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Abstract We develop a theory for transit times and mean ages for nonautonomous
compartmental systems. Using the McKendrick–von Förster equation, we show that
the mean ages of mass in a compartmental system satisfy a linear nonautonomous
ordinary differential equation that is exponentially stable. We then define a nonau-
tonomous version of transit time as the mean age of mass leaving the compartmental
system at a particular time and show that our nonautonomous theory generalises the
autonomous case. We apply these results to study a nine-dimensional nonautonomous
compartmental system modeling the terrestrial carbon cycle, which is a modifica-
tion of the Carnegie–Ames–Stanford approach model, and we demonstrate that the
nonautonomous versions of transit time and mean age differ significantly from the
autonomous quantities when calculated for that model.
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1 Introduction

Compartment models play an important role in the modeling of many biological
systems ranging from pharmacokinetics to ecology (Anderson 1983; Godfrey 1983;
Jacquez and Simon 1993). Key values in understanding the dynamics of these systems
are the transit time: the mean time a particle spends in the compartmental systemmea-
sured as the mean time from entry into the system to leaving the system (Bolin and
Rodhe 1973; Eriksson 1971), and the mean age: the mean age of particles still in the
system (Bolin and Rodhe 1973; Eriksson 1971). It is well known that these quantities
need not be the same (Bolin and Rodhe 1973; Eriksson 1971; Rothman 2015).

We are motivated by an interest in studying the dynamics of the terrestrial carbon
cycle which is typically modeled as a number of discrete pools of carbon in plant bio-
mass, litter and soil organic matter. Many of the best studied models of the dynamics
of carbon are linear, which reflects the fact that changes in carbon pools are pro-
portional to the pool size (Bolker et al. 1998). Additionally, most analyses make the
further assumption that all parameters describing the dynamics (and the input fluxes)
are constant in time, leading to a model in the form of an autonomous linear differ-
ential equation. In this autonomous case, it is possible to derive analytic formulae
giving expressions for the transit time (Garcia-Meseguer et al. 2003; Manzoni et al.
2009). These formulae for transit time are given in terms of (constant) transfer coef-
ficients among compartments and analogous formulae are available for the mean age
of particles in the system.

Many applications of models of terrestrial carbon relate to situations in which
constantmodel parameters are replaced by time-dependent functions. Perhaps themost
well-knownexamples are studies of how terrestrial carbondynamics respond to climate
change. In these, it is often assumed that the specific rates (per unit carbon) of carbon
inputs and losses from the system change over time as a function of changes in climate,
such as temperature. For example, increases in temperature are normally assumed to
increase the rates of soil decomposition (Lloyd and Taylor 1994; Orchard and Cook
1983; Rothman 2015). As a consequence, the compartmental models of interest are
nonautonomous, i.e. they depend on time (Luo et al. 2001, 2015; Xia et al. 2012).
Nonautonomous compartmental systems are special cases of linear nonautonomous
differential equations (Kloeden and Rasmussen 2011), which, in contrast to the linear
autonomous case, cannot be solved analytically in general. Yet, both the mean age
of particles in the system and the transit time remain of great interest for these time-
dependent systems, as both quantities can be potentiallymeasured in the actual systems
being modeled (Rothman 2015; Trumbore 2000).

In this paper, we develop a theory for transit times and mean ages of mass in nonau-
tonomous compartmental systems. As noted in one of the first papers to study transit
time (Bolin and Rodhe 1973), there is obviously a close connection between age dis-
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tribution and transit time in compartment models. We will build on this relationship
to develop an approach for understanding the definition of transit time. We define
a time-dependent version of transit time as the mean age of mass leaving the com-
partmental system. We use a time-dependent version of the McKendrick–von Förster
equation (Brauer and Castillo-Chavez 2012; McKendrick 1926; Thieme 2003), the
classic first-order partial differential equation describing age distributions, to prove
that the mean age of mass satisfies an (inhomogeneous) linear nonautonomous differ-
ential equation. We show that under weak conditions, this equation is exponentially
stable. Starting with demographic models highlights another important aspect of our
approach. As is well known, solutions of demographic models depend on initial condi-
tions, so quantities like the mean age and transit time also depend on initial conditions,
but conventional definitions of these quantities ignore the influence of the initial con-
ditions. For this reason, our nonautonomous approach also provides additional insight
for autonomous compartmental systems that are not in equilibrium.

We apply the theorywe have developed to numerically study transit times for a nine-
dimensional compartmental system model of the carbon cycle, which is a modified
version of the Carnegie–Ames–Stanford approach (CASA) model (Buermann et al.
2007; Potter et al. 1993; Randerson et al. 1996). We compare our nonautonomous
quantities to the classical notion of transit time for autonomous systems, where we
freeze the nonautonomous system in time to obtain an autonomous system, and we
assume that we are in equilibrium. Our simulations illustrate the different and some-
times diverging trajectories of the autonomous and nonautonomous quantities over
time. Our results demonstrate the necessity of our theory for the computation of transit
times in nonautonomous compartmental systems and in autonomous compartmental
systems that are not in equilibrium.

This paper is organized as follows. In Sect. 2, we first review the theory of transit
times for autonomous compartmental systems, and we provide a heuristic derivation
of the transit time formula. We then define nonautonomous compartmental systems
in Sect. 3. In Sect. 4, we prove that under the assumption that the compartmental
system is lower block triangular, and the diagonal blocks a diagonally dominant, the
nonautonomous compartmental system is exponentially stable. In Sect. 5, we prove
that the mean ages satisfy a linear nonautonomous differential equation, and we then
use the stability criterion from Sect. 4 to prove exponential stability of the mean age
equation. We define the concept of a transit time for nonautonomous compartmental
systems in Sect. 6. In Sect. 7, we show that our nonautonomous theory is consistent
with the autonomous case, in the sense that we get exactly thewell-known autonomous
transit time formula when applying the nonautonomous transit time to an autonomous
system. Finally, in Sect. 8, we apply the theory to compute transit times for a nonau-
tonomous compartmental model of the carbon cycle, which is a simplified version of
the Carnegie–Ames–Stanford approach (CASA) model.

2 Transit times and mean ages for autonomous compartmental systems

An open (linear) autonomous compartmental system with both inputs and outputs
(Anderson 1983; Godfrey 1983; Jacquez and Simon 1993) and with d pools is
described by an inhomogeneous linear differential equation
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ẋ = Bx + s, (1)

where B ∈ R
d×d is an invertible matrix, 0 �= s ∈ [0,∞)d , and the entries

{bi j }i, j∈{1,...,d} of the matrix B satisfy

• bii < 0 for all i ∈ {1, . . . , d},
• bi j ≥ 0 for all i �= j ∈ {1, . . . , d},
• ∑d

i=1 bi j ≤ 0 for all j ∈ {1, . . . , d}.
The i-th row of the matrix B describes the dynamics of the mass in pool i : bi j is

the rate at which mass moves from pool j to pool i , and bii is the rate at which mass
leaves the pool i which includes transfer to other pools and losses from the system.
The flux at which mass enters from outside the system to pool i is given by si .

We assume that the homogeneous linear system ẋ = Bx is exponentially stable,
i.e. all eigenvalues of B have negative real parts (this is fulfilled e.g. when the matrix
B is strictly diagonally dominant). This means that (1) has the exponentially stable
equilibrium x∗ = −B−1s.

The concept of transit time for compartmental systems describes the mean time
a particle spends in the compartmental system before it is released. There is a huge
amount of literature on this topic, see e.g. Anderson (1983), Bolin and Rodhe (1973),
Eriksson (1971), Garcia-Meseguer et al. (2003), Manzoni et al. (2009), but to our
knowledge, the following simple derivation of the transit time formula has not been
written down before.

Define ri as the mean (remaining) transit time in the system for a particle that has
entered pool i either from outside the system or from another pool, and note that the
transit time in pool i for a particle that has entered pool i either from outside the system
or from another pool is given by − 1

bii
. Let pi j be the probability that a particle that

enters pool i goes next to pool j , and note that

pi j = −b ji

bii
.

Next, note that the transit times for particles entering any pool i must satisfy the
equation

ri = − 1

bii
+

∑

j �=i

pi j r j ,

reflecting the fact that a particle in pool i spends the average time− 1
bii

in pool i , before
it either leaves the system or moves with the probability pi j to pool j , after which it
spends the mean time r j before it leaves the system. This reads as

r =

⎛

⎜
⎜
⎜
⎝

0 p12 p1d
p21 0 p2d

. . .

pd1 pd2 0

⎞

⎟
⎟
⎟
⎠
r −

⎛

⎜
⎝

1
b11
...
1
bdd

⎞

⎟
⎠ ,
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and multiplying the i-th row of this equation with −bii yields

0 = BT r + (1, . . . , 1)T .

Hence rT = −(1, . . . , 1)B−1.
Let βi be the fraction of particles that enter the system from outside directly into

pool i , i.e.

βi = si
∑d

i=1 si
for all i ∈ {1, . . . , d},

and let β = (β1, . . . , βd)
T . Then the transit time for the whole system is given by

R = −rTβ = −(1, . . . , 1)B−1β. (2)

Note that this transit time is equal to the turnover time U = (1,...,1)(x∗
1 ,...,x∗

d )T

(1,...,1)(s1,...,sd )T
(see

Bolin and Rodhe 1973), which follows directly from x∗ = −B−1s.
We will show later that if the linear compartmental system (1) is in the equilibrium

x∗ = −B−1s, then the mean age of the particles in the system is given by

M = −(1, . . . , 1)B−1η, (3)

where η = (η1, . . . , ηd)
T , defined by

ηi = x∗
i

∑d
j=1 x

∗
j

for all i ∈ {1, . . . , d},

describes how mass is distributed when the system is in equilibrium. It is well-known
that the mean age M is unequal to the transit time R (Bolin and Rodhe 1973; Rothman
2015), and we will demonstrate this now by means of two very simple compartmental
systems.

Example 1 (Transit times and mean ages) Consider the two compartmental systems

ẋ =
(−1 2
0.5 −2

)

x +
(
1
0

)

(4)

and

ẋ =
(−1 1

1 −2

)

x +
(
1
0

)

. (5)

It is easy to see that the transit times r1 and r2 for the two pools satisfies r1 < r2 for
(4) and r1 > r2 for (5). This follows either from using the above explicit formula for
the vector r , or by considering the fact that particles can only leave from pool 1 in
(4) and from pool 2 in (5). Since the transit time is given in both cases by r1, and the
mean age is a convex combination of r1 and r2, the transit time will be smaller than
the mean age in (4), in contrast to the situation in (5).
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3 Nonautonomous compartmental systems

In contrast to the autonomous case, both the coefficient matrix B and the input vector
s of a nonautonomous compartmental system are allowed to depend on time.

Definition 1 (Nonautonomous compartmental system) Let I := (τ,∞) with τ ∈
{−∞} ∪ R be a time interval, B : I → R

d×d be a bounded continuous function of
invertible matrices and s : I → [0,∞)d be a bounded continuous function. A (linear)
nonautonomous compartmental system with d pools is given by an inhomogeneous
linear nonautonomous differential equation

ẋ = B(t)x + s(t), (6)

where we assume that the entries {bi j (t)}i, j∈{1,...,d} of the matrix B(t) satisfy

• bii (t) < 0 for all i ∈ {1, . . . , d} and t ∈ I ,
• bi j (t) ≥ 0 for all i �= j ∈ {1, . . . , d} and t ∈ I ,
• ∑d

i=1 bi j (t) ≤ 0 for all j ∈ {1, . . . , d} and t ∈ I .

Let Φ : I × I → R
d×d denote the transition operator of the corresponding

homogeneous equation ẋ = B(t)x , i.e. the function t 
→ Φ(t, t0)x0 is the solution to
ẋ = B(t)x fulfilling the initial condition x(t0) = x0. Then the maximal solution to
(6) satisfying the initial condition x(t0) = x0 is given by

ϕ(t, t0, x0) := Φ(t, t0)x0 +
∫ t

t0
Φ(t, u)s(u) du for all t ∈ I. (7)

In contrast to the autonomous case, nonautonomous compartmental systems of
dimension two or higher are not explicitly solvable in general. Solutions can be
obtained for systems with no feedbacks between pools, as the following example
demonstrates.

Example 2 (Explicitly solvable nonautonomous two-poolmodel) The nonautonomous
compartmental system

ẋ =
(
b11(t) 0
b21(t) b22(t)

)

x +
(

0
s2(t)

)

,

where b11(t), b22(t) < 0, b21(t) ≥ 0 and s2(t) > 0 for all t ∈ I , can be solved
explicitly as follows: the general solution of the first equation is given by

x1(t) = x01 exp
(∫ t

t0
b11(u) du

)
,

and thus, the second equation reads as

ẋ2 = b22(t)x2 + b21(t)x
0
1 exp

(∫ t

t0
b11(u) du

)

+ s2(t),

and can be solved using (7), since the equation is one-dimensional.
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4 Exponential stability of nonautonomous compartmental systems

In this section, we provide a sufficient condition for global exponential stability of
the nonautonomous compartmental system (6). This criterion will concern only the
homogeneous part of (6), i.e. the matrix-valued function B, from which stability for
the inhomogeneous equation follows. Since the result holds also for linear systems
which are not compartmental systems, we formulate it more generally.

Theorem 1 (Sufficient condition for exponential stability)Consider the linear nonau-
tonomous differential equation

ẋ = B(t)x (8)

with transition operator Φ : I × I → R
d×d . Suppose that the function B is of the

form

B(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B11(t) 0 0 0
B21(t) B22(t) 0 0
B31(t) B32(t) B33(t) 0

. . .

Bm1(t) Bm2(t) Bm3(t) Bmm(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(9)

for m ≥ 1 with bounded functions Bi j : I → R
di×d j . Note that

∑m
i=1 di = d.

We assume that the linear subsystems ẋn = Bnn(t)xn, n ∈ {1, . . . ,m}, are strictly
diagonally dominant, i.e. there exists a δ > 0 such that

(i) (Bnn(t))i i < 0 for all t ∈ I and i ∈ {1, . . . , dn},
(ii) (Bnn(t))i j ≥ 0 for all t ∈ I and i �= j ∈ {1, . . . , dn},
(iii)

∑dn
j=1(Bnn(t))i j ≤ −δ for all t ∈ I and i ∈ {1, . . . , dn}.

Then the linear system (8) is exponentially stable, i.e. there exist constants K ≥ 1 and
γ > 0 such that

‖Φ(t, t0)‖ ≤ Ke−γ (t−t0) for all t ≥ t0 > τ. (10)

Proof Assume first that I is bounded below, and consider the linear systems

ẋ = Bii (t)x (11)

for each i ∈ {1, . . . ,m}. These systems are strictly diagonally dominant, and it follows
from (Coppel 1978, Proposition 3, page 55) that there exist Ki ≥ 1 and γi > 0 such
that

‖Φi (t, t0)‖ ≤ Kie
−γi (t−t0) for all t ≥ t0 > τ,

where Φi is the transition operator of (11). Next Pötzsche (2016, Theorem 4.1) or
Battelli and Palmer (2015, p. 540) yields that the dichotomy spectrumof (8) is bounded
above by −mini∈{1,...,m} γi . This in turn implies the claimed estimate (10). In case
I = R, the results from Pötzsche (2016, Theorem 4.1) and Battelli and Palmer (2015,
p. 540) are not applicable directly, since they require the system to be defined on a half
line, but the result follows by considering the two time intervals (−∞, 0) and (0,∞)

123



M. Rasmussen et al.

separately (note that we are not interested in the dichotomy spectrum for the entire
line, which is not determined by the block diagonal system; we only require an upper
bound, which we get from the block diagonal system).

The estimate (10) for the homogeneous system (8) implies that any two solutions of
the compartmental system (6) converge to each other exponentially. More precisely,
given two solutions μ1, μ2 : I → R

d of (6), then

‖μ1(t) − μ2(t)‖ ≤ Ke−γ (t−t0)‖μ1(t0) − μ2(t0)‖ for all t ≥ t0 > τ,

which follows from the fact that the difference of these two solutions is a solution
of the homogeneous system (8), for which the estimate (10) holds. This implies that
any solution is forward attracting, and in case the interval I is unbounded below, then
there also exists a unique pullback attracting solution

ν(t) :=
∫ t

−∞
Φ(t, u)s(u) du for all t ∈ I, (12)

see Aulbach andWanner (1996). This solution pullback attracts bounded sets B ⊂ R
d ,

in the sense of

lim
t0→−∞ dist (ϕ(t, t0, B), {ν(t)}) = 0 for all t ∈ I,

where ϕ denotes the maximal solution defined in (7) and dist denotes the Hausdorff
distance. We refer to Kloeden and Rasmussen (2011), Rasmussen (2007) for an intro-
duction to forward and pullback attractors of nonautonomous dynamical systems.

5 The mean age system

We prove in this section that the mean ages of mass in a nonautonomous compart-
mental system are solutions of a linear nonautonomous differential equation, which
we call the mean age system. We derive this result from the evolution of age distribu-
tions, given by the well-knownMcKendrick–von Förster equation (McKendrick 1926;
Brauer and Castillo-Chavez 2012; Thieme 2003), which is a linear first order partial
differential equation. We also prove that the mean age system is exponentially stable
under additional weak assumptions, by applying the theory developed in Sect. 4.

The mean age system is pivotal for the analysis of transit times for nonautonomous
compartmental systems, since in order to compute the average time the mass spends
in the system, we do not need to look at the full age distribution of ages, but only at
the mean ages.

Let pi (a, t) be the density function on agea for themass in pool i at time t , where the
age is the time since the mass entered the system. Note that the following formulation
is valid in principle even if all rates are age-dependent, i.e. bi j also depends on a, but
we will not treat this situation here. The McKendrick–von Förster equation is given
by
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∂pi
∂t

+ ∂pi
∂a

=
d∑

j=1

bi j (t)p j (13)

with boundary condition
pi (0, t) = si (t). (14)

Note that one also needs to specify initial conditions pi (a, 0).
A componentwise solution can be written as follows. Note that if there are no loops,

the solution is explicit, otherwise it is only implicit. The formula for t > a is

pi (t, a) = si (t − a) exp(
∫ t

t−a
bii (u) du)

+
∑

j �=i

∫ a

0

(

bi j (t − σ)p j (a − σ, t − σ) exp(
∫ t

t−σ

bii (u) du)

)

dσ.

Note that an analogous formula for a < t exists.
We are particularly interested in the transit time of (6) at a particular time t , which

corresponds to the mean age of mass leaving the system at time t . For this purpose,
we do not need the full age distribution determined by (13), since the situation is fully
described by the mean age of mass in pool i , denoted as āi (t). The following theorem
says that the evolution of the mean ages is determined by an ordinary differential
equation.

Theorem 2 (Mean age system) Consider the nonautonomous compartmental system
(6) with a fixed solution t 
→ (x1(t), . . . , xd(t)) of positive entries. Let pi (a, t) be the
density function on age a for the mass in pool i at time t (note that

∫ ∞
0 pi (a, t) da =

xi (t)), and define the mean age of mass in pool i by

āi (t) =
∫ ∞
0 api (a, t) da
∫ ∞
0 pi (a, t) da

for all i ∈ {1, . . . , d}.

Then the mean ages ā(t) = (ā1(t), . . . , ād(t)) solve the ordinary differential equation

˙̄a = g(t, x, ā), (15)

with

gi (t, x, ā) = 1 +
∑d

j=1(ā j − āi )bi j (t)x j (t) − āi si (t)

xi (t)
for all i ∈ {1, . . . , d}.

Proof By using
∫ ∞
0 a ∂pi

∂a (t, a) da = −xi (t) (integration by parts), it follows that

˙̄ai (t) = xi (t)
∫ ∞
0 a ∂pi

∂t (t, a) da − āi (t)xi (t)ẋi (t)

x2i (t)
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=
xi (t)

∫ ∞
0 a

(
− ∂pi

∂a (t, a) + ∑d
j=1 bi j (t)p j (t, a)

)
da − āi (t)xi (t)ẋi (t)

x2i (t)

= x2i (t) + ∑d
j=1 bi j (t)xi (t)

∫ ∞
0 ap j (t, a) da − āi (t)xi (t)ẋi (t)

x2i (t)

= 1 +
∑d

j=1 bi j (t)x j (t)ā j (t) − āi (t)
(∑d

j=1 bi j (t)x j (t) + si (t)
)

xi (t)

= 1 +
∑d

j=1(ā j (t) − āi (t))bi j (t)x j − āi (t)si (t)

xi (t)
.

This finishes the proof.

Combining the Eqs. (6) and (15) yields

(
ẋ
˙̄a
)

=
(
B(t)x + s(t)
g(t, x, ā)

)

, (16)

which is a 2d-dimensional ordinary differential equation of skew product type, i.e. the
x-equation does not depend on ā, but the equation for ā depends on x . Note that (16)
is a nonlinear equation, but given a solution x(t) = (x1(t), . . . , xd(t)) of (6), the age
equation (15) is an inhomogeneous linear nonautonomous differential equation, which
reads as

˙̄a = A(t, x(t))ā + (1, . . . , 1)T ,

where

A(t,x(t))=X (t)−1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−s1(t)−∑
j �=1 b1 j (t)x j (t) b12(t)x2(t) b1d (t)xd (t)

b21(t)x1(t) −s2(t)−∑
j �=2 b2 j (t)x j (t) b2d (t)xd (t)

. . .

bd1(t)x1(t) bd2(t)x2(t) −sd (t)−∑
j �=d bd j (t)x j (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with X (t) := diag(x1(t), . . . , xd(t)) for all t ∈ I .
We will show now that under additional weak assumptions, the mean age equation

is exponentially stable.

Theorem 3 (Exponential stability of the mean age system) Consider the nonau-
tonomous compartmental system (6) with a fixed solution t 
→ x(t) = (x1(t), . . . ,
xd(t)) of positive entries that are bounded and bounded away from zero, and suppose
that (6) satisfies the assumptions of Theorem 1 with δ > 0. In addition, assume that

(a) si (t) ≥ δ for all t ∈ I and i ∈ {1, . . . , d1}, and
(b) for all n ∈ {2, . . . ,m} and i ∈ {1+∑n−1

k=1 dk, 2+∑n−1
k=1 dk, . . . ,

∑n
k=1 dk}, there

exists a j ∈ {1, . . . ,∑n−1
k=1 dk} such that bi j (t) ≥ δ for all t ∈ I .
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Then the mean age system (15) is exponentially stable. More precisely, there exist
δ̄ ∈ (0, δ) and K̄ > 0 such that the transition operator Ψ : I × I → R

d×d of the
homogenous equation ˙̄a = A(t, x(t))ā satisfies the estimate

‖Ψ (t, t0)‖ ≤ K̄ e−δ̄(t−t0) for all t ≥ t0 > τ.

Proof We show now that the three conditions (i)–(iii) of Theorem 1 are satisfied with
δ replaced by δmin{1,mint∈I,i∈{1,...,d} |xi (t)|}. Note first that the matrix A(t, x(t))
has the same block decomposition as the matrix B(t), which is described in (9).

Condition (i) of Theorem 1 follows from (a) (in case of n = 1) or (b) (in case
n > 1; note that the sum of the entries in the i-th row of the matrix A(t, x(t)) equals
to −si (t), and (b) guarantees that the diagonal entry is negative even though si (t)
might be zero). Condition (ii) of Theorem 1 follows from the fact that the original
system (6) is a compartmental system, and the solution x(t) of (6) has positive entries.
Finally, condition (iii) of Theorem 1 follows from fact that the sum of the i-th row
of the matrix A(t, x(t)) equals to −si (t), and the positive contribution of at least
bi j (t)x j (t) ≥ δmint∈I,i∈{1,...,d} |xi (t)|, with i and j chosen as in (b), will not be
considered in the sum in condition (iii) of Theorem 1 and for this reason contributes
negatively to this sum.

A natural choice for the solution t 
→ x(t) in the above theorem is the exponentially
stable solution defined in (12) if the interval I is unbounded below. If the interval I is
unbounded below, this will be the only bounded solution of the system, i.e. the norm
of all other solutions converges to ∞ in the limit t → −∞, so the solution (12) is
the only solution to which the theorem can be applied. However, if the interval I is
bounded below, then all solutions of the nonautonomous compartmental system (6)
are bounded and exponentially stable, and they are also bounded away from zero due
to assumption (a) of Theorem 3.

6 Nonautonomous transit times

We define transit time as the mean age of mass leaving the system at a particular time
t . Note that in our nonautonomous context, this quantity depends on the actual time t .
We also provide a formula that corresponds to the mean age of mass currently residing
in the compartmental system.

Definition 2 (Nonautonomous transit time and mean age) Consider the skew product
system (16) consisting of the nonautonomous compartmental system (6) and the mean
age system (15). The transit time of a solution (x1(t), . . . , xd(t), ā1(t), . . . , ād(t)), t ∈
I , of this system is then defined as

Rt :=
∑d

i=1 āi (t)xi (t)
∑d

j=1 b ji (t)
∑d

i=1 xi (t)
∑d

j=1 b ji (t)
for all t ∈ I,
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and then mean age of this solution is defined by

Mt :=
∑d

i=1 āi (t)xi (t)
∑d

i=1 xi (t)
for all t ∈ I.

The transit time Rt is the mean age of carbon leaving the system at time t , where
as the mean age Mt is the mean age of carbon in the system at time t .

Note that, in general, Rt and Mt are different, see Example 1 for the autonomous
case. In the following example, we show that transit times and mean ages are the same
for one-dimensional compartmental systems.

Example 3 (Transit time and mean ages for one-dimensional compartmental systems)
Let I ⊂ R be an interval, and consider the one-dimensional nonautonomous compart-
mental system

ẋ = b(t)x + s(t),

where b : I → (−∞, 0) and s : I → (0,∞) are bounded continuous functions. Fix
a positive solution t 
→ x(t) of this system. Note that the solution is given explicitly
by

x(t) = x(t, t0, x0) = exp

(∫ t

t0
b(u) du

)

x0 +
∫ t

t0
exp

(∫ t0
u b(v) dv

)
s(u) du, (17)

where t0 and x0 are initial time and condition. Then the mean age equation is given
by

˙̄a = − s(t)

x(t)
ā + 1,

and also this equation can be solved explicitly using (17). Note that, in this one-
dimensional context, the formulae for transit time and mean age from Definition 2 are
given by exactly the solution to this equation:

Rt = Mt = ā(t) for all t ∈ I.

7 Consistency with the autonomous case

In this section, we derive simple expressions for the transit time and mean age from
Definition 2 in the special case of an autonomous compartmental system. The expres-
sion for the autonomous transit time coincides with the heuristically obtained formula
(2), and we confirm the expression for the mean ages stated in (3).

Consider an autonomous compartmental system

ẋ = Bx + s (18)
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with an invertible matrix B ∈ R
d×d and s ∈ R

d . We assume that the homogeneous
system ẋ = Bx satisfies the assumptions of Theorems 1 and 3. Note that (18) has the
exponentially stable equilibrium x∗ := −B−1s.

Lemma 1 Consider the autonomous differential equation (18). Then the mean age
equation (15) for the equilibrium x∗ reads as

˙̄a = (
X∗)−1

BX∗ā + (1, . . . , 1)T ,

and has the exponentially stable equilibrium

ā∗ := − (
X∗)−1

B−1X∗(1, . . . , 1)T ,

where X∗ := diag(x∗
1 , . . . , x

∗
d ).

Proof Note that the mean age equation (15) is given by

˙̄a = (
X∗)−1

⎛

⎜
⎜
⎜
⎝

−s1−∑
j �=1 b1 j x

∗
j b12x∗

2 b1d x∗
d

b21x∗
1 −s2−∑

j �=2 b2 j x
∗
j b2d x∗

d

. . .

bd1x∗
1 bd2x∗

2 −sd−∑
j �=d bd j x

∗
j

⎞

⎟
⎟
⎟
⎠
ā +

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ .

Since Bx∗ = −s, we get −si − ∑
j �=i bi j x

∗
j = bii x∗

i for all i ∈ {1, . . . , d}, so the
mean age equation (15) gets simplified to

˙̄a = (
X∗)−1

⎛

⎜
⎜
⎜
⎝

b11x∗
i b12x∗

2 b1d x∗
d

b21x∗
1 b22x∗

2 b2d x∗
d

. . .

bd1x∗
1 bd2x∗

2 bdd x∗
d

⎞

⎟
⎟
⎟
⎠
ā +

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

= (
X∗)−1

BX∗ā + (1, . . . , 1)T .

Hence the attractive equilibrium of (15) is given by

ā∗ := − (
X∗)−1

B−1X∗(1, . . . , 1)T ,

which finishes the proof of this lemma. �

Let βi be the fraction of particles that enter the system from outside directly into
pool i , i.e.

βi = si
∑d

i=1 si
for all i ∈ {1, . . . , d},
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and let β = (β1, . . . , βd)
T . Moreover, define η = (η1, . . . , ηd)

T by

ηi = x∗
i

∑d
j=1 x

∗
j

for all i ∈ {1, . . . , d},

which describes how mass is distributed when the system is in equilibrium. Note that∑d
i=1 βi = ∑d

i=1 ηi = 1.

Proposition 1 (Autonomous transit times and mean ages) Consider the autonomous
compartmental system (18). The transit time with respect to the equilibrium solution
t 
→ (x∗, ā∗) does not depend on time and is given by

R = −(1, . . . , 1)B−1β,

and the mean age of mass is given by

M = −(1, . . . , 1)B−1η.

Proof Using Definition 2, we have

Rt = (1, . . . , 1)BX∗ā∗

(1, . . . , 1)Bx∗ = − (1, . . . , 1)X∗(1, . . . , 1)T
∑d

i=1 si

= − (1, . . . , 1)x∗
∑d

i=1 si
= − (1, . . . , 1)B−1s

∑d
i=1 si

= −(1, . . . , 1)B−1(β1, . . . , βd)
T for all t ∈ R

for the transit time and

Mt = (1, . . . , 1)X∗ā∗

(1, . . . , 1)x∗ = − (1, . . . , 1)B−1X∗(1, . . . , 1)T
∑d

i=1 x
∗
i

= − (1, . . . , 1)B−1x∗
∑d

i=1 x
∗
i

= −(1, . . . , 1)B−1(η1, . . . , ηd)
T for all t ∈ R

for the mean age. Note that both quantities do not depend on t , and this finished the
proof of this proposition.

Note that derivation of the autonomous quantities for transit time R and mean age
M in Proposition 1 required the autonomous compartmental system (18) to be in
equilibrium, and the classical approach to transit times, as outlined in Sect. 2, is not
applicable for autonomous systems not in equilibrium. It is very important to note that
Definition 2 is useful for autonomous systems also, since it is applicable to systems
that are not in equilibrium. For such autonomous systems, transit times and mean ages
will depend on time in general, and although they converge to R and M in the limit
t → ∞, they might be very different to R and M .
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8 Mean ages and transit times for the CASA model

Here we illustrate predicted changes in the mean age of carbon leaving and remaining
in the system for a terrestrial carbon model under a climate change scenario. We
consider amodification of the CASAmodel as used in Buermann et al. (2007) globally
without resolving the spatial details of carbon pools using nine pools representing the
global terrestrial carbon (e.g. three pools for plant biomass, or litter or soil organic
matter). This caused the model to be precisely of the form of (6). Climate change was
simulated by increasing atmospheric CO2 over time, which affected both B(t) and s(t)
in (6). Increased CO2 directly increases carbon inputs s(t) through carbon dioxide
fertilization. They also directly increase mean global temperatures. This increases
the carbon loss rates from some of the carbon pools, changing components of B(t),
and also has an effect on s(t). Thus increased CO2 alters the input and loss rates of
components of the terrestrial carbon cycle, making both the sign and magnitude of the
net change in carbon storage dependent the sensitivity of carbon inputs and loss rates.

We simulated changes in atmospheric CO2 using

xa(t) = 1715 exp (0.0305t/(1715 + exp(0.0305t) − 1)) , (19)

where xa(t) is the atmospheric carbon dioxide concentration in parts per million and
t is years since the year 1850. This represents a plausible time course of atmospheric
CO2 from year 1850(t = 0) to 2500(t = 650) under a zero-mitigation, business as
usual global change scenario (Raupach et al. 2011) (illustrated in Fig. 1a).

The effect of CO2 on mean global temperatures is modelled as

Ts(t) = Ts0 + σ

ln(2)
ln(xa(t)/285), (20)

where Ts0 = 15 is the mean land surface temperature in 1850, and σ is the sensitivity
of global temperatures to xa(t). We chose an upper extreme of σ = 4.5 based on
the literature because the resulting simulation emphasises well the interplay between
increased carbon input rates and carbon loss rates Scheffer et al. (2006). Changes in
carbon input rates are simulated using

s(t) = (s1(t), s2(t), s3(t), 0, 0, 0, 0, 0, 0) (21)

with si (t) = fiαs0(1 + β(xa(t), Ts(t)) ln(xa(t)/285)), where fi = 0.33 is the pro-
portion of carbon input going to the different carbon pools, α = 0.5 is the proportion
of gross primary production that remains after respiration and β is the sensitivity of
s(t) to xa(t) and Ts(t), given by

β(xa(t), Ts(t)) = 3ρxa(t)�(Ts(t))

(ρxa(t) − �(Ts(t)))(ρxa(t) + 2�(Ts(t)))
,

where x = 0.65 is the ratio of the intracellular CO2 to xa(t), and �(Ts(t)) is given by

�(Ts(t)) = 42.7 + 1.68(Ts(t) − 25) + 0.012(Ts(t) − 25)2,
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Fig. 1 Forcing functions and solution of the simplified CASA model. a Nonautonomous dynamics are
driven by changes in atmospheric CO2 over time as given by xa(t). b The increased CO2 alters total carbon
inputs per unit time via �s(t). c Increasing CO2 also increases temperatures which increases litter and soil
carbon decomposition rates via ξ(t). d the resulting solution of total terrestrial carbon over time. Parameters
for this model are as given in the text but also with b11 = −0.67, b22 = −0.2, b33 = −0.04, b41 =
0.5092, b42 = 0.0260, b44 = −2.5, b51 = 0.1608, b52 = 0.1740, b55 = −0.4, b63 = 0.04, b66 =
−0.25, b74 = 1.1250, b75 = 0.1530, b76 = 0.06, b77 = −0.7, b78 = 0.0103, b79 = 0.0002, b85 =
0.042, b86 = 0.07, b87 = 0.3525, b88 = −0.023, b97 = 0.0045, b98 = 0.0001, b99 = −0.0004

see Polglase and Wang (1992). The solution of (21) with changes in xa(t) and Ts(t)
as described above is illustrated in Fig. 1b. The matrix controlling the rates of carbon
transfer and loss from the system is given by

B(t)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b11 0 0 0 0 0 0 0 0
0 b22 0 0 0 0 0 0 0
0 0 b33 0 0 0 0 0 0
b41 b42 0 b44ξ(Ts (t)) 0 0 0 0 0
b51 b52 0 0 b55ξ(Ts (t)) 0 0 0 0
0 0 b63 0 0 b66ξ(Ts (t)) 0 0 0
0 0 0 b74ξ(Ts (t)) b75ξ(Ts (t)) b76ξ(Ts (t)) b77ξ(Ts (t)) b78ξ(Ts (t)) b79ξ(Ts (t))
0 0 0 0 b85ξ(Ts (t)) b86ξ(Ts (t)) b87ξ(Ts (t)) b88ξ(Ts (t)) b89ξ(Ts (t))
0 0 0 0 0 0 b97ξ(Ts (t)) b98ξ(Ts (t)) b99ξ(Ts (t))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

indicating that it is the loss rates of pools i = {3, . . . , 9} that change with time. The
coefficients bi j are listed in the legend to Fig. 1, and

ξ(Ts(t)) = ξ
0.1Ts (t)−2
b , (22)
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Fig. 2 Breakdown of the contributions of the different vegetation carbon pools to the change in the overall
terrestrial carbon storage dynamics illustrated in Fig. 1d. Pools x1, x2 and x3 are carbon in leaves, roots
and wood, respectively; pools x4 to x6 are carbon in different forms of litter, and pools x7 to x9 are carbon
in different forms of soil

where ξ(Ts(t)) is the scaling of decomposition rates at Ts = 20 degrees Celsius.
Equation (22) is illustrated in Fig. 1c.

To define the model initial conditions we assume that xa(t) = xa(0) for all t < 0
and that x(0) has reached the positive equilibrium solution of the resulting system of
autonomous equations. Themodel is then simulated forward from this initial condition
using (19) as the forcing function. Under this simulated scenario, total land carbon
increases then decreases over time as shown in Fig. 1d. This would represent an initial
net uptake of carbon from the atmosphere due to carbon dioxide fertilization followed
ultimately by a net carbon loss from the land back to the atmosphere due to global
warming (Fig. 2 shows how this carbon change over time is distributed amongst the
different components of x(t)).

Calculations of the transit time Rt and mean age Mt of carbon in the system
(according to Definition 2), for the nine-pool model for the climate change simu-
lation described above, show an order of magnitude difference in the absolute values
of Rt and Mt (Fig. 3). This indicates that the average age of carbon stored on land
is much older than the average age of carbon leaving the land. Note that at t = 0
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Fig. 3 Mean transit time Rt , and mean age Mt , compared with the instantaneous quantities R and M

(corresponding to the year 1850), we assumed that M0 = M , where M is the mean
age of the equilibrium solution at t = 0 according to Proposition 1.

Perhaps surprisingly, the monotonic forcing of B(t) and s(t) translates into non-
monotonic effects on Rt and Mt . A detailed mathematical investigation of this
phenomenon is outside the scope of the present study.

The nonautonomous properties Rt and Mt show contrasting trajectories to the
instantaneous properties R and M (which we computed according to Proposition 1,
but note that, since the system is nonautonomous, the assumptions of this proposition
are not fulfilled). For example the latter properties change monotonically over time.
This must be because the long term outcome of an increase in the input rate of young
carbon and an increase in the output rate of old carbon is a decrease in the age of
carbon both leaving and remaining in the system. Over the course of the simulation
the numerical values of the autonomous and nonautonomous properties becomevisibly
different (Fig. 3). This is because it will take a long time for the values of Rt and Mt

to approach R and M due to the small loss rate of the ninth soil pool.

9 Conclusions

Models for terrestrial carbon cycling have led to renewed interest in the properties
of compartment models. Key quantities that have been studied over many years in
compartment models with parameters fixed in time (Eriksson 1971; Bolin and Rodhe
1973; Anderson 1983) are the mean age of particles in the system and the transit time
of particles leaving the system. Formulae for these quantities that give the mean age
and transit time in terms of parameters of the system in the long time limit have led to
insights, but cannot be applied to the case of changing parameters.

As parameters change, for example in a model of carbon cycling due to climate
change, it is not correct to calculate themean age or transit time from the instantaneous
parameter values. Using the theory of nonautonomous differential equations as a tool,
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and beginning with time dependent age structured models, we are able to define and
derive formulae for the transit time andmean age for particles in the case of temporally
changing parameters. These definitions lead to quantities that reduce to the analogous
formulae for the autonomous (constant parameter) casewhenparameters donot change
in time. However, the formulae for the nonautonomous case also highlight the fact that
even in the constant parameter case the transit time and mean age do depend on initial
conditions; some of the standard formulae do not include this dependence.

The difference between a transit time or mean age that is computed based on the
parameters at a given instant and the better approach of taking into account the history
of the system can be substantial as we illustrate using a variant of the CASA model.
Thus, the approach we develop here is not just of mathematical interest but is of
substantial practical importance as well.

Acknowledgments Martin Rasmussen was supported by an EPSRC Career Acceleration Fellowship
EP/I004165/1 (2010–2015) and by funding from the European Union’s Horizon 2020 research and inno-
vation programme for the ITN CRITICS under Grant Agreement Number 643073. Alan Hastings was
supported by Army Research Office Grant W911NF-13-1-0305. Forrest M. Hoffman was supported by
the Biogeochemistry–Climate Feedbacks Scientific Focus Area, which is sponsored by the Regional and
Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological
and Environmental Research Program in the U.S. Department of Energy Office of Science. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. Katherine E. O. Todd-Brown is grateful for the support of the Linus Pauling
Distinguished Postdoctoral Fellowship program which is funded under the Laboratory Directed Research
and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory
operated byBattelle for theU.S.Department of Energy.YingWangwas supported by aRalphE. Powe Junior
Faculty Enhancement Award fromOak Ridge Associated Universities and by a Faculty Investment Program
and a Junior Faculty Fellow Program grant from the Research Council and College of Arts and Sciences
of the University of Oklahoma Norman Campus. Research in Yiqi Luo EcoLab was financially supported
by U.S. Department of Energy grants DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601,
and DE-SC0010715 and U.S. National Science Foundation (NSF) grants DBI 0850290, EPS 0919466,
DEB 0840964, and EF 1137293. This work was assisted through participation of the authors in the working
group Nonautonomous Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical
and Biological Synthesis, an institute sponsored by the National Science Foundation, the US Department
of Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, with
additional support from The University of Tennessee, Knoxville. The authors are grateful to two referees
for useful comments that led to an improvement of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

AndersonDH (1983) Compartmental modeling and tracer kinetics, vol 50. Lecture notes in biomathematics.
Springer, Berlin

Aulbach B, Wanner T (1996) Integral manifolds for Carathéodory type differential equations in Banach
spaces. In:AulbachB,Colonius F (eds) Six lectures on dynamical systems.World Scientific, Singapore

Battelli F, Palmer KJ (2015) Criteria for exponential dichotomy for triangular systems. J Math Anal Appl
428(1):525–543

Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs.
Tellus 25(1):58–62

123



M. Rasmussen et al.

Bolker BM, Pacala SW, PartonWJ Jr (1998) Linear analysis of soil decomposition: insights from the century
model. Ecol Appl 8:425–439

Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology, vol 40.
Texts in applied mathematics. Springer, New York

Buermann W, Lintner BR, Koven CD, Angert A, Pinzon JE, Tucker CJ, Fung IY (2007) The changing
carbon cycle at Mauna Loa Observatory. Proc Natl Acad Sci 104(11):4249–4254

CoppelWA (1978)Dichotomies in stability theory, vol 629. Springer lecture notes inmathematics. Springer,
Berlin

Eriksson E (1971) Compartment models and reservoir theory. Annu Rev Ecol Syst 2:67–84
Garcia-Meseguer MJ, De Labra JAV, Garcia-Moreno M, Garcia-Canovas F, Havsteen BH, Varon R (2003)

Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation.
Bull Math Biol 65(2):279–308

Godfrey K (1983) Compartmental models and their application. Academic Press, London
Jacquez JA, Simon CP (1993) Qualitative theory of compartmental systems. SIAM Rev 35(1):43–79
Kloeden PE, RasmussenM (2011) Nonautonomous dynamical systems, vol 176. Mathematical surveys and

monographs. American Mathematical Society, Providence
Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8(3):315–323
Luo Y, Lianhai W, Andrews JA, White L, Matamala R, Schäfer KVR, Schlesinger WH (2001) Elevated

CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data.
Ecol Monogr 71(3):357–376

Luo Y, Keenan TF, Smith M (2015) Predictability of the terrestrial carbon cycle. Glob Change Biol
21(5):1737–1751

Manzoni S, Katul GG, Porporato A (2009) Analysis of soil carbon transit times and age distributions using
network theories. J Geophys Res Biogeosci 114:G04025

McKendrickAG (1926)Applications ofmathematics tomedical problems. Proc EdinbMath Soc 40:98–130
Orchard VA, Cook FJ (1983) Relationships between soil respiration and soil moisture. Soil Biol Biochem

40(5):1013–1018
Polglase PJ, Wang Y-P (1992) Potential CO2-enhanced carbon storage by the terrestrial biosphere. Aust J

Bot 40:641–656
Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial

ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem
Cycles 7(4):811–841

Pötzsche C (2016) Dichotomy spectrum of triangular equations. Discrete Contin Dyn Syst 36(1):423–450
Randerson JR, Thompson MV, Malmstrom CM, Field CB, Fung IY (1996) Substrate limitations for

heterotrophs: implications for models that estimate the seasonal cycle of atmospheric CO2. Glob
Biogeochem Cycles 10(4):585–602

RasmussenM(2007)Attractivity and bifurcation for nonautonomous dynamical systems, vol 1907. Springer
lecture notes in mathematics. Springer, Berlin

Raupach MR, Canadell JG, Ciais P, Friedlingstein P, Rayner PJ, Trudinger CM (2011) The relationship
between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the
carbon–climate–human system. Tellus 63(2):145–164

Rothman DH (2015) Earth’s carbon cycle: a mathematical perspective. Bull Am Math Soc 52(1):47–64
Scheffer M, Brovkin V, Cox PM (2006) Positive feedback between global warming and atmospheric CO2

concentration inferred from past climate change. Geophys Res Lett 33(10):L10702
Thieme HR (2003) Mathematics in population biology. Princeton series in theoretical and computational

biology. Princeton University Press, Princeton
Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon conatrants on belowground

C dynamics. Ecol Appl 10(2):399–411
Xia J, Luo Y, Wang Y-P, Weng E, Hararuk O (2012) A semi-analytical solution to accelerate spin-up of a

coupled carbon and nitrogen land model to steady state. Geosci Model Dev 5:1259–1271

123


