestration and its accumulation depends on forest age.
Revealing the intrinsic relationship between forest age and C sink is crucial for reducing uncertainties of
the predicted C sink potential. In this study, we developed a new stepwise data assimilation approach that
synthesized process-based model, site-based biometric observation, and spatially explicit remote sensing
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and GIS data sets and inversely estimated the quantitative relationship between forest C sink and forest age
for evergreen needle-leaved forests in China. The study indicated that this stepwise data assimilation
approach is effective on revealing quantitative relationship of age-dependence vegetation and soil C sinks.
The results showed that ecosystem NEP increases rapidly with age and peaks at 0.451 kg Cm�2 yr�1 at age
22, after which it gradually decreases. C sink in vegetation first increases rapidly with age and then decreases
after peaking at 0.436 kg Cm�2 yr�1. C sink in soil, however, increases continuously with age. The forest age
20 is a turning point for soil, before which it is a C source and after which it is a C sink. The distinct difference
between vegetation and soil C sinks implies that long-term forest management tends to increase soil carbon
sink, unlike short-term afforestation and reforestation, which store C in vegetation pools. For the evergreen
needle-leaved forest in China, the highest carbon sink efficiency (i.e., carbon sink per unit NPP) is approxi-
mately 60%, which appears in forests of ages between 11 and 43 years. This stepwise data assimilation
method is worth extending to other regions to reveal the relationships between C sink and forest age from
the biometric observations, especially where the chronosequence observations of C stocks and eddy flux
observations are unavailable.
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