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Abstract. A number of nonlinear microbial models of soil

carbon decomposition have been developed. Some of them

have been applied globally but have yet to be shown to real-

istically represent soil carbon dynamics in the field. A thor-

ough analysis of their key differences is needed to inform

future model developments. Here we compare two nonlinear

microbial models of soil carbon decomposition: one based on

reverse Michaelis–Menten kinetics (model A) and the other

on regular Michaelis–Menten kinetics (model B). Using an-

alytic approximations and numerical solutions, we find that

the oscillatory responses of carbon pools to a small perturba-

tion in their initial pool sizes dampen faster in model A than

in model B. Soil warming always decreases carbon storage in

model A, but in model B it predominantly decreases carbon

storage in cool regions and increases carbon storage in warm

regions. For both models, the CO2 efflux from soil carbon

decomposition reaches a maximum value some time after in-

creased carbon input (as in priming experiments). This max-

imum CO2 efflux (Fmax) decreases with an increase in soil

temperature in both models. However, the sensitivity of Fmax

to the increased amount of carbon input increases with soil

temperature in model A but decreases monotonically with an

increase in soil temperature in model B. These differences in

the responses to soil warming and carbon input between the

two nonlinear models can be used to discern which model is

more realistic when compared to results from field or labo-

ratory experiments. These insights will contribute to an im-

proved understanding of the significance of soil microbial

processes in soil carbon responses to future climate change.

1 Introduction

The dynamics of soil carbon in most global biogeochem-

ical models are modelled using first-order kinetics, which

assumes that the decay rate of soil carbon is proportional

to the size of soil carbon pool. This approach has been re-

cently questioned on theoretical grounds (Schimel and Wein-

traub, 2003; Fontaine and Barot, 2005), and is contradicted

by the observed responses of soil carbon decay to the ad-

dition of fresh organic litter (Fontaine et al., 2004; Sayer

et al., 2011) or soil warming (Luo et al., 2001; Melillo et

al., 2002; Bradford et al., 2008). As a result, a number of

nonlinear soil microbial models have been developed (Alli-
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son et al., 2010; Manzoni and Porporato, 2007; Wutzler and

Reichstein, 2008) and a few of them have been applied at

global scales (Wieder et al., 2013; Sulman et al. 2014). Pre-

dictions of future soil carbon change by these nonlinear mod-

els can differ significantly from conventional linear models

(Fontaine et al., 2007; Wieder et al., 2013). For example, con-

ventional linear soil carbon models predict that soil carbon

will decrease with increased temperature, all else being equal

(Jenkinson et al., 1991), whereas the nonlinear models pre-

dict that the soil carbon can decrease or increase, depending

on the temperature sensitivity of microbial growth efficiency

and turnover rates (Frey et al., 2013; Hagerty et al., 2014;

Li et al., 2014). However, the nonlinear models have yet to

be validated against field measurements as extensively as the

conventional linear soil carbon models (Wieder et al., 2016).

They also have some undesirable features, particularly the

presence of strong oscillations or bifurcations (Manzoni and

Porporato, 2007; Wang et al., 2014) in their dynamics that are

not observed in real-world systems. Therefore it is important

to improve understanding of the behaviour of these nonlin-

ear models before they are used in earth system models for

informing climate decisions.

Nonlinear microbial models can explain why the decom-

position rate of recalcitrant organic soil carbon varies after

the addition of easily decomposable organic carbon to soil,

which is known as the priming effect (Kuzyakov et al., 2000).

This response has been observed in the field (Fontaine et al.,

2004; Sayer et al., 2011) but cannot predicted by conven-

tional linear soil carbon models without modification (Fujita

et al., 2014). Theoretically, decomposition of soil organic

carbon is catalysed by extracellular enzymes that are pro-

duced by soil microbes. The production rate of extracellu-

lar enzymes depends on the biomass and composition of the

soil microbial population and their local environment. There-

fore the decomposition rate of soil organic carbon should de-

pend on both microbial biomass and substrate concentration

(Schimel and Weintraub, 2003), rather than on substrate con-

centration only, as assumed in conventional linear models.

This sensitivity of soil carbon decomposition to the input

of additional carbon has important implications for the stor-

age of carbon by the biosphere in response to climate change.

Soil is the largest land carbon pool and therefore the direc-

tion and magnitude of the global carbon–climate feedback

strongly depends on the responses of soil carbon to future

warming (Jones and Fallow, 2009; Hargety et al., 2014).

A number of nonlinear models have been developed that

explicitly account for the dynamics of the soil microbial

community (Parnas, 1978; Smith, 1979; Schimel and Wein-

traub, 2003; Wutzler and Reichstein, 2008; Allison et al.,

2010; Grant, 2014; Riley et al., 2014; Tang and Riley, 2014).

Parnas (1979) explored the mechanism of priming using a

nonlinear soil microbial model that included both soil car-

bon and nitrogen dynamics. Smith (1979) developed a non-

linear model of soil carbon decomposition that included the

interactions among carbon, nitrogen, phosphorus, and potas-

sium. Smith’s model represented multiple forms of carbon,

nitrogen, and phosphorus and their transformation via abiotic

(such as adsorption and desorption) and biological processes

by different groups of soil microbes. The soil models devel-

oped by both Parnas (1978) and Smith (1979) were based

on regular Michaelis–Menten kinetics, in which the rate of

carbon decomposition depends linearly on the concentration

of soil enzymes but nonlinearly on substrate concentration

(Roberts, 1977). This was challenged by Schimel and Wein-

traub (2003), who emphasized the importance of exoenzyme

limitation on soil carbon decomposition. Schimel and Wein-

traub (2003) used a reverse Michaelis–Menten kinetics for-

mulation to show that the response of soil carbon decompo-

sition to carbon substrate concentration can be nonlinear re-

gardless of carbon supply. The reverse Michaelis–Menten ki-

netics for soil carbon decomposition assumes that the rate of

carbon decomposition depends nonlinearly on enzyme con-

centration but linearly on substrate concentration.

The nonlinear soil carbon models described above have

subsequently been used in a variety of studies: to explore dif-

ferent the fundamental mechanisms controlling soil carbon

decomposition (Schimel and Weintraub, 2003, for example),

to investigate the sensitivity of soil carbon and other bio-

geochemical processes to warming (Grant, 2014; Tang and

Riley, 2014), to investigate the response of soil carbon to

a small perturbation, such as priming (Wutzler and Reich-

stein, 2013), and to predict soil carbon responses to global

change (Wieder et al., 2013; Sulman et al., 2014). Some stud-

ies have explored the mathematical properties of these non-

linear models in detail (for example, Manzoni et al., 2004;

Manzoni and Porporato, 2007; Raupach, 2007; Wang et al.,

2014). However, to date these have been predominantly re-

stricted to obtaining insights for individual models and with

a specific parameterization.

In this study we use mathematical analysis to improve our

understanding of the key properties of nonlinear microbial

models. For simplicity and analytic convenience, we choose

two simple types of nonlinear microbial models: one with

regular Michaelis–Menten kinetics and another with the re-

verse Michaelis–Menten kinetics. These models can be con-

sidered as two special cases of the more general kinetics dis-

cussed by Tang (2015). These two simple formulations are

amenable to analytic approximations, whereas the formu-

lations with more general kinetics, such as the equilibrium

chemistry approximations, are not. We only represent three

soil carbon pools with each model and ignore abiotic pro-

cesses for simplicity, despite these being potentially impor-

tant under certain conditions (see Tang and Riley, 2014 for an

example). In comparing the two nonlinear microbial models,

we use the standard mathematical technique to analyse their

responses to a small perturbation (see Wang et al., 2014),

such as a step change in soil temperature or carbon input, or

whether two models exhibit oscillatory behaviour under cer-

tain conditions, and how the analytic approximations to the

exact model solutions differ between the two nonlinear mod-
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els. We address the following questions. (1) How do the re-

sponses of these two models to soil warming differ, and why?

(2) Can both models simulate the response of soil carbon de-

composition to increased carbon input as in a priming exper-

iment and what determines the magnitude of the response in

each model?

2 Methods

2.1 Model description

We consider two nonlinear soil microbial models: model A,

which uses reverse Michaelis–Menten kinetics, and model B,

which uses regular Michaelis–Menten kinetics (specified be-

low). Both models have three carbon pools: litter carbon, mi-

crobial biomass, and soil carbon.

Model A is based on the nonlinear microbial model of

soil carbon described Wutzler and Reichstein (2013, their

model A1). Their original model has four pools, modelled

by

dCl

dt
= (1− a)Fnpp−µlCl

Cb

Cb+Kb

, (1)

dCs

dt
= aFnpp+µbCb−µs Cs

Cb

Cb+Kb

, (2)

dCb

dt
= εµmCb

Cm

Cm+Km

−µbCb, (3)

and

dCm

dt
= (µlCl+µs Cs)

Cb

Cb+Kb

−µm Cb

Cm

Cm+Km

, (4)

where t is time in years; Cl, Cs, Cb, and Cm represent the

pool sizes of litter carbon, soil carbon, microbial biomass

carbon, and assimilable soil carbon in g C m−2, respectively;

and Fnpp is carbon input in g C m−2 yr−1, with the fraction a

going to the soil carbon pool, and (1− a) to the litter carbon

pool. µl, µs, µb, and µm are rate constants of litter carbon,

soil carbon, microbial biomass, and assimilable carbon per

year, respectively (see Schimel and Weintraub, 2003); ε is

microbial growth efficiency; and Kb and Km are two empiri-

cal constants in g C m−2 for the dependence of the consump-

tion of litter carbon or assimilable carbon by soil microbes.

In this study we are interested in the responses at

timescales greater than 1 year. We therefore assume that Cm

is at steady state (dCm / dt = 0) because of its relatively fast

turnover (less than a few days). Therefore the dynamics of

microbial biomass, Cb, can be simplified to

dCb

dt
= ε (µlCl+µs Cs)

Cb

Cb+Kb

−µb Cb. (5)

Model A as used in this paper consists of Eqs. (1), (2), and

(5) unless otherwise specified. This type of formulation was

also used by Schimel and Weintraub (2003) and Drake et

al. (2013).

Model B, based on the model used by Allison et al. (2010)

and Wieder et al. (2013) with one additional assumption that

both enzyme and dissolved organic carbon pools are at steady

states, is given by

dCl

dt
= (1− a)Fnpp−Cb

Vl Cl

Cl+Kl

, (6)

dCs

dt
= aFnpp+µbCb−Cb

Vs Cs

Cs+Ks

, (7)

and

dCb

dt
= ε Cb

(
Vl Cl

Cl+Kl

+
Vs Cs

Cs+Ks

)
−µb Cb, (8)

where Kl and Ks are Michaelis–Menten constants in

g C m−2, and Vl and Vs are maximum rates of substrate

carbon (litter or soil) assimilation rate per unit microbial

biomass per year. This type of kinetics was used by Riley

et al. (2014), Wieder et al. (2014) and Wang et al. (2014).

These two models make different assumptions about the

rate-limiting step in carbon decomposition. Both models as-

sume that microbes have similar access to litter and soil car-

bon. In model A, carbon decomposition is assumed to depend

nonlinearly on the number of binding sites or the amount

of substrate and linearly on enzymes or microbial biomass

(Schimel and Weintraub, 2003). In model B, carbon decom-

position is assumed to depend nonlinearly on enzymes or mi-

crobial biomass and linearly on the number of binding sites

or the amount of substrate (Allison et al., 2010).

When carbon input, Fnpp, is equal to zero, the steady-state

solution is zero for litter and soil carbon pools for both mod-

els (a trivial solution). When Fnpp > 0, the steady-state solu-

tions to model A are

C∗l =
(1− a)Fnpp

µl

+
(ε−1
− 1)(1− a)µbKb

µl

, (9)

C∗b =
Fnpp

(ε−1− 1)µb

, (10)

and

C∗s =

(
a+

1

ε−1− 1

)
Fnpp

µs

+

(
1+ a

(
ε−1
− 1

)) µbKb

µs

. (11)

The steady-state solutions to model B are

C∗l =
Kl

εVl

(1−ε)(1−a)µb
− 1

, (12)

C∗b =
Fnpp

µb

(
ε−1− 1

) , (13)

and

C∗s =
Ks

Vs

µb

ε
ε+a(1−ε)

− 1
. (14)
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CO2 efflux from the decomposition of soil organic carbon

(Fs) is calculated as

Fs = (1− ε)µsCs

Cb

Cb+Kb

(15)

for model A and

Fs = (1− ε)Cb

VsCs

Cs+Ks

(16)

for model B.

2.2 Parameter values

We allow all model parameters to vary with soil temperature

(Ts) with the exception of parameter a. Based on the work of

Allison et al. (2010) and Hagerty et al. (2014), we model the

temperature dependence of parameters as

ε = εR− x (Ts− TR) (17)

and

µb = µbR exp(b (Ts− TR)) (18)

for both models, where TR is reference soil temperature in ◦C

(i.e. 15 ◦C), εR and µbR are the values of ε and µb at Ts = TR,

respectively, and x and b are two empirical constants (see

Table 1 for their default values).

Previously there has been debate about the temperature

sensitivities of ε and µb (see Frey et al., 2013; Hargety et

al., 2014). The microbial models as developed by Allison et

al. (2010) and used by Wieder et al. (2013), and Wang et

al. (2014) assumed that ε was temperature-sensitive and µb

was temperature-insensitive (or b = 0). This assumption was

recently challenged by Hargety et al. (2014), who found that

µb was temperature-sensitive and ε was not, based on a lab-

oratory soil-warming experiment. Here we will explore the

consequence of different assumptions about the temperature

sensitivities of ε and µb on the simulated response of soil

carbon to warming by the two models (see Sect. 3.2).

We also assume that three additional model parameters in

model A, Kb, µl, and µs depend on soil temperature expo-

nentially, with

Kb =KbR exp(αk (Ts− TR)) , (19)

µl = µlR exp(αl (Ts− TR)) , (20)

and

µs = µsR exp(αs (Ts− TR)) , (21)

where KbR, µlR, and µsR are the values of Kb, µl and µs

when soil temperature (Ts) is equal to the reference temper-

ature, TR (15 ◦C in this study), and αk, αl, and αs are three

empirical constants with their default values listed in Table 1.

For model B, we assume that Kl, Ks, Vl, and Vs increase

with soil temperature exponentially:

Kl =KlR exp(βkl (Ts− TR)) , (22)

Ks =KsR exp(βks (Ts− TR)) , (23)

and

Vl = VlR exp(βvl (Ts− TR)) , (24)

Vs = VsR exp(βvs (Ts− TR)) , (25)

where KlR, KsR, VlR, and VsR are the values of Kl, Ks, Vl,

and Vs at the reference soil temperature (TR), respectively,

and βkl, βks, βvl and βvs are four empirical constants for

model B (see Table 1).

As found by Wang et al. (2014), the microbial biomass

as simulated by model B using the parameter values of

Wieder et al. (2013) was low (< 1 % of total soil carbon).

We therefore reduced the turnover rate of microbial biomass

to 1.1 yr−1 by assuming that 2 % of total soil organic carbon

is microbial biomass carbon at a soil temperature of 15 ◦C.

Some parameter values in model A at the reference temper-

ature were obtained by calibrating the equilibrium litter and

soil carbon pool sizes against those from model B for a soil

temperature of 15 ◦C and carbon input of 400 g C m−2 yr−1,

as used in Wang et al. (2014).

2.3 Analytic solutions and numerical simulations

We derived and used analytic solutions whenever possible

for comparing the two models. Specifically, we mathemat-

ically analysed the temperature dependence of steady-state

soil carbon pool size, and derived an analytic approximation

of soil temperature at which equilibrium soil carbon is at a

minimum (e.g. Eq. B4 for model B). We also derived an ap-

proximate solution for the maximum CO2 loss from soil car-

bon decomposition after the increased carbon input for each

model (e.g. Eq. C12 for model A and Eq. C15 for model B).

When an analytic solution was not possible or too cumber-

some, we used numerical simulations to show the differences

between the two models in their responses of carbon pools to

a small perturbation in litter or microbial carbon pool sizes,

and the response of CO2 efflux from soil carbon decompo-

sition to litter addition at a tropical forest site (Sayer et al.,

2011).

3 Results

Before comparing the responses of our models to soil warm-

ing and increased carbon input, we first analyse some key

properties of their responses to a small perturbation, i.e.

whether both models oscillate in response to a small change

in their initial pool sizes and what determines the period and

amplitude of the oscillation. As a step change in soil temper-

ature or carbon input can be considered to be a perturbation,

Biogeosciences, 13, 887–902, 2016 www.biogeosciences.net/13/887/2016/
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Table 1. Default values of model parameters and their temperature sensitivities (◦C−1). Four parameters were tuned: 1 tuned using the

microbial biomass data measured from a tropical forest site (see Sayer et al., 2011), and 2 tuned against the soil carbon pool size simulated

by model B by Wang et al. (2014).

Default value Source Temperature Source

sensitivity

εR = 0.39 Allison et al. (2010) x = 0.016 Allison et al. (2010)

µbR = 1.1 yr−1 This study1 b = 0.063 Hagerty et al. (2014)

µlR = 0.84 yr−1 This study2 αl = 0.063 Hagerty et al. (2014)

µsR = 0.028 yr−1 This study2 αs = 0.063 Hagerty et al. (2014)

KbR = 100 g C m−2 This study1 αk = 0.007 Allison et al. (2010)

KlR = 67275 g C m−2 Wang et al. (2014) βkl = 0.007 Allison et al. (2010)

KsR = 363871 g C m−2 Wang et al. (2014) βkss = 0.007 Allison et al. (2010)

VlR = 172 yr−1 Wang et al. (2014) βvl = 0.063 Allison et al. (2010)

VsR = 32 yr−1 Wang et al. (2014) βvs = 0.063 Allison et al. (2010)

identifying differences in those key properties will help us

understand the differences in the responses of the two mod-

els to soil warming and increased carbon input.

The response of model B to perturbation has already been

analysed by Wang et al. (2014), and will not be elaborated

here, but the results from that analysis will be used to com-

pare the period and amplitude of the response to perturbation

to that of model A.

3.1 Comparison of the perturbation responses of both

models

Perturbation analysis is a standard mathematical technique

for analysing the behaviour of a dynamic system near its

equilibrium state (see Drazin, 1992, for further details).

There are two kinds of perturbation responses: stable or un-

stable. The system states, or carbon pool sizes in this study,

will always approach their equilibrium states for a stable re-

sponse, or otherwise for an unstable response. For both stable

and unstable responses, the transient change in a carbon pool

size over time can be oscillatory or monotonic. As shown

in Appendix A, the response of a carbon pool to a small

perturbation is always stable, and oscillatory only if Fnpp <

4
(1−ε)2

ε

µlµ
2
bKb

(µb−µl)
2 , or monotonic otherwise for model A. This

region of oscillation in the two-dimensional space of carbon

input and soil temperature is shown in black in Fig. 1. The

response of model A to a small perturbation is oscillatory un-

der most conditions; the conditions with low soil temperature

and high carbon input are uncommon in terrestrial ecosys-

tems.

The results of a singular perturbation analysis are strictly

applicable only when the perturbation is small. However, our

simulations show that the predictions from the perturbation

analysis approximate well the responses of our two models to

any realistic perturbation (see Appendix A of this paper and

Appendix B in Wang et al., 2014). Therefore we can predict

how soil carbon or other carbon pools change over time in
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Figure 1. Variation in microbial growth efficiency (ε), Vl, and Kb

with soil temperature (left panel) or the region in which model A

has oscillatory or non-oscillatory response to a small perturbation

(right panel) at different carbon input and soil temperature.

response to a change in carbon inputs or soil warming (i.e.

a perturbation of the external environment) and explain why

the responses of the carbon pools are different between the

two models.

To illustrate how the responses of carbon pools to a small

perturbation differ between the two models, we numerically

simulated the recovery of all three carbon pools in each

model after a 10 % reduction at time t = 0 in both litter and

microbial carbon from their respective steady-state values,

while no perturbation was applied to soil carbon at t = 0

(see Fig. 2). The amplitude of the initial oscillation is about

70 g C m−2 for the litter pool (see Fig. 2b) and 7 g C m−2 for

the microbial carbon pool (see Fig. 2d) in model B, com-

pared to about 25 g C m−2 (see Fig. 2a) for the litter pool and

4 g C m−2 for the microbial pool (see Fig. 2c) in model A.

After 20 years, both the litter and microbial carbon pools are

very close to their respective steady-state values in model A,

but continue to oscillate in model B.

The oscillatory response can be mathematically character-

ized by its half-life (t0.5) and period (p). For a stable oscil-

latory response, the amplitude of the oscillation decays ex-

www.biogeosciences.net/13/887/2016/ Biogeosciences, 13, 887–902, 2016
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Figure 2. Dynamics of litter carbon (a, b), microbial carbon (c, d),

and soil carbon (e, f) for model A (a, c, e) and model B (b, d, f)

after a 10 % reduction of initial pool size in litter and microbial

carbon. The unit is g C m−2 for carbon pool on the y axis and year

for time. All initial pools are steady-state values for a carbon input

of 200 g C m−2 yr−1 at a soil temperature is 25 ◦C.

ponentially. The time for the amplitude to reach 50 % of its

initial value is defined as the half-life (t0.5). The smaller t0.5
is, the faster the oscillation dampens. As explained in Ap-

pendix A, values of t0.5 and p for model A are much smaller

than model B for any given soil temperature and perturba-

tion. This explains why the oscillatory response of model A

dampens much faster than model B.

There are significant differences in the response of soil car-

bon between the two models. While there is no response of

soil carbon to a small perturbation in litter carbon and micro-

bial biomass in model B, soil carbon in model A decreases

initially to a minimum value at 5 years after the perturba-

tion, then gradually increases to its steady-state value. These

differences in the response of soil carbon between the two

models can be explained by the differences in the structure

of eigenvectors for litter carbon and microbial biomass be-

tween the two models (see Appendix A for further details).

3.2 Response of soil carbon to warming

Here we explore how soil carbon responds to a step increase

in soil temperature, as in many soil-warming experiments

(Luo et al., 2001; Mellilo et al., 2002), and ignore the re-

sponse of carbon input to warming.

As explained in Appendix A, the response of soil carbon

to warming is always stable in both models and is likely to

be weakly oscillatory in model A and monotonic in model B.

The transient change in soil carbon after warming can be pre-

dicted using the generalized solution for soil carbon for each

model (see Eq. B1 of Wang et al., 2014). Therefore the di-

rectional change in soil carbon in response to warming, i.e.

increasing or decreasing only, depends on the sensitivity of

the equilibrium soil carbon pool to soil temperature in both

models.

As shown in Appendix B, the equilibrium pool size of soil

carbon of model A always decreases with soil warming if

carbon input does not increase with warming. For model B,

the equilibrium pool size of soil carbon can increase or de-

crease in response to warming, depending on soil tempera-

ture and model parameter values. In Appendix B, we show

that a soil temperature (Tx) may exist at which the equilib-

rium soil carbon is at a minimum for model B. Identifying

Tx is important for predicting the directional change in soil

carbon by model B in a warmer world, because soil carbon

will decrease if the warmed soil temperature is below Tx , and

will increase otherwise.

The value of Tx for model B depends on three parame-

ters: the fraction of carbon input directly into the soil pool

(a), microbial biomass turnover rate (µb or its temperature

sensitivity b), and microbial growth efficiency (ε or its tem-

perature sensitivity x). Figure 3a shows that Tx for model B

decreases with an increase in a or x. Over the ranges of val-

ues of x and a, Tx can vary across the range of air temper-

ature experienced by most terrestrial ecosystems. For exam-

ple, Tx is > 40 ◦C when x < 0.005 ◦C−1 and a < 0.5; there-

fore the equilibrium soil carbon predicted by model B de-

creases with warming when the warmed soil temperature is

below 40 ◦C. When a > 0.4 and x>0.02 ◦C−1, Tx is < 0 ◦C

(the black region on the top left corner of Fig. 3a); therefore

the simulated equilibrium soil carbon by model B increases

with warming if the warmed soil temperature is above 0 ◦C.

Figure 3b shows that Tx for model B decreases with

an increase in b or x. When the turnover rate of micro-

bial biomass is not sensitive to soil temperature (b = 0) and

x = 0.016 ◦C−1 as the default value for model B, Tx is about

35 ◦C. For b = 0.063, as estimated by Hagerty et al. (2014),

Tx < 0 ◦C; therefore the equilibrium soil carbon pool size as

simulated by model B always increases with soil warming for

most terrestrial ecosystems, irrespective of the value of x.

Therefore the simulated responses of the soil carbon pool

to warming by the two models can be quite different: the

equilibrium soil carbon pool size always decreases with

soil warming in model A, but can increase or decrease in

model B, depending on the temperature sensitivities of mi-

crobial growth efficiency and microbial turnover rate and the

fraction of carbon input entering soil carbon pool directly.

3.3 The response of soil carbon to an increased litter

input

We compare the simulated responses of soil carbon to litter

addition by the two models with field measurements from an

experiment described by Sayer et al. (2011). The experiment
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Figure 3. (a) Variation in Tx , or the soil temperature at which the

equilibrium soil carbon pool is minimum, with the temperature sen-

sitivity of microbial growth efficiency (x) and the fraction of carbon

input directly into soil carbon pool (a). µb was fixed at 1.1 yr−1 (or

b = 0) for this plot. (b) Variation in Tx with x and b. Parameter a

was fixed at 0.05 for plot (b). The unit is ◦C for all the numbers

along the contour lines in both (a) and (b). The black region in

(b) represents Tx <0 ◦C.

used three treatments: litter removal (L−), with aboveground

litter being removed regularly; increased litter input (L+)

with the added litter from the litter removal treatment; and

a control (C). Measurements of CO2 efflux from soil were

made and the contribution of root–rhizosphere respiration to

soil respiration was estimated using a δ13C technique. Sayer

et al. (2011) found that the CO2 efflux from the decompo-

sition of soil organic carbon in the L+ treatment was 46 %

higher than in the control. Therefore, increased litter addi-

tion accelerated the decomposition of soil organic carbon.

Here we assess whether the observed response of soil carbon
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Figure 4. Mean monthly total (above- and belowground) litter car-

bon input to the control or litter addition treatment.

decomposition to increased litter input can be reproduced by

running both models for L+ and C treatments.

Inputs to each model, including the monthly data of soil

temperature and litter input from 2002 to 2008 for two treat-

ments (C and L+) at the site, were compiled from Sayer and

Tanner (2010a, b; see Fig. 4 for monthly litter input as an

example). We also assumed that the contribution of fine-root

respiration to total soil respiration (root respiration plus het-

erotrophic respiration) was 35 % for the control treatment

and 21 % for the litter addition treatment, based on the es-

timates by Sayer et al. (2011).

The initial sizes of all pools were obtained by running each

model with the monthly inputs for the first 2 years repeated

until all pools reached steady state (i.e. the change in pool

size between two successive cycles is less than 0.01 %).

Using the initial pool sizes for each model and the monthly

input from 2002–2008, we numerically integrated both mod-

els and calculated the average contributions to total soil CO2

efflux from the decomposition of litter and soil organic car-

bon for the last 2 years (2007–2008) and compared the sim-

ulated results with the estimates from field measurements by

Sayer et al. (2011).

By tuning values of two model parameters (µbR and KbR)

(see Table 1), we obtained an initial microbial biomass car-

bon 240 g C m−2 for both models, very close to the mea-

sured microbial biomass carbon of 219 g C m−2 by Sayer et

al. (2007). The simulated initial soil carbon is 6715 g C m−2

for model A and 6945 g C m−2 for model B, which is higher

than the estimated soil carbon of 5110 g C m−2 in the top

25 cm (Cavelier et al., 1992) and lower than the estimated

soil carbon of 9272 g C m−2 in the top 50 cm soil (Grimm,

2007).

The estimated total soil CO2 efflux from the control treat-

ment by Sayer et al. (2011) was 1008 g C m−2 yr−1 from

2007 to 2008, which was closely simulated by both mod-

els (1004 g C m−2 yr−1 by model A and 1008 g C m−2 yr−1

by model B). However, both models overestimated the total

soil CO2 efflux from the litter addition treatment. The esti-
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Figure 5. Simulated response of soil CO2 efflux in control and lit-

ter addition (L+) experiments as described by Sayer et al. (2014)

using model A (a) or B (b). The dark-grey bar and black bars rep-

resent CO2 effluxes from litter and soil organic carbon decomposi-

tion, respectively. The light-grey bar for the litter addition treatment

represents the additional CO2 efflux from soil organic carbon de-

composition due to additional litter input.

mated efflux by Sayer et al. (2011) was 1380 g C m−2 yr−1,

as compared with the simulated flux of 1425 g C m−2 yr−1 by

model A and 1502 g C m−2 yr−1 by model B (see Fig. 5).

The additional CO2 efflux from the decomposition of

soil carbon in the litter addition treatment was estimated to

be 180± 50 g C m−2 year−1 by Sayer et al. (2011), which

was quite well simulated by model B (105 g C m−2 yr−1)

(see Fig. 5b) but was underestimated by model A

(29 g C m−2 yr−1) (see Fig. 5a).

The difference in the simulated response of soil organic

carbon decomposition to increased litter input by the two

models can be explained by differences in their substrate ki-

netics. The rate of carbon loss from the decomposition of soil

carbon depends on both soil carbon and microbial biomass in

both models. Because soil carbon is unlikely to change sig-

nificantly within a few years, the rate of CO2 emission from

soil carbon decomposition will largely depend on microbial

biomass, and that dependence is nonlinear following the re-

verse Michaelis–Menten equation in model A (see Eq. 2),

but is linear in model B (see Eq. 7). Therefore the simulated

response of soil organic carbon decomposition to increased

litter input by model B is more sensitive to microbial biomass

than model A.

3.4 Response to priming: maximum CO2 efflux from

soil carbon decomposition

Results from the above comparison of the responses of two

models to the increased litter input are likely dependent on

soil temperature, carbon input, and model parameter values.

To understand the differences in the responses of our two

models to litter addition at different rates and soil tempera-

tures for any parameter value, we use the analytic approxi-

mations to maximum CO2 efflux from the priming treatment

for each model to identify key differences in their response

to priming.

Priming is defined as the change in organic carbon decom-

position rate after the addition of an easily decomposable or-

ganic substance to soil (Kuzyakov et al., 2000). In lab prim-

ing experiments, a given amount of isotopically labelled C

substrate is added to the primed treatment only at the be-

ginning of the experiment (t = 0) and no substrate is added

to the control. CO2 effluxes from soil carbon decomposition

are estimated from measurements for the following weeks or

longer (Cheng et al., 2014). The effect of priming, p, is cal-

culated as (Rp−Rc)/Rc, where Rc and Rp are the CO2 efflux

from the decomposition of soil organic carbon in the control

and primed treatments, respectively. Maximum values of p

are usually reported in most priming studies (see Cheng et

al., 2014).

However, analytic approximations to p for both models

are quite cumbersome for analysing their differences in the

responses to priming. Another way to quantify the priming

effect is by measuring the maximum CO2 efflux from soil

organic carbon decomposition after carbon addition at time

t = 0 (Jenkinson et al., 1985; Kuzyakov et al., 2000). This

quantity can be easily measured in the laboratory or field.

In both models, the equilibrium soil microbial biomass is

proportional to carbon input (see Eqs. 11 and 13). In the

primed treatment, the amount of carbon added at t = 0 usu-

ally is well above the rate of the carbon input under natu-

ral conditions, and no further carbon is added. Therefore the

microbial biomass will increase until reaching a maximum

value, then decreases with time after t = 0.

As shown in Appendix C, the maximum CO2 efflux from

soil carbon decomposition in the primed treatment, Fmax,

depends on the maximum microbial biomass and microbial

growth efficiency for both models, as well as on soil carbon

turnover rate for model A (see Eq. C12 for FA) and the mi-

crobial turnover rate for model B (see Eq. C15 for FB).

Figure 6 shows that Fmax (or FA for model A, FB for

model B) increases with carbon input, and decreases with an

increase in soil temperature for both models. However, the

sensitivity of Fmax to carbon input at different soil tempera-

tures is different between the two models. For model A, the

sensitivity of Fmax to carbon input is greatest around 25 ◦C,

and is quite small at < 5 ◦C. For model B, the sensitivity of

Fmax to carbon input decreases with an increase in soil tem-

perature (see Fig. 6).

The sensitivity of Fmax to soil temperatures in both mod-

els can be explained by the analytic approximations (Eq. C12

for model A and C15 for model B). Maximum CO2 efflux is

proportional to soil carbon in model A, and to the maximum

microbial biomass in model B. Both soil carbon and max-

imum microbial biomass in both models decrease with an

increase in soil temperature for the parameter values we used

(see Fig. 6c); therefore Fmax also decreases with an increase

in soil temperature.

Differences in the sensitivity of Fmax to carbon input at

different soil temperatures in the two models can also be

explained by their respective analytic approximations, par-

Biogeosciences, 13, 887–902, 2016 www.biogeosciences.net/13/887/2016/



Y.-P. Wang et al.: Responses of two nonlinear microbial models to warming and increased carbon input 895

(b)

Soil temperature (oC)

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

(a)

Soil temperature (oC)

0 5 10 15 20 25 30 35 40

M
ax

im
um

 C
O

2 
ef

flu
x 

   
 (

g 
C

 m
-2

 y
ea

r-1
)

0

50

100

150

200

250

300

350

(c)

Soil temperature (oC)

0 10 20 30M
ic

ro
bi

al
 b

io
m

as
s 

( 
g 

C
 m

-2
)

0

500

1000

1500

2000

(d)

Soil temperature (oC)

0 10 20 30

Li
tte

r 
ca

rb
on

 (
 g

 C
 m

-2
)

0

1000

2000

3000

4000

Figure 6. Dependence of maximum rate of CO2 efflux from the

decomposition of soil carbon in the primed treatment (Fmax) as a

function of soil temperature and carbon addition at time t = 0 for

model A (a) and B (b). At each soil temperature, the carbon input

was varied from 100 to 1000 g C m−2, and Fmax increases with an

increase in carbon input as shown by the arrow in each plot. (c) Vari-

ation in equilibrium soil microbial biomass with soil temperature

and carbon input at 200 (solid black line), 600 (long-dashed line),

and 1000 (short-dashed line) g C m−2 yr−1 for model A. (d) Varia-

tion in equilibrium litter carbon with soil temperature in model B.

ticularly the dependence of maximum microbial biomass on

both carbon input and initial microbial biomass in model A

(see Eq. C11) and on equilibrium litter carbon pool size in

model B (see Eq. C14), because Fmax depends on the max-

imum microbial biomass in both models. In model A, FA

nonlinearly varies with maximum microbial biomass (see

Eq. C12), which increases linearly with carbon addition at

t = 0 (1Cl) and varies nonlinearly with the initial pool size

of microbial biomass (C∗b ) (see Eq. C11). Because C∗b in-

creases with a decrease in soil temperature or an increase in

1Cl (see Fig. 6c), FA increases with an increase in 1Cl (ei-

ther directly (Eq. C11) or via the effect on C∗b ), and with a

decrease in soil temperature (via the temperature dependence

of C∗b ).

In model B, the sensitivity of FB to carbon input is de-

termined by the maximum microbial biomass (Cb max,B),

which varies with equilibrium litter pool size (C∗l ) follow-

ing the regular Michaelis–Menten equation (Cb max,B ∝Ml

in Eq. C14) for a given amount of carbon input (1 Cl). The

equilibrium litter carbon pool size increases with soil temper-

ature, and is independent of carbon input based on Eq. (12)

(see Fig. 6d). When soil temperature is low, C∗l is low, and

therefore sensitivity of FB to carbon input is high. When

soil temperature is high, C∗l is high and the sensitivity of FB

in model B to carbon input is low because of saturating re-

sponse in the regular Michaelis–Menten equation.

4 Discussion

Here we analysed the responses of different carbon pools to

perturbation, soil warming, and increased carbon input in two

nonlinear microbial soil carbon models. Table 2 lists the key

differences in those responses.

Some of the differences between the two models also de-

pend on the chosen parameter values for each model. For

example, there has been debate about the temperature sen-

sitivities of microbial biomass turnover rate and microbial

growth efficiency (Frey et al., 2013; Hargety et al., 2014),

and the simulated sensitivity of soil carbon to warming

(Hagerty et al., 2014). Regardless of the temperature sensitiv-

ity of microbial growth efficiency, model A always simulates

a decrease in the equilibrium soil carbon under warming,

whereas model B can simulate an increase or a decrease in

the equilibrium soil carbon under warming, depending on the

temperature sensitivities of microbial growth efficiency and

turnover rate. If microbial growth efficiency is sensitive to

soil temperature and microbial turnover rate is not, as found

by Frey et al. (2013), the simulated responses of equilibrium

soil carbon to warming by the two nonlinear models are quite

similar in the direction of response over temperate and bo-

real regions, but different in the tropical regions. This is be-

cause the minimum soil carbon temperature, Tx , for model B

is about 25 ◦C for x = 0.015 K−1 and a = 0.05, the values

used by Allison et al. (2010) and German et al. (2012) (see

Fig. 3a). In that case the equilibrium soil carbon, as simulated

by model B, will decrease over most temperate and boreal

regions, for which the mean soil temperature within the root-

ing zone is below 25 ◦C for most of the growing season, and

will increase in tropical regions, for which the mean soil tem-

perature in the top 100 cm of soil is close to 25 ◦C for most

of the year. However, if microbial turnover rate is sensitive

to soil temperature and microbial growth efficiency is not, as

found by Hargety et al. (2014), then Tx is < 0 ◦C at αs > 0.055

(◦C)−1 for model B, causing equilibrium soil carbon to in-

crease in model B with warming, but decrease in model A

with warming. Therefore, the predicted responses of soil car-

bon to warming by the two nonlinear models differ signif-

icantly across all major global biomes where mean rooting

zone soil temperature over the growing season is above 0 ◦C.

Some of the key differences in the responses of the two

nonlinear models can be used to discern which model is more

applicable to the real world. For example, the oscillatory re-

sponse of model A generally is quite small (<1%), which

is quite consistent with the results from litter removal ex-

periments (Sayer et al., 2007, for example). The relatively

large and more persistent oscillation in model B has not been

observed in the field, and the insensitivity of soil carbon to
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Table 2. Key differences between the two nonlinear soil microbial models.

Response to Model A Model B

Pool size perturbation More frequent and faster oscillations in

litter and microbial carbon pools

Soil carbon pool may oscillate

Less frequent and slower oscillations in

litter and microbial carbon pools

Soil carbon pool does not oscillate

Warming Soil carbon pool always decreases Soil carbon may increase or decrease

Carbon input Sensitivity of maximum CO2 efflux

increases with soil temperature

Sensitivity of maximum CO2 efflux

decreases with soil temperature

a perturbation in the litter or soil microbial carbon pool in

model B also needs to be assessed against long-term field ex-

periments such as the DIRT experiment (Nadelhoffer et al.,

2004). Model B in its present form may not be applicable un-

der field conditions. It has been argued that the influences of

microbial community structure and their activities on min-

eral soil carbon decomposition at field scale may be much

smaller than at the rhizosphere scale (Schimel and Schaeffer,

2012), because substrate concentration rather microbial ac-

tivity is the rate-limiting step for the decomposition of soil

organic matter in mineral soils. A recent study by Sulman

et al. (2014) clearly showed the importance of physical pro-

tection of microbial by-products in forming stable soil or-

ganic matter, and its implications for the response of global

soil carbon to carbon inputs. This mechanism has been re-

cently incorporated into a nonlinear soil microbial carbon

model (Wieder et al., 2014). Whether the large oscillatory

responses of model B will be significantly dampened by the

addition of such physical protection mechanism is yet to be

studied.

The two models also have quite different sensitivities to

soil warming (see Table 2), particularly in warm regions. Re-

sults from a decade-long soil-warming experiment showed

that warming did not reduce soil carbon, because plant car-

bon production increased as a result of the increased avail-

ability of soil mineral nitrogen in a nitrogen-limited forest

(Melillo et al., 2002). However, this is quite a different mech-

anism because model B in our study includes neither a nitro-

gen cycle nor the response of carbon input to warming.

Overall both models can simulate the priming response

to a change in carbon inputs, although model A simulates

a weaker response than model B and the sensitivities to car-

bon input at different soil temperature are different between

the two models, particularly under cool climate conditions

(see Table 2). So far, results from litter manipulation experi-

ments in the field have not been analysed for their sensitivity

to soil temperature. The differences in the responses of soil

carbon decomposition to an increased carbon input we identi-

fied between the two models can also be used to assess which

model is more applicable in the field using experiments with

different carbon input under cool (mean annual air tempera-

ture < 10 ◦C) and warm (mean annual temperature > 20 ◦C)

conditions. If the sensitivity of soil carbon decomposition to

an increased carbon input under cool conditions is greater

than that under warm conditions, then model B is more ap-

propriate than model A. This has yet to be tested.

Our analysis here does not include some other key pro-

cesses, such as the transformations of different forms of

organic carbon substrates by different microbial communi-

ties as included in some models (see Grant, 2014; Riley et

al., 2014, for example). Therefore the conclusions from this

study about the two nonlinear models should be interpreted

with some caution. As shown by Tang and Riley (2014), in-

teractions among soil mineral sorption, carbon substrate, and

microbial processes can generate transient changes in the ap-

parent sensitivity of soil carbon decomposition to soil tem-

perature; therefore the static dependence of microbial pro-

cesses on soil temperature as used in our study may not be ap-

plicable. Our simplification of the soil microbial community

and soil carbon fractions is necessary for analytic tractabil-

ity, but may also limit the applicability of our results to field

experiments. For example, Allison (2012) showed that the

apparent kinetics of soil carbon decomposition can vary with

the spatial scale: the regular Michaelis–Menten kinetics at

microsites coupled with an explicit representation of differ-

ent strategies for facilitation and competition among different

microbial taxa generated litter carbon decomposition kinetics

similar to the reverse Michaelis–Menten equation. Therefore,

the identified differences between the two models should

vary with spatial scale.

The regular and reverse Michaelis–Menten kinetics can be

considered as two special cases of a more general kinetics,

as discussed by Tang (2015). Both models use different mass

balance constraints (see Tang, 2015), which are unlikely to

hold across a wide range of conditions. In the real world,

the kinetics and parameter values of carbon decomposition

likely depend on a number of other factors, such as soil phys-

ical properties, substrate quality, and soil nutrient availability

(Manzoni and Porporato, 2009). Future studies of soil carbon

decomposition kinetics need to include those factors and the

role of root growth dynamics and photosynthetic activities in

rhizosphere priming (see Kuzyakov, 2002).

Finally, both models have a number of parameters, and

their values are largely based on laboratory studies (Allison
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et al., 2010). The values of those parameters may be quite dif-

ferent under field conditions. Evaluation of their applicability

under a wide range of field conditions will require an inte-

grated approach, such as applications of model–data fusion

using a range of field experiments (Wieder et al., 2016). This

will eventually lead to a better understanding of the signifi-

cance of microbial activity on soil carbon decomposition and

more accurate predictions of carbon–climate interactions.

5 Conclusions

This study analysed the mathematical properties of two non-

linear microbial soil carbon models and their responses to

soil warming and carbon input. We found that the model us-

ing the reverse Michaelis–Menten kinetics (model A) has

shorter and more frequent oscillations than the model using

regular Michaelis–Menten kinetics (model B) in response to

a small perturbation.

The responses of soil carbon to warming can be quite

different between the two models. Under global warming,

model A always simulates a decrease in soil carbon, but

model B will likely simulate a decrease in soil carbon in tem-

perate and boreal regions, and an increase in soil carbon in

tropical regions, depending on the sensitivities of microbial

growth efficiency and microbial biomass turnover rate.

The response to carbon input varies with soil temperature

in both models. The simulated maximum response to prim-

ing by model A generally is smaller than that by model B.

The maximum rate of CO2 efflux from SOC decomposition

(Fmax) to carbon input in the primed treatment decreases

with an increase in soil temperature in both models, and the

sensitivity of Fmax to the amount of carbon input increases

with soil temperature in model A but decreases monotoni-

cally with an increase in soil temperature in model B.

Based on those differences between the two models, we

can design laboratory or field experiments to assess which

model is more applicable in the real world and, therefore,

advance our understanding of the importance of microbial

processes at regional to global scales.
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Appendix A: Stability analysis of model A

The Jacobian at the equilibrium pool sizes, J , is given by

J=

 −a1 −a3 0

εa1 ε (a3+ a4)−µb εa2

0 µb− a4 −a2

 (A1)

where a1 = µlg, a2 = µsg, a3 = µlC
∗

l
∂ g
∂Cb
|Cb=C

∗

b
, a4 =

µsC
∗
s
∂ g
∂Cb
|Cb=C

∗

b

g =
C∗b

C∗b+Kb
,
∂ g
∂ Cb
|Cb=C

∗

b
=

Kb

(C∗b+Kb)
2 , and C∗l , C∗b , and C∗s are

the equilibrium pool sizes of litter carbon, microbial biomass,

and soil carbon in g C m−2, respectively.

The three eigenvalues of J are given by

 λ1

λ2

λ3

≈

−C∗b (µb+µl)+

√
C∗bF1

2(C∗b +Kb)

−C∗b (µb+µl)−
√
C∗bF1

2(C∗b +Kb)

−µsg

 , (A2)

where F1 = C
∗

b (µb−µl)
2
− 4µbµlKb(1− ε).

These correspond to three carbon pools (λ1 for litter car-

bon, λ2 for microbial biomass, and λ3 for soil carbon). If the

eigenvalue of a carbon pool is complex, then the response

of that pool to a small perturbation is oscillatory, or mono-

tonic otherwise. If the real part of the eigenvalue is nega-

tive, then the response is stable. Therefore, the responses of

all three carbon pools to a small perturbation are monotonic

if F1 > 0 or Fnpp > 4
(1−ε)2

ε

µlµ
2
b

(µb−µl)
2Kb, or oscillatory oth-

erwise (or F1 < 0). The responses of all carbon pools are

always stable because
−C∗b (µb+µl)

2(C∗b+Kb)
< 0.

The corresponding eigenvectors of J are given by

(v1v2v3)≈
A+B

√
C∗

b
F1 A−B

√
C∗

b
F1 0

−C∗
b

(
µb +µl − 2µs

)
+

√
C∗

b
F1

2µbC
∗
b

−C∗
b

(
µb +µl − 2µs

)
−

√
C∗

b
F1

2µbC
∗
b

0

1 1 1

 ,
(A3)

where A=−
(µb−µl)(µl−µs)

2εµbµl
− (ε−1

− 1)
Kb

C∗b

B =
µl−µs

2εµbµlC
∗

b

.

When the responses of carbon pools to a small perturbation

are oscillatory and stable, the amplitude of oscillation de-

creases exponentially after t = 0. The oscillatory response

can be characterized by its half-life (t0.5) and period (p) (both

in years) calculated from their eigenvalues. The amplitude of

a stable oscillation decreases exponentially over time, and

time when the amplitude is half as much as the amplitude at
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Figure A1. Half-life (a, b) and period (c, d) for model A (a, c) and

B (b, d). The unit is year for both half-life and period. Note the

difference scales used for model A from model B for both half-time

and period. The purple region represents non-oscillatory region for

model A in (c), and a period greater than 30 years for model B

in (d). We assumed that a = 0 for all calculations.

t = 0 is defined as t0.5. t0.5 and p are calculated for model A

as

t0.5 =−
ln(2)

−C∗b (µb+µl)

2( C∗b+Kb)

=
2ln(2)

(
C∗b +Kb

)
C∗b (µb+µl)

, (A4)

p =
2π
√
−C∗bF1

2(C∗b+Kb)

=
2π(C∗b +Kb)√
−C∗bF1

, (A5)

Wang et al. (2014) gave the formulae for t0.5 and p for

model B (their Eqs. 24 and 25).

As shown in Fig. A1, the half-life is longest for both mod-

els when soil temperature is high and carbon input is low,

conditions often experienced in arid ecosystems, implying a

strong oscillation at these conditions. At a given soil tem-

perature and carbon input, the half-life for model A is about

half as much as that for model B (see Appendix Fig. A1a and

b). When carbon input is > 1000 g C m−2 yr−1, as in tropical

rainforests, the half-life is less than 1 year for model A at a

soil temperature between 20 and 30 ◦C, and for model B at a

soil temperature between 0 and 20 ◦C only.

Over the range of realistic carbon inputs and soil temper-

atures, the values of both t0.5 and p of model A are less than
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half as much as those of model B (see Fig. A1). Therefore

the responses of carbon pool sizes to a small perturbation in

model A oscillate faster and those oscillations also dampen

faster than model B.

As shown by Wang et al. (2014) (their Appendix B,

Eq. B1; there ai is eigenvalue and vi is eigenvector), the evo-

lution of each carbon pool after a small perturbation can be

mathematically represented using the eigenvalues, eigenvec-

tors and initial pool sizes (Eq. B1 in Appendix B of Wang et

al., 2014). The third elements of the eigenvectors correspond-

ing to litter carbon (v1 in Eq. A3) and microbial biomass (v2

in Eq. A3) represent the influences of those two carbon pools

at any time on soil carbon. Because those elements are equal

to 1 (see the matrix in Eq. A3), the oscillation of litter car-

bon and microbial biomass will also cause the response of

soil carbon to be oscillatory, although the oscillation is small

and dampens very quickly. In model B, the third elements of

the eigenvectors corresponding to litter carbon and microbial

biomass are zero (see the bottom row of the matrix in Eq. A4

of Wang et al., 2014) and therefore oscillatory responses of

litter carbon and microbial biomass have no effect on the re-

sponse of soil carbon. The eigenvalue of the soil carbon in

model B is negative real; therefore the response of soil car-

bon to a small perturbation always is monotonic and stable

in model B (see Appendix A in Wang et al., 2014).

Appendix B: Soil temperature at which equilibrium soil

carbon pool is minimum (Tx)

The steady-state soil carbon pool size of model A is

C∗s =

(
a+

1

ε−1− 1

)
Fnpp

µs

+

(
1+ a

(
ε−1
− 1

)) µbKb

µs

. (B1)

The first term on the right-hand side of Eq. (B1) always de-

creases with an increase in Ts, and the second term has two

parts:
(
1+ a

(
ε−1
− 1

))
and

µbKb

µs
. Because both Kb and µs

increase with Ts exponentially, and the sensitivity µs to Ts is

much greater than Kb,
Kb

µs
always decreases with an increase

in Ts, and that decrease is much greater than the increase in(
1+ a

(
ε−1
− 1

))
with Ts. As a result, the second term also

decreases with an increase in soil temperature, independent

of temperature sensitivity of µb. In summary for model A,
dC∗s
dTs

< 0.

The steady-state pool of soil carbon in model B is

C∗s =
Ks

Vs

µb

ε
ε+a(1−ε)

− 1
. (B2)

Assuming that Vs

µb

ε
ε+a(1−ε)

>>1, we can therefore approxi-

mate C∗s as

C∗s ≈
Ks

Vs

µb

ε
ε+a(1−ε)

=
KsRµbR

VsR

exp[(βk+ b−βv)(Ts− TR)][
1+ a

(
1

ε0− x (Ts− TR)
− 1

)]
. (B3)

It can be easily shown that Tx can only exist only when βk+

b−βv ≤ 0 and 0 < a < 1 and

Tx = TR+
ε0− z

x
(B4)

z=−0.5
a

1− a
,

+ 0.5

√(
a

1− a

)2

− 4

(
a

1− a

)
x

βk+ b−βv

, (B5)

when a = 0, Tx does not exist and

dC∗s

dTs

< 0; when βk+ b−βv ≤ 0; (B6)

dC∗s

dTs

> 0; when βk+ b−βv>0 (B7)

for model B.

Appendix C: Derivation of an analytic approximation

for the timing and magnitude of the maximum microbial

biomass after priming

Both models can be used to simulate the response of soil

carbon to priming by specifying different initial pool sizes

for the primed and control treatments. The initial values are

Cl (t = 0)= C∗l +1 Cl; Cb (t = 0)= C∗b and Cs (t = 0)=

C∗s for the priming treatment; Cl (t = 0)= C∗l ; Cb (t = 0)=

C∗b and Cs (t = 0)= C∗s for the control.

Here we assume that all pools are at equilibrium just be-

fore the priming treatment at t = 0.C∗l , C
∗

b , andC∗s are equi-

librium pool sizes, and 1 Cl is the amount of litter carbon

added at time t = 0. No carbon is added to both treatments

after t = 0.

The CO2 efflux from soil carbon decomposition is calcu-

lated using Eq. (15) for model A and Eq. (16) for model B.

Therefore we need to solve the three equations for Cb and

Cs for t>0. Observations show that maximum priming re-

sponse occurs soon after priming treatment (Kuzyakov et al.,

2000); therefore, maximum priming response can be consid-

ered as a short-timescale phenomenon. At a short timescale,

Cs can be considered as being constant, and the maximum

CO2 efflux from the priming treatment will occur when the

microbial biomass reaches a maximum after t = 0. Therefore

we will use a second-order Taylor expansion to obtain the

approximate solutions to the timing and magnitude of max-

imum CO2 efflux from the soil carbon decomposition in the

priming treatment for each model.

For model A, Eqs. (1) and (2) for both treatments after t>0

becomes

dCl

dt
=−µl Cl

Cb

Cb+Kb

, (C1)
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dCs

dt
= µbCb−µsCs

Cb

Cb+Kb

. As the litter pool size at time t = 0 is above its equilibrium

value, the microbial biomass will likely increase after t = 0

and then reach its maximum value.

Equations (C1), (C2), and (C3) can be simplified using

variable substitution.

Let

C̃b =
Cb

Kb

, C̃l =
Cl

Kb

µl

µb

C̃s =
Cs

Kb

µs

µb

1C̃l =
1Cl

Kb

µl

µb

,

τ = tµb, a1 =
µl

µb

a2 =
µs

µb

, a3 =
FNPPµl

Kbµ
2
b

.

Then those three equations can be written as

dC̃l

dτ
=−a1C̃l

C̃b

C̃b+ 1
, (C2)

dC̃s

dτ
= a2(C̃b− C̃s

C̃b

C̃b+ 1
), (C3)

dC̃b

dτ
= ε(C̃l+ C̃s)

C̃b

C̃b+ 1
− C̃b, (C4)

with the initial pool sizes of C̃b (0)=
a3

a1

ε
1−ε

, C̃s (0)=

a3

a1

(
ε

1−ε
+ a

)
+ 1+ a 1−ε

ε
for both treatments, and C̃l (0)=

(1− a)(
a3

a1
+

1−ε
ε
)+1C̃l for the primed treatment, and

C̃l (0)= (1− a)(
a3

a1
+

1−ε
ε
) for the control treatment.

At relatively short timescales, a2� 1, C̃s(t)→ C̃s (t = 0)

Microbial biomass carbon after t = 0 can be approximated

using the second-order Taylor expansion (Abramowitz and

Stegun, 1972)

C̃b (t)= C̃b (0)+ tC̃
′

b (0)+
t2

2
C̃′′b (0) . (C5)

Differentiating both sides of Eq. (C5) with respect to t , we

have

C̃′b (t)= 0+ C̃′b (0)+ tC̃
′′

b (0) . (C6)

Assuming that C̃b is maximum at t = tmax,A, then

C̃′b

(
tmax,A

)
= 0. Equation (C6) becomes

C̃′b
(
tmax,A

)
= C̃′b (0)+ tmax,AC̃

′′

b (0)= 0. (C7)

Both C̃′b (0) and C̃′′b (0) can be obtained differentiating

Eq. (C4) at t = 0, giving

C̃′b (0)= ε
C̃b(0)

1+ C̃b(0)
1C̃l (C8)

C̃′′b (0)=− ε
C̃b (0)

1+ C̃b (0)
1C̃l((1− a)

a3

1C̃l

,

+ (1+ a1)
C̃b (0)

1+ C̃b(0)
−

ε1C̃l

(1+ C̃b(0))2
). (C9)

Substituting Eqs. (C8) and (C9) into (C7), and solving for

tmax,A, we have

tmax,A =−
1

µb

C̃′b (0)

C̃′′b (0)

=
1

(1− a)
Fnpp

1 Cl
+ (µb+µl)

C∗b
C∗b+Kb

−
εKbµl1 Cl

(C∗b+Kb)
2

. (C10)

Substituting Eq. (C10) into (C5), we have the maximum mi-

crobial biomass at tmax,A, orCbmax,A for the primed treatment

as follows:

Cb max, A =KbC̃b

(
tmax,A

)
= C∗b +

tmax,A

2

εC∗b

C∗b +Kb

µl1 Cl. (C11)

The maximum rate of CO2 release from decomposition of

soil organic carbon, FCO2
at t = tmax,A is given by

FA = (1− ε)µsCs

Cb max, A

Cb max, A+Kb

. (C12)

Similarly we derived the approximations for the timing

(tmax,B) and magnitude of maximum microbial biomass

(Cb max, B) in the primed treatment at t>0 as

tmax,B =
1

εKlC
∗

b

(εMl−(1−a)(1−ε)µb)

(C∗L+1 Cl)(Vl)
2

(C∗L+1Cl+Kl)
3 − (εMl− (1− a)(1− ε)µb)

,

(C13)

Cb max, B = C
∗

b

(
1+ 0.5tmax,B (εMl− (1− a)(1− ε)µb)

)
. (C14)

where

Ml =
Vl

(
C∗l +1Cl

)
C∗l +1 Cl+Kl

.

The rate of CO2 release from decomposition of soil carbon,

FB, for model B at time t = tmax,B is given by

FB = (1− ε)Cb max, B

VsCs

Cs+Ks

≈ (1− ε)µbCb max, B. (C15)

Comparison with numerical simulations shows that the rela-

tive error of Eq. (C12) is < 3 % across soil temperature and

carbon input within their realistic ranges. However, errors in

Eq. (C15) for model B can be quite large, particularly at high

carbon input. Equation (C15) is only reasonably accurate

(relatively error < 10 %) at low carbon input < 700 g C m−2.
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