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Abstract Despite the importance of net primary productivity (NPP) and net biome productivity (NBP),
estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty,
we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale
Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed
that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr�1, respectively. Classification and
regression tree analysis based on literature data showed that model type was the primary source of the
uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales,
land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall
uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly
important (>90%) for the overall uncertainty compared to simulations with different combinations of
time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and
increased by 0.012 Pg C yr�1 during 1981–2000. In addition, high uncertainty in China’s NPP occurred in
areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to
significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested
on the basis of empirical results. To this end, coordinated distributed experiments with multiple global
change factors might be a practical approach that can validate specific structures of different models.
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1. Introduction

As a consequence of increasing atmospheric carbon dioxide (CO2) concentration, global air temperature has
risen by 0.85°C during 1880–2012 and is predicted to increase by another 0.3–4.8°C by the end of this century
[Intergovernmental Panel on Climate Change, 2013]. The global warming may substantially affect the global
carbon (C) cycle, leading to a positive or negative feedback to climate change [Friedlingstein et al., 2006;
Heimann and Reichstein, 2008]. Global terrestrial ecosystems are estimated to absorb about 30% of the
anthropogenic CO2 emissions, which considerably mitigate climate change, especially global warming
[Canadell et al., 2007b; Le Quéré et al., 2014]. The mitigation ability of ecosystems is determined by net biome
productivity (NBP), which is net primary productivity (NPP) minus heterotrophic respiration (Rh) and fire flux
(NBP=NPP� Rh� fire flux) when latent and non-CO2 fluxes can be omitted [Chapin et al., 2006; Fisher et al.,
2014]. Both NPP and NBP are important components of the global C cycle and are used as indicators of
ecosystem function, which are closely related to biodiversity, biogeochemical cycling, ecosystem resilience,
and other aspects of ecosystem services [Canadell et al., 2007a; Richamond et al., 2007; Ito, 2011]. Therefore, esti-
mating the magnitudes of NPP and NBP is critical for evaluating global and regional ecosystem services and
providing a scientific basis for international climate change negotiations and is therefore of great importance
to all human beings as well as to policy makers.

Unfortunately, current estimates of NPP and NBP at global and regional scales are highly uncertain. For exam-
ple, the uncertainty (referred to as coefficient of variation (CV)) in global NPP and NBP among different
studies was 25% and 151%, respectively [Ito, 2011] (Table S10 in the supporting information), while
those in China, conterminous United States (U.S.), and Europe were 37%, 31%, and 11%, respectively, for
NPP and 67%, 106%, and 42% for NBP (Tables S1, S2, and S11). At best, global and regional estimates of
NPP are given within an order of magnitude among studies (e.g., the estimated NPP in Europe was
2.97–4.12 PgC yr�1 (minimum-maximum) [Jung et al., 2007]), while the difference in NBP could be as high
as 40-fold for global estimates (�0.42–17.1 Pg C yr�1 [McGuire et al., 2001; Jung et al., 2011]) (Figure S1 in
the supporting information). Given the level of uncertainty, it is hard to differentiate NPP or NBP among
China, Europe, and the U.S. Large uncertainties in NPP and NBP among estimates may be attributed to several
sources: (1) differences in the choice of driving data used in process-based models [Rivington et al., 2006];
(2) different flux component attributions of NBP among atmospheric inversion, inventory, and forward model
approaches [Hayes et al., 2012]; (3) discrepancies in model structure, which includes model assumptions,
spatiotemporal resolution, and parameter values [Cramer et al., 1999; Gurney et al., 2003]; (4) inconsistency
of study periods in intercomparisons due to high interannual variability (IAV) in C fluxes [Baldocchi, 2008;
Le Quéré et al., 2009]; and (5) whether the effects of global change factors were included or not [Tian et al.,
2011a; Bouskill et al., 2014]. Identifying how these aspects influence the uncertainty in estimates of regional
NPP and NBP is essential in order to improve predictions of terrestrial C cycle-climate feedback.

As one of the biggest countries with an area of 960 × 106 ha, China significantly contributes to the global CO2

emissions and has become the largest emitter since 2006 [Gregg et al., 2008]. The total CO2 emission in China
accounts for 27% of global emission, about twice of the second largest emitter (the U.S.). The growth rate of
CO2 emissions (1.2% from 2013 to 2014) in China is the second largest emitters (Indian 8.6%, U.S. 0.8%, and
Europe �5.8%) [Le Quéré et al., 2015]. In order to fulfill its international obligations, China’s government has
promised to reduce its CO2 emissions by 40–45% per unit of gross domestic product by 2020 compared with
2005, which requires the electric power departments to constrain their CO2 emissions, as well as the devel-
opment of new and renewable energy sources [Wang et al., 2015]. Meanwhile, China’s government is
attempting to optimize the managements of forests and croplands for C sequestration [Deng et al., 2009;
Zhao et al., 2012]. Whether China can effectively contribute to the mitigation of global warming depends
on the magnitude of net C balance, which highlights the need to study terrestrial NPP and NBP intensively
in China. To date, more than 600 papers have been published in English (Web of Science) or Chinese
(China National Knowledge Infrastructure), focusing on NPP or NBP at spatial scales from individual ecosys-
tems to the whole country (the search terms were described in section 2.1). Despite the efforts being made,
the differences among the estimations are as large as several times for NPP (1.43–7.44 PgC yr�1 [Chen et al.,
2001; Piao et al., 2005]) and tens of times for NBP (0.017–0.35 PgC yr�1 [Ren et al., 2007; Piao et al., 2009a]).

The large uncertainty in the estimated NPP and NBP of China’s terrestrial ecosystems may result from meth-
odological differences (especially differences among models in terms of flux attributions, assumptions,
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structure, inputs, and performance) [Gao and Liu, 2008; Piao et al., 2009a], which has led to an uncertainty
(CV) of 12–39% in NPP [Dan et al., 2007; Gao and Liu, 2008; Mao et al., 2010] and 23% in NBP [Piao et al.,
2009a] for the recent decades. The uncertainty may also be augmented by the IAV in NPP and NBP. For
example, Tao and Zhang [2010] showed the increasing trends for both NPP and NBP since the 1930s, result-
ing in higher estimates in the later period than those in the earlier period. The different choice of time
periods in diverse studies may cause inconsistent estimations for NPP and NBP. In addition, the different
models may simulate or predict diverse spatial patterns of NPP and NBP, especially in areas with heteroge-
neous topography and/or vegetation. For example, Gao and Liu [2008] demonstrated that the Geo-Process
Model-Based Ecosystem Photosynthesis Theory model estimated the lowest NPP in Inner Mongolia among
five models, but it showed a relatively high NPP in the Qinghai-Tibet region. Therefore, quantifying the
uncertainty in the estimated NPP and NBP and identifying the main sources are essential for accurately
estimating NPP and NBP in the future.

In this study, we compiled and synthesized published NPP and NBP data in China’s terrestrial ecosystems
over the past 30 years to assess their uncertainty and attribution, especially from differences in methods
and spatiotemporal variability. Among diverse methods, we examined the proportion of uncertainty intro-
duced by different model types, drivers, spatiotemporal resolutions, and data. For temporal patterns, we
investigated whether different models showed consistent temporal patterns and the relative importance
of climatic drivers to the IAV in NPP and NBP. For spatial patterns, we assessed the uncertainty in NPP and
NBP at the grid and biome scales and compared the estimated NPP and NBP and uncertainty between
China and other regions (Africa, conterminous U.S., and Europe). Besides the data from published literature,
we also analyzed model output from the North American Carbon Program (NACP) Multi-scale Synthesis and
Terrestrial Model Intercomparison Project (MsTMIP) [Huntzinger et al., 2013; Wei et al., 2014]. The MsTMIP
models were run using a common set of driver data and a common protocol and included a series of
sensitivity analyses, which provided an opportunity to confirm the literature-based results and compare
the relative importance of model structures with influences of time-varying forcing drivers. The objectives
of this work are to quantify the uncertainty of the estimated NPP and NBP, identify the primary sources of
uncertainty, and compare the mean values and their uncertainty in China with those in other areas and
the world.

2. Materials and Methods
2.1. Data Sources

Peer-reviewed published papers were searched using Web of Science (www.webofknowledge.com)
for English papers and China National Knowledge Infrastructure (www.cnki.net) for Chinese papers
(1980–2011). The key words were restricted to gross primary producti*, net primary producti*, respiration,
net ecosystem producti*, net ecosystem exchange, net CO2 exchange, carbon budget, carbon sink, carbon
flux, greenhouse gas, and their abbreviations. For English papers, “China” was used as another key word to
restrict the study region. Of these papers, only studies meeting the following criteria were selected: First,
the study contained the desired variables, including gross primary productivity (GPP), net primary produc-
tivity (NPP), ecosystem respiration (RE), soil respiration, autotrophic respiration (Ra), heterotrophic respira-
tion (Rh), net ecosystem productivity (NEP), and net biome productivity (NBP). NEP is the net balance
between GPP and RE or between NPP and Rh; NBP is NEP minus the flux caused by disturbance (especially
fire, NBP =NEP� fire flux) if latent and non-CO2 fluxes can be omitted (0.012 and 0.011 Pg C yr�1, respec-
tively [Piao et al., 2009a; Chen et al., 2013]), which indicates the C uptake or source by terrestrial ecosystems
[Chapin et al., 2006; Fisher et al., 2014]. Other terms were also used to quantify the ability of ecosystems to
sequester C from the atmosphere, such as net ecosystem exchange, net CO2 exchange, and net C balance,
as well as NEP. Although these terms represent different flux components in the absolute sense, they
approximate each other when the minor fluxes (fire, latent, and non-CO2 fluxes) can be ignored [Chapin
et al., 2006]. The fire flux (the difference between NBP and NEP when latent and non-CO2 fluxes are negli-
gible) might be critical in the fire-induced ecosystems, but its magnitude is very uncertain. Moreover, the
results based on inventory and remote sensing data suggested that this fire flux in China could be
neglected (~0.01 Pg C yr�1) [Tian et al., 2003; Lü et al., 2006]. Therefore, the studies that considered NEP
as an indicator of the C sink in China may be valid. For convenience, we used NBP to generally represent
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all these terms, but we discussed the difference between NBP and NEP in relevant context. Second, the
study reported total fluxes across the China or a certain biome of China (forest, shrubland, grassland, or
cropland), not an individual ecosystem.

For completeness, we fully surveyed the citations of the obtained papers and collected the ones meeting the
criteria above. We then extracted the desired annual C fluxes, including time series data (during 1981–2000)
and summaries (in any period during 1901–2005), as well as climatic variables (radiation, temperature, preci-
pitation, and CO2 concentration for 1981–2000) and biome area. However, most studies did not report the
synchronous climatic variables, and we only obtained one, seven, seven, and three time series data sets for
radiation, temperature, precipitation, and CO2 concentration, respectively. Because some original climate
data are anomalies rather than the absolute values, all the original climatic data were first transformed to
anomalies, averaged among studies, and then were normalized by subtracting the mean and being divided
by the standard deviation (SD) of multiple-year data. We also directly contacted the authors for spatial
NPP data and obtained 16 digital maps from Sun and Zhu [2000], He et al. [2005], Meng et al. [2005],
Dan et al. [2007], Zhu et al. [2007a], Gao and Liu [2008], and Tao and Zhang [2010]. Although the compar-
ison between model outputs and the observed site-level data is difficult and beyond the scope of our
study, we still extracted the field observed NPP of certain ecosystem types from literature and the
eddy-flux NEP data from ChinaFLUX [Yu et al., 2013] in order to complete our information on the C fluxes
of China’s terrestrial ecosystems.

In total, the literature-based data sets covered from 1901 to 2005 and the durations of these studies ranged
from 1 to 102 years, with most studies focusing on the last two decades of the 20th century. There were 54
estimates of China’s NPP and 14 of NBP, while the estimates of the other fluxes were relatively scarce. For
those data from the main biomes in China, there were 90 and 34 estimates of NPP and NBP, respectively.
Despite the different criteria used for forest type classification among studies, we classified the forest biome
into evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF),
deciduous broadleaf forest (DBF), and mixed forest (MF). There were in total 189 NPP estimates for these sub-
types of forests.

In addition to the published literature, the Multi-scale Synthesis and Terrestrial Model Intercomparison
Project (MsTMIP) [Huntzinger et al., 2013; Wei et al., 2014] conducted by the North American Carbon
Program (NACP) provides a great opportunity to compare the results among themodels with a common driv-
ing data set, in which the MsTMIP models were run by both constant and varying drivers. Therefore, we
extracted China’s NPP, NEP, and NBP data from the global maps of 14 of the models available as part of
the MsTMIP Version 1.0 release (http://nacp.ornl.gov/mstmipdata/, [Huntzinger et al., 2015]; CLASS-CTEM-N
was not included because its NPP estimate of China was 0.51 PgC yr�1, an order of magnitude lower than
what is thought to be a reasonable estimate), and conducted a parallel analysis to the literature-based data.
We selected the time period of 1981–2000 for MsTMIP data, because the majority of the literature focused on
this period.

2.2. Covariates

For a given variable, the mean± SD and the coefficient of variation (CV) were used to represent the uncer-
tainty among models. To investigate the potential sources of uncertainty in the NPP and NBP of China, the
data were grouped according to the types of methods, spatiotemporal resolution, the inclusion of global
change factors (climate change (warming and altered precipitation), elevated atmospheric CO2 and O3 con-
centration, N addition, fire, and land cover and land use change (LCLUC)), the types of biomes, and subtypes
of forests.

The methods used to estimate regional C fluxes covered a series of approaches [Hayes et al., 2012; Fisher et al.,
2014], which can be broadly classified into top-down (i.e., atmospheric inversions) and bottom-up approaches.
The bottom-up approach includes biomass inventory and forward model approaches; the latter in turn
contains statistical (e.g., Miami and Thornthwaite Memorial models) and process models. Based on the
methods to simulate the GPP or NPP, the process models can be further grouped into light use efficiency
(LUE) and enzyme kinetics (EK) models [e.g., Huntzinger et al., 2012]. In our study, the methods of estimat-
ing NPP included statistical model, LUE model, EK model, and a combination of multiple models (when a
study reported only the grand mean of several models rather than individual outputs). The LUE models
were further classified into LUE_GPP and LUE_NPP when the former had and the latter did not have an
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independent Ra module, respectively. For NBP, the estimated methods included the atmospheric inversion
model, the inventory method, the process model, and a combination of multiple models. The features of
these models have been well documented by Cramer et al. [1999], Adams et al. [2004], Schwalm et al.
[2010], and Huntzinger et al. [2013].

The temporal scale was categorized into short (subdaily), median (weekly or 10 days), and long (monthly or
longer). The spatial scale was partitioned into fine (1–4 km), median (8–10 km or 0.1°), and coarse (50 km or
larger than 0.5°). We treated the spatiotemporal scales as ordered category variables instead of numerical
in this study based on two considerations. First, although the scales are numerical values, in practice only a
few spatiotemporal scales were numerically used according to the data sources and model structures.
Second, the extremely small sample sizes for the beginnings and ends of the spatiotemporal scales may lead
to the biased results because the classification and regression tree (CART, see section 2.3) only considered the
rank orders of the numeric explanatory variables. Prescribed groups of spatiotemporal scales can partly
dismiss such biases. The process models were further dichotomized according to whether they considered
global change factors (e.g., climate change, CO2, O3, N addition, fire, and LCLUC) or not. In addition, we
obtained or calculated estimations for the effects of global change factors on China’s NPP and NBP according
to the reported results of different scenarios.

2.3. Classification and Regression Tree

The classification and regression tree (CART) [Breiman et al., 1984] was applied to partition and identify the
contributions of different sources to the ultimate intermodel uncertainty in NPP and NBP of China. The
CART is a nonparametric statistical method that is ideally suited for the analysis on complex data structures
involving nonnormality, heterogeneous of variance, unbalanced sample sizes, andmissing values [De’ath and
Fabricius, 2000]. It is able to incorporate nonlinear relationships and to quantify the relative importance of
each factor to the total variance of the response variable. The logic of CART is to maximize the overall homo-
geneity of the tree (here maximize the between-group variations and minimize within-group variations) by
sequentially splitting the data into two groups. At each step, from all possible splits of all explanatory vari-
ables, the CART selects the one to maximize the homogeneity as the primary split, which is usually presented
in a CART diagram [De’ath and Fabricius, 2000]. However, other unchosen variables could also be important,
which can be quantified according to their relative improvements compared with the primary split. As a
result, the relative contribution of each explanatory variable to the overall variance of the response variable
is derived across all the possible splits.

The CART was applied to the literature-based and MsTMIP data sets, separately, because the MsTMIP models
were driven by a common data set, while the covariates corresponding to literature-based data were more
variable. The choices of explanatory variables for the CART models were based on the available data. The
explanatory variables for the literature-based NPP included model type, spatial scale, temporal scale, inclu-
sion of the N cycle, CO2 effect and LCLUC (presence or absence), land cover condition (uniform or heteroge-
neous), and type of driving data (remotely sensed or field observed meteorological data), while those for the
literature-based NBP included model type, spatial scale, temporal scale, inclusion of the N cycle, LCLUC, N
addition and fire effects, land cover condition, and type of driving data. Note that the inclusion of climatic
variations was not regarded as an explanatory variable, because all the models included this effect except
for the studies that only focused on a single year. In addition, the inclusion of CO2 and O3 effects was not
considered as an explanatory variable for the literature-based NBP data, because all the process models
considered the CO2 fertilization, and the models that included O3 effects were those that also included N
addition effects. However, the relative importance of climatic variations and CO2 fertilization to the intermo-
del uncertainty can be quantified by analyzing the MsTMIP data. The O3 effects might not be important
according to current model outputs [Ren et al., 2007; Tian et al., 2011a].

The MsTMIP models were run using a consistent set of environmental driving data for a series of sensitivity
simulations that add one time-varying driver at a time to test the influences of four key forcing factors:
climate, land cover change, atmospheric CO2 concentration, and nitrogen deposition. Therefore, the
MsTMIP experimental design isolates the impact of model structure (i.e., process inclusion and formulation)
onmodeled results. The sensitivity simulations enable us to quantify the relative importance of diversemodel
structures and time-varying global change factors to the overall ensemble spread of uncertainty. To evaluate
the influence of fire effect on total uncertainty, we also calculated the NBP estimates without fire effects (i.e.,
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NEP estimates) for the four models that had a fire module (Biome-BGC, CLM4, CLM4VIC, and TEM6), in addi-
tion to their original estimates of NBP in different simulations. As a result, the CART was applied on all the
possible combinations of models, simulations, and inclusion of fire effects (totally 78 realizations of land car-
bon flux; Table S3). The explanatory variables were model identity (a categorical variable indicating which
model was used), which time-varying driver was used to drive the simulations (i.e., climatic variations,
LCLUC, CO2 enrichment, and N addition) and whether the fire effect was included. The rpart function from
the R package rpart was used to conduct the CART analysis [Therneau et al., 2015].

2.4. Interannual Variability

To test whether the patterns of IAV in NPP and NBP were consistent among studies, the repeated measures
analysis of variance (RMANOVA) was applied to the collected time series during 1981–2000 both for the
literature-based and MsTMIP data sets. We applied the RMANOVA with the repeated measured factor (year)
but no group factor, because our focus was on the interannual pattern rather than the magnitude of NPP and
NBP. The RMANOVA is aimed to test the differences among repeated measures (the year in this case) after
excluding the influence of subjects (here models) [Gravetter and Wallnau, 2007]. Therefore, if the effect of a
repeated measures factor (year) was statistically significant (p< 0.05), the interannual patterns could be
regarded as consistence among the models. To quantify the relative importance of the climatic variables
to the IAV in C fluxes during 1982–1999 (the radiation data in 1981 and 2000 were missing, so the
analysis can only be conducted on this period), we fitted multiple linear regression models (Flux = b0
+ b1 × Radiation + b2 × Temperature + b3 × Precipitation + b4 × CO2). The Lindeman-Merenda-Gold (LMG)
values [Lindeman et al., 1980] were also calculated to provide a decomposition of the models explained
variance [Bi and Chung, 2011]. These represent the relative importance of each variable to the total temporal
variance in C fluxes. In multiple regression models, the sequential r2 (Type I sums of squares) depends on the
order of the regressor. The LMG value of a variable is the mean sequential r2 obtained by averaging over all
possible orderings. The calc.relimp function from the R package relaimpo was used to calculate the LMG
values [R Core Team, 2013].

2.5. Spatial Patterns

To investigate the uncertainty in the spatial patterns of the literature-based NPP estimates among the mod-
els, the digital maps were first resampled to a 10 km×10 km resolution. Every pixel’s NPP in a resampled map
was rescaled using the formula (x-min(x))/range(x), where x is the NPP in the map. As a result, the differences
among models caused by the NPP magnitude were eliminated, and the rescaled values were between 0 and
1 for the minimum and maximum data in China, respectively. The SD of the rescaled NPP in a certain pixel
among maps was calculated as the indicator of the uncertainty in the spatial pattern. Specifically, a small
SD in a certain area suggests that the models agree with each other in the terms of their spatial patterns,
whereas a large SD suggests great uncertainty. The SD was also calculated based on the MsTMIP NPP and
NBP digital maps, except that the maps were not resampled because the original spatial resolution of the
MsTMIP outputs was all 0.5 by 0.5 °.

3. Results
3.1. Magnitude, Uncertainty, and Interannual Variability of the NPP and NBP in China

According to the literature-based data set with 54 NPP estimates from 33 studies, the NPP in China’s terrestrial
ecosystems was 3.35± 1.25 PgC yr�1 (mean±SD) during 1901–2005 (most estimates were during 1981–2000;
Figure 1 and Table S1), which was very close to the value from outputs of the Multi-scale Synthesis and
Terrestrial Model Intercomparison Project (MsTMIP) during 1981–2000 (3.36± 0.63 PgC yr�1; Figure 1 and
Table S3). Classification and regression tree (CART) analysis for the literature-based data set showed that the
model type accounted for 36% of the explained variance among NPP estimates from the literature data, with
the significant difference between statistical (4.32± 1.42 PgC yr�1) and other models (3.18± 1.37 PgC yr�1) as
the primary source of variance and that between light use efficiency (LUE) and enzyme kinetics (EK) models
as the secondary contributor (Figure 2). In order of importance, the other sources of uncertainty were the tem-
poral scale (23%), land cover condition (14%), spatial scale (14%), inclusion of the nitrogen (N) cycle (12%), and
the type of driving data (1%). For theMsTMIP outputs, some of the uncertainty sources (e.g., the spatiotemporal
scales and land cover conditions) were eliminated because theMsTMIPmodels were run using a common set of
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driving data and a common simulation protocol [Huntzinger et al., 2013], that included a series of sensitivity
simulations that were designed to test the influence of global change factors. The CART results onMsTMIP data
set showed that the majority (95%) of the overall uncertainty (i.e., spread) within the ensemble came from
model structural differences rather than collective model response to various time varying drivers (global
change factors; Figure 3).

According to the literature-based data set with 14 NBP estimations from 11 studies, the terrestrial NBP in
China was 0.14 ± 0.097 PgC yr�1 (during 1901–2005; Figure 6 and Table S2), which was much lower than
the results based on MsTMIP outputs (0.32 ± 0.35 Pg C yr�1, during 1981–2000; Figure 6 and Table S3). The
model type accounted for 64% of the explained variance among NBP estimates from the literature data, in
which the significant difference between top-down (0.31 ± 0.0020 Pg C yr�1) and bottom-up approaches
(0.12 ± 0.0048 Pg C yr�1) was the primary source of variance and the difference between process and other
methods was the secondary contributor (Figure 7). The inclusion of N addition effects was also important
(24%) but other factors had little effect. The results from the outputs of the MsTMIP also showed that the
majority of the uncertainty (90%) stemmed from the models rather than different combinations of time-
varying global change factors (Figure 8). The exclusion of TRIPLEX outputs (with an estimated NBP 1 order
of magnitude larger than other models) reduced the importance of model structures to 67%; however, the
influence of model structure still outweighed other factors (Figure 8).

Figure 1. Total net primary productivity (NPP) of China. The error bar is the standard deviation of annual NPP during the
study period (i.e., interannual variability). LUE_NPP indicates the models using light use efficiency to simulate NPP;
LUE_GPP represents the models using light use efficiency to simulate GPP and other modules to simulate autotrophic
respiration (Ra).The references labeled in the y axis can be found in the supporting information.
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Figure 2. The classification and regression tree (CART) results based on the NPP values from the literature. The values in
each node are the estimated mean ± standard deviation (Pg C yr�1). n, the sample size of tree node; r2, the explained
proportion of variance of a node by the sequent split.

Figure 3. The classification and regression tree (CART) results based on the NPP values from the MsTMIP data set. The
values in each node are the estimated mean ± standard deviation (Pg C yr�1). n, the sample size of tree node; r2, the
explained proportion of variance of a node by the sequent split.
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Nevertheless, the global change factors could
have large effects on the individual model out-
puts from both the literature and MsTMIP data
sets. For example, CO2 fertilization and N addi-
tion largely enhanced both NPP (0.33 ± 0.19 and
0.22 ± 0.16 PgC yr�1, respectively, mean± SD;
Figure 4a) and NBP (0.12 ± 0.09 and 0.079
± 0.044 PgC yr�1, respectively; Figure 4b) in
China, whereas the effects of climatic variations
and land cover and land use change (LCLUC)
were much smaller (Figure 4). The O3 had
a slight negative effect on NBP (�0.016
± 0.0015 Pg C yr�1), while the fire largely
decreased the NBP with large uncertainty
(�0.17 ± 0.15 Pg C yr�1; Figure 4b).

During 1981–2000, China’s NPP and NBP fluctu-
ated from year to year. The interannual variability
(IAV, in terms of SD) in NPP was 0.07–0.28 and
0.026–0.20 PgC yr�1 for the literature-based and
MsTMIP data sets, respectively, while that in
NBP was 0.029–0.16 and 0.043–0.19 Pg C yr�1,
respectively (Figures 5 and 9). The RMANOVA
results showed that the year (the repeated
measured factor) significantly contributed to
the total variance of annual NPP for the
literature-based and MsTMIP data sets (both

Figure 4. The effects of global change factors on (a) NPP and
(b) NBP in China. The error bars represent the SDs. The figures
in the parentheses are the sample size and coefficient of
variation. The data come from both the literature and MsTMIP
data sets. *, significantly different from 0 by t test (p< 0.05).

Figure 5. Time series of Chinas NPP from the (a) literature (1981–2005) and (b) MsTMIP (1981–2000). The references in the
legend can be found in the supporting information.
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p< 0.001: Table S4). However, the
interannual pattern of NBP among
models was inconsistent (p= 0.31
and 0.027 for the literature-based
and MsTMIP data sets, respectively;
Table S4). The relative importance
(the LMG value, which provides
a decomposition of the model
explained variance; see section 2.4)
of radiation, temperature, precipita-
tion, and CO2 to the IAV of the NPP
averaged across 18 time series from
the literature was 2%, 17%, 33%, and
27%, respectively, which was consis-
tent with the results based on the
MsTMIP outputs (Table 1). However,

the relative importance of climatic variables to the IAV in NBP disagreed between the results from the litera-
ture and MsTMIP data sets except for the temperature (Table 1).

3.2. NPP and NBP in Different Biomes

Based on the literature data, forests occupy about 20% of China’s area (118–435 × 106 ha; Tables S5 and S8).
Both the total (0.99 ± 0.56 PgC yr�1) and mean NPP (640 ± 231 g Cm�2 yr�1) of China’s forests were larger
than those of other biomes (Figures 10a and 10c). Among the forests, evergreen broadleaf forests (EBF)
had the largest mean NPP (729 ± 259 g Cm�2 yr�1), followed by mixed forests (MF, 605 ± 305 g Cm�2 yr�1),
evergreen needleleaf forests (ENF, 546 ± 293 g Cm�2 yr�1), deciduous broadleaf forests (DBF, 528
± 188 g Cm�2 yr�1), and deciduous needleleaf forests (DNF, 431 ± 132 g Cm�2 yr�1), with the uncertainty
for all biomes being all above 30% (Figure 10d). Shrublands occupy less than 10% of China’s area
(19–197× 106 ha; Tables S5 and S8) and have the lowest NPP (0.30 ± 0.38 PgC yr�1; Figure 10a), but are not
the least productive biome (410 ± 226 g Cm�2 yr�1; Figure 10c). The area of grasslands is about one
third of China’s total area (225–499× 106 ha; Tables S5 and S8). Although the mean NPP of grasslands
(214 ± 105 g Cm�2 yr�1) was the lowest (Figure 10c), the total NPP was considerable (0.66 ± 0.24 Pg C yr�1;
Figure 10a). Croplands occupy about one sixth of China’s terrestrial area (98–244× 106 ha; Tables S5 and
S8). The total (0.73 ± 0.30 Pg C yr�1) and mean NPP (495 ± 184 g Cm�2 yr�1) of croplands was just lower than
those of forests (Figures 10a and 10b).

Compared to NPP, the estimations of the biomes’ NBP were accompanied by much greater uncertainty.
The total NBP of forests, shrublands, grasslands, and croplands were 0.073 ± 0.13, 0.024 ± 0.027, 0.017
± 0.011, and 0.023 ± 0.015 Pg C yr�1, respectively (Figure 10b). The uncertainty in NBP for forests and shrub-
lands (>100%) was much larger than that for grasslands and croplands (both 65%). The relative contributions
of these biomes to China’s NBP also showed high variability, which were 40 ± 22%, 19 ± 11%, 25 ± 21%, and
18± 15%, respectively (Figure 10b).

3.3. Uncertainty in the Spatial Pattern of NPP and NBP

According to the average of the 16 NPP maps derived from the literature and the 14 NPP maps from
MsTMIP, the most productive areas were the eastern, southern, and southwestern China, whereas the
northwestern China was the least productive (Figures 11a and S1a). The spatial pattern of NBP generally
followed that of NPP (Figure S4c). We used the SD of the rescaled NPP and NBP as the indicator of
uncertainty in spatial patterns, which eliminated the systematic differences among the models and
represented the extent of disagreement of the relative magnitude of C fluxes among models. The results
showed that the uncertainty in the spatial patterns of NPP followed the magnitude of the mean NPP for
both literature-based (r2 = 0.66, p< 0.001; Figure 11d) and MsTMIP data (r2 = 0.64, p< 0.001; Figure S4b).
On the other hand, the uncertainty in the spatial patterns of NBP showed the opposite pattern, which was
negatively correlated to the magnitude of NBP, according to the MsTMIP results (r2 = 0.23, p< 0.001;
Figure S4d).

Table 1. The Relative Importance of Radiation, Temperature, Precipitation
and CO2 to the Interannual Variability in Net Primary Productivity (NPP) and
Net Ecosystem Productivity (NBP) From the Literature and Multi-scale
Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) Outputsa

Literature MsTMIP

NPP NBP NPP NBP

Radiation 2% 17% 2% 2%
Temperature 17% 17% 22% 15%
Precipitation 33% 22% 44% 40%
CO2 27% 5% 19% 32%
Total r2 79% 61% 88% 88%

aThe time series of NPP and NBP were the annual values averaged
amongmodels from Figures 5 and 9, respectively. The relative importance
metric is the Lindeman-Merenda-Gold (LMG) value of the multiple
linear regression model: Flux = b0 + b1 × Radiation + b2 × Temperature
+ b3 × Precipitation + b4 × CO2. Flux represents either NPP or NBP.
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3.4. International Comparisons

According to a previous synthesis [Ito, 2011] and the average of individual studies (Table S10), the global NPP
and NBP were 56.2 and 1.62 Pg C yr�1, respectively (Figures 12a and 12b). Therefore, China accounted for
about 6% and 10% of the global NPP and NBP, respectively, based on the literature results. The total NPP
in China was equivalent to that of the U.S. and Europe (Table S11) but was smaller than that of Africa
[Williams et al., 2007; Ciais et al., 2011]. The total NBP of China was similar to that of Africa and Europe but
was lower than that of the U.S. (Figure 12b). The mean NPP of the above regions was comparable to the glo-
bal average (Figure 12c). The mean NBP of China and Europe was equivalent to the global level, slightly
higher than that of Africa, but much smaller than that of the U.S. (Figure 12d). If the study period was
constrained to 1981–2000, the China’s annual CO2 emissions from fossil fuels and annual NBP were
0.70 Pg C yr�1 [Boden et al., 2013] and 0.17 ± 0.09 PgC yr�1, respectively. Therefore, China’s terrestrial ecosys-
tems offset about 24 ± 13% of the CO2 emissions from fossil-fuel combustion by itself, which was comparable
to the level of the U.S. (26%) and the global level (28%), larger than the level of Europe (7%), but lower than
that of Africa (100%). However, the larger estimate of NBP fromMsTMIP (0.32 ± 0.35 PgC yr�1) suggested that
the China’s terrestrial ecosystems might offset more (46%) of the anthropogenic CO2 emissions, but this esti-
mate was largely influenced by an extreme value (the output of TRIPLEX-GHG; Figure 8) and therefore is
highly uncertain.

4. Discussion
4.1. Uncertainty From Different Methods

Diverse assumptions and approaches among studies may introduce the large uncertainty in the net primary
productivity (NPP) and net biome productivity (NBP) of terrestrial ecosystems in China. First of all, different
approaches attribute the NBP to different flux components, which cause the differences in the outputs
among atmospheric inversion, inventory, and process models. The atmospheric inversion models usually
overestimate the regional NBP because non-CO2 emissions (e.g., CO, CH4, and volatile organic compounds)
from ecosystems were included, whereas the inventory methods could underestimate NBP because they
excluded wood and food products [Piao et al., 2009a; Hayes et al., 2012]. The NEP outputs of process models
(i.e., NBP without the fire flux, latent, and non-CO2 fluxes) should theoretically be larger than those from
the inventory estimates, which was also revealed by King et al. [2012] in North America. However, our
literature-based results showed that the process models without nitrogen (N) addition estimated a lower
NEP (0.069 ± 0.049 PgC yr�1, the NBP may have been lower if the fire, latent, and non-CO2 fluxes were added)
than those with N addition effect (0.21 ± 0.042 PgC yr�1, t1.84 = 4.00, p=0.065; Figures 6 and 7) and the inven-
tory methods (0.17 ± 0.014 PgC yr�1, t6.60 = 4.82, p= 0.0023). Considering that all the process models
included CO2 fertilization, the underestimations in NEP might be due to the missing of N addition effect.
The MsTMIP results showed that the net C flux (i.e., NBP) values derived from the model simulations with con-
stant N deposition rate (0.058 ± 0.011 PgC yr�1) were lower than those having considered the time-varying N
deposition (0.20 ± 0.014 PgC yr�1, t11.85 = 3.35, p=0.0059) (Figure 8). However, this result reflected two
aspects of modeling the N addition effects: (1) the inclusion of C-N coupling and (2) the use of time-varying
N deposition data. The inclusion of C-N coupling alone generally decreased estimations of C uptake (0.13 ver-
sus 0.37 PgC yr�1, t2.24 = 6.31, p= 0.064) due to N limitations on CO2 fertilization [Zaehle and Dalmonech,
2011]. While the inclusion of time-varying N deposition largely reduced this difference because of N fertiliza-
tion effects. The net result, however, is an estimate of net C uptake for models with C-N coupling
(0.25 PgC yr�1, t8.42 = 0.99, p= 0.35, compared 0.37 PgC yr�1 for C-only models). Note that TRIPLEX was
excluded from this analysis due to its outlier behavior. These results were consistent with previous findings
that the inclusion of N cycle and associated N fertilization generally reduced the estimated NEP at the global
scale [Fisher et al., 2014]. Nevertheless, the N control on C fluxes is largely neglected in China because only
two models from literature considered the N addition effect.

Even within the same approach, large uncertainty also appeared. For example, the statistical models (e.g., the
Miami and Thornthwaite Memorial models) assume that NPP is only related to climatic conditions such as
temperature, precipitation, and/or evapotranspiration, being considered as potential NPP [Sun and Zhu,
2000; Zhu et al., 2007a], producing larger estimations than other methods in the literature data set (Figures
1 and 2). In addition, the estimated NPP from light use efficiency (LUE) models was about 1 PgC yr�1 higher
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Figure 7. The classification and regression tree (CART) results based on the NBP values from literature. The values in each
node are the estimated mean ± standard deviation (Pg C yr�1). n, the sample size of tree node; r2, the explained proportion
of variance of a node by the sequent split.

Figure 6. Total net biome productivity (NBP) of China. Interannual variability, standard deviation of annual NBP during the
study period; range, difference between the maximum and minimum annual NBP; estimation uncertainty is derived
from the difference in model parameters. The references in the y axis can be found in the supporting information.
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than that from enzyme kinetics (EK) models (Figure 2). However, whether the difference resulted from the
lack of N fertilization in EK model and/or the high maximum light use efficiency (εmax) in LUE models was
not clear. According to the literature-based results, the NPP estimates by models with coarser spatiotemporal
scales were larger than those of the models with finer scales (Figure 2), although there was not significantly
linear relationships of estimated fluxes against the spatiotemporal scales (Figures S2 and S3). The scale effects
found in the CART result might stem from the biases arising from the mixture of heterogeneous land cover
and climatic variables encountered when scaling from fine to coarse scales, which caused similar patterns of
NPP in other areas [Pierce and Running, 1995; Turner et al., 2000]. These results may have large uncertainty due
to small sample size. To better understand the effects of the spatiotemporal scales, it is necessary to have
well-designed modeling experiments that only treat spatiotemporal scales as the varying factors.

Overlooking some internal processes or external constraints might also influence the outputs of different
models. For example, in literature data set, the inclusion of the N cycle resulted in a much lower NPP (1.58
versus 3.1 Pg C yr�1) due to the effect of N limitation on C uptake (Figure 2) [Fisher et al., 2014]. The models
with heterogeneous land cover had higher NPP (1.12 Pg C yr�1) than those with spatially uniform vegetation,
probably because the early versions of LUE models only considered the regulations of climate on LUE and set
the εmax too low in highly productive biomes. Globally, the εmax values ranged from 0.09 to 3.5 g CMJ�1

whereas the values were 0.389–1.259 g CMJ�1 in China (Table S13) [Zhu et al., 2007a]. This large range of εmax

probably contributed to the uncertainty of NPP among the LUE models.

In addition, the large uncertainty might be due to a few extreme values. For example, according to the litera-
ture data set, the great uncertainty among the statistical models was mainly introduced by an extreme value
of 7.44 PgC yr�1 in 1990 (Figure 1) [Chen et al., 2001] and partly by the interpolation of climate data (300 ver-
sus 600 weather stations in Chen et al. [2001] and other studies, respectively). Within the LUE models, Global
Production Efficiency Model (GloPEM) introduced the largest uncertainty, as it had two extremely large values
(Figure 1), whichmight have arisen from the biased driving data from remote sensing [Dan et al., 2007]. When
the driving climate data were corrected further, the GloPEM’s output was close to the average of these mod-
els [Dan et al., 2015]. For the NBP from the MsTMIP data, the majority of the overall uncertainty was caused by
the dramatic difference between TRIPLEX-GHG and other models (1.10 versus 0.15 PgC yr�1; Figure 8), which
mainly came from the much lower heterotrophic respiration (Rh) in TRIPLEX-GHG (1.83 versus 3.07 PgC yr�1).
However, further studies are needed to understand what caused the higher NBP in TRIPLEX-GHG (e.g., the
specialization in wetlands; part of the Rh could be used for CH4 production [Fisher et al., 2014]).

Figure 8. The classification and regression tree (CART) results based on the NBP values from the MsTMIP data set. The
values in each node are the estimated mean ± standard deviation (Pg C yr�1). n, the sample size of tree node; r2, the
explained proportion of variance of a node by the sequent split. The relative importance of different factors to overall
uncertainty without TRIPLEX outputs was also presented, in order to explore the influence of this model on the results.
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4.2. Uncertainty From Global Change Factors

According to the MsTMIP results, the importance of model structures outweighed the effects of global
change factors on the overall uncertainty (Figures 3 and 8). However, global change factors do affect the
outputs of each model and surely determine the regional NPP and NBP to some extent (Figure 4). For
example, the effects of N addition were equivalent to 10%–100% of NBP globally [Bala et al., 2013], with
a value of 0.079 ± 0.044 Pg C yr�1 for China’s NBP according to the combined data sets of literature and
MsTMIP outputs (Figure 4). The uncertainty in the estimated N-induced effects might result from the differ-
ence in N application rates and the inconsistency of C-N coupling mechanisms among the models [Tian
et al., 2011a; Bala et al., 2013]. Comparisons between the results from field experiments and model outputs
may provide some insights to improve the model performance. For example, although the additional N in
Dynamic Land Ecosystem Model (DLEM) can alter biomass allocation among organs, the contribution of
maintenance respiration to ecosystem respiration, and the decomposition rate of the detritus pool [Tian
et al., 2011a; Lu et al., 2012], the positive response of Rh to N addition in the DLEM was opposite to the
experimental results with an N-induced decrease in Rh [Janssens et al., 2010; Lu et al., 2011; Zhou et al.,
2014]. The potential mechanisms involved might be missed in the DLEM, such as the effects of N addition
on soil microbial biomass and activity, interactions between N addition and other global change factors,
and complex nonlinear responses, which are limited by our understanding of the mechanisms and the
available data.

Climate change and CO2 fertilization were widely considered to be the drivers of global and regional C flux
dynamics [Schimel et al., 2015]. At the global scale, warming increased NPP while increased precipitation
and atmospheric CO2 concentration enhanced both NPP and NBP [Cao et al., 2005; Piao et al., 2009a]. In
China, variations in temperature and precipitation increased NPP by 0.11 ± 0.097 PgC yr�1, but they seemed
to offset each other and resulted in little effect on NBP (0.020 ± 0.11 PgC yr�1; Figure 4). The effect of CO2 fer-
tilization (0.33 ± 0.19 and 0.12 ± 0.091 PgC yr�1 for NPP and NBP, respectively) was more important than the
effects of climate change. Since different studies used similar or identical CO2 observation data, the uncer-
tainty in CO2 fertilization might be mainly from the forms of the response functions of NPP to rising CO2 con-
centration, which were more diverse than the responses to temperature and water conditions [Adams et al.,
2004]. Experimental studies exploring the effects of elevated temperature and CO2 on ecosystem C cycling
showed that the short-term responses of ecosystems were quite different from the long-term ones, suggest-
ing that ecosystemsmay acclimate to the changing climate [Leuzinger and Hättenschwiler, 2013; Bouskill et al.,
2014]. How to incorporate this acclimation found in the experiments into mathematical equations in
mechanistic models might be a great challenge [Smith and Dukes, 2013].

Land cover and land use change (LCLUC)-induced C emissions were about 1.14 ± 0.50 PgC at the global scale
[Houghton et al., 2012]. However, in China, LCLUC might enhance the NPP and NBP through afforestation and
tree growth and reduce them by sudden changes in land use or degradation of natural ecosystems, resulting
in a neutral effect with large uncertainty (�0.0075 ± 0.19 and 0.0088 ± 0.069 Pg C yr�1 for NPP and NBP,
respectively; Figure 4). This uncertainty might largely result from the inconsistency in land cover change
among the studies. For example, Ge et al. [2008] and Liu and Tian [2010] showed that the forest area increased
and the cropland area decreased, although Liu et al. [2005] suggested an increasing trend for cropland during
1990–2000. Despite the importance of wetlands and human settlements, changes in these areas have not
been considered in the models, which may introduce additional uncertainty in the future [Ito et al., 2008;
Houghton et al., 2012].

The effects of O3 and fire on China’s NPP and NBP were the least studied. The negative effects of O3 on sto-
matal conductance and photosynthesis [Lombardozzi et al., 2013] seemed negligible at the regional scale
according to our comparative study (Figure 4b) [Ren et al., 2007; Tian et al., 2011a]. However, the uncertainty
and its potential sources caused by increased O3 in China are difficult to explore because only a few studies
had been conducted and our understanding about this factor is poor. The fire flux is considered to be the
difference between NEP and NBP when latent fluxes and non-CO2 fluxes are negligible and has been esti-
mated to decrease global NBP by 1–2 PgC yr�1 [Li et al., 2014] and China’s NBP by 0.17 ± 0.15 PgC yr�1 in
the process models (Figure 4b). However, this flux might be overestimated in China. Overall, the prognostic
models (i.e., Biome-BGC, CLM4, CLM4VIC, and LPJ-DGVM), which set prescribed fire rates for each plant func-
tional type and were not constrained by burned areas data, had much larger estimates (0.22 ± 0.14 Pg C yr�1)
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than those based on burned areas data (0.030 ± 0.037 PgC yr�1, t4.94 = 2.87, p= 0.036, TEM6 and DLEM). Other
methods that mainly aimed to estimate fire flux in China gave even lower values. For example, a recent esti-
mate based on Global Fire Emissions Database was 0.021 PgC yr�1 during 2001–2010 (Carbon Tracker, http://
www.carbontracker.net/fluxmaps.php). Combining inventory, remote sensing, and terrestrial ecosystem
modeling gave an estimate of 0.011 PgC yr�1 during 1950–2000 [Lü et al., 2006]. Another study based on
inventory data suggested that the fire emission from 1991 to 2000 was 0.0074–0.010 PgC yr�1 [Tian et al.,
2003]. The small fire flux was largely because China’s government adopted a policy of suppressing wildfire
as intensively as possible during the study period [Tian et al., 2003].

4.3. Uncertainty of Temporal and Spatial Patterns

Besides the changes in mean annual values among models, the IAV in China’s NPP and NBP also exhibited
large uncertainty. During 1981–2000, the IAV in China’s NPP and NBP was 0.026–0.28, and 0.029–
0.19 Pg C yr�1, respectively (Figures 5 and 9). For NPP, different studies presented a consistent interannual
pattern (Figure 5) and a significantly increasing rate of 0.012 Pg since 1981 based on both literature-based
and MsTMIP data (0.38%, r2 = 0.47, p< 0.001). At the global scale, the fluctuations in annual NPP are
related to the climatic variations, natural disturbances, human activities, and vegetation dynamics
[Bastos et al., 2013; Piao et al., 2013], among which the effects of CO2 and precipitation are mostly
highlighted [Piao et al., 2009b]. In China, annual NPP was also correlated with annual temperature
[Fang et al., 2003; Piao et al., 2005; Mao et al., 2010], annual precipitation [Piao et al., 2001; Cao et al.,
2003; Tao et al., 2003; Liang and Xie, 2006; Mu et al., 2008], and large-scale climatic events [Zhu et al.,
2007b]. Among these factors, precipitation seemed to be the most important (explaining 33% and
44% of variance in annual NPP from the literature-based and MsTMIP results, respectively), followed by
CO2 (27% and 19%), temperature (17% and 22%), and radiation (2% for both). However, the contribution
of other global change factors, such as O3 concentrations, N addition, and LCLUC, to the temporal varia-
tions in Chinas NPP is not clear, although their effects might depend on the sensitivity of C cycling to
these factors.

Figure 9. Time series of China’s NBP from the (a) literature (1981–2005) and (b) MsTMIP (1981–2000) data sets. The refer-
ences in the legend can be found in the supporting information.
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Conversely, the interannual patterns of China’s NBP were not consistent among studies (Figure 9). Therefore,
the trend of NBP [Xiao et al., 2009; Tao and Zhang, 2010; Tian et al., 2011b] and the correlations between NBP
and climatic variations [Cao et al., 2003; Mu et al., 2008; Xiao et al., 2009] found in previous studies were less
reliable than those of NPP. As most models did not have a fire module, these results suggested that the Rh
introduced additional uncertainty into the NEP and thus NBP due to our limited understanding of the under-
lying processes involved in Rh. Reproducing a consistent interannual pattern in NEP is also very difficult at the
ecosystem scale [Keenan et al., 2012], which might largely be due to the changing responses of C cycling to
climatic variations from year to year [Hui et al., 2003; Richardson et al., 2007; Shao et al., 2015]. Progresses in
simulating the functional change at the ecosystem level and scaling it up to the regional and global scales
could largely enhance the reliability of model predictions in future global climate change scenarios.

The uncertainty in the total NPP and NBP of a certain biome was derived from both the mean value and the
covering area (Figure 10). All these estimations had large uncertainty, especially for forests and shrublands.
The discrepancy in mean NPP and NBP among models mainly arose from the estimation methods, while
the difference of biome area was due to the discrepancies in vegetation classification criteria [De Cáceres
and Wiser, 2012], the difficulty of classifying the transient biomes (e.g., shrubland) and the LCLUC. Spatially,
NPP exhibited high heterogeneity, and the discrepancy in spatial patterns among studies was more obvious
in the southern and eastern China (Figure 11d). This was partly due to the complicated topography and the
diverse vegetation in these areas, which had both low and highly productive biomes from grassland to ever-
green broadleaf forest. Interestingly, although the spatial patterns of NBP and NPP were similar, the most
uncertain NBP was seen in low productivity areas (Figures S4c and S4d). This suggested that the differences
of NPP among the models were diminished in highly productive areas but were amplified in less productive
ones. Moreover, the lack of local adaptation and acclimation to climate change might constrain a model’s
ability to reproduce the spatial patterns of C fluxes reliably, because the response mechanisms of ecosystems
to climatic variations might be very different even for the same biome but distributed in different regions
[Yuan et al., 2011; Niu et al., 2012].

In the global context, China contributed significantly to the global productivity (6%; Figure 12a) and the glo-
bal C sink (10%; Figure 12b). The area-averaged productivity and C sink and the ability of China to offset the

Figure 10. (a) Different biomes’ NPP and their proportion to total NPP, (b) different biomes’ NBP and their contribution to
total NBP, (c) mean NPP and area of main biomes, and (d) forest types. The Kruskall-Wallis test was used for multiple
comparisons (α = 0.05). The error bars represented the SDs.
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CO2 emissions from industry (24%) during 1981–2000 were close to the global averages. Recent estimations
showed that China accounted for 28% of global CO2 emissions in 2013 [Le Quéré et al., 2014]. On the other
hand, Yu et al. [2014] suggested that the East Asian monsoon subtropical forests, a large proportion of which
is located in China, were more efficient than Asian tropical and temperate forests in the terms of being a C
sink. Therefore, further research should be carried out to determine how the China’s terrestrial ecosystems
can or will mitigate global warming, which is important for international negotiations. However, the esti-
mated global NPP and NBP and those of other regions also had great uncertainty, which should be reduced
before conducting a reliable comparison.

4.4. Implications for C Cycle Models and Future Experiments

Despite great progress over the recent decades, the uncertainty in the estimated land C sink has not yet
been reduced since Intergovernmental Panel on Climate Change AR3 (Third Assessment Report) [Ciais
et al., 2013]. The difficulty may be largely derived from the insufficient understanding on the underlying
mechanisms of C cycling and its spatiotemporal dynamics. Therefore, extensive efforts should be made
to improve predictions of the terrestrial C sink under climate change. Our results from the synthesis of
the published NPP and NBP data may provide some insights into how to reduce the uncertainty through
the development and improvement of land surface models as well as into the design of manipulative
experiments in the future. First, large uncertainty occurred among studies using diverse methods, suggest-
ing that model comparisons (e.g., MsTMIP [Huntzinger et al., 2013; Mao et al., 2015; Schwalm et al., 2015])
and benchmarking procedure such as the Climate Model Intercomparison Project, International Land
Model Benchmarking Project, Trends in Net Land-Atmosphere Carbon Exchange, and Inter-Sectoral
Impact Model Intercomparison Project [Luo et al., 2012; Todd-Brown et al., 2013; Fisher et al., 2014; Yan
et al., 2014] are necessary to identify the pros and cons of different methods. Meanwhile, manipulative

Figure 11. The spatial patterns of the (a) mean, (b) standard deviation (SD), and (c) coefficient of variation (CV) of NPP, and
the (d) SD of the rescaled NPP among 16 models from the literature. The spatial NPP data were taken from Sun and Zhu
[2000], He et al. [2005], Meng et al. [2005], Dan et al. [2007] (six estimations), Zhu et al. [2007a], Gao and Liu [2008] (five
estimations), and Tao and Zhang [2010]. In Figure 11d, the rescaled NPP was calculated as (x-min(x))/range(x), where x is
the NPP in a certain NPP map, and the standard deviation of the rescaled NPP at a certain pixel among 16 maps was
then calculated.
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experiments may need to coordinate with process studies and modeling synthesis to evaluate the under-
lying mechanisms and develop generalizable knowledge across scales to validate model performance and
prediction [Luo et al., 2011; Fraser et al., 2013].

Second, the available data are usually insufficient to identify the alternative model structures and constrain
the parameters compared to the large number of parameters in current models. Therefore, the observa-
tions and experiments should be carried out in more representative and efficient ways for land surface
modeling. Our study showed asymmetric uncertainty among biomes in China, with forests and shrublands
having greater uncertainty, suggesting that more attention should be focused in these two biomes.
Studies on wetlands, tropical rain forests, tundra, and ecosystems in permafrost areas are also needed
because of their important roles in the C cycle and relatively little attention paid so far [Elmendorf et al.,
2012; Zhou et al., 2013; Sjögersten et al., 2014; Schuur et al., 2015]. Moreover, previous studies have
suggested that flux- and biometric-based data are complementary for constraining model parameters
[Du et al., 2015], indicating that data should be collected for different aspects of C cycling.

Third, in order to predict the global C balance in the future, the models are supposed to reproduce
the spatiotemporal patterns of ecosystem C cycling, which largely challenges modelers. We found
that the models provided quite diverse interannual patterns of NBP in China, being consistent with a
previous study, which generally failed to reproduce the observed IAV of NEP at the ecosystem scale
[Keenan et al., 2012]. Spatially, the model performance might not be the same among different biomes
or regions. For example, many models were highly biased in the tropics due to the lack of phosphorus
limitation on productivity [Bonan et al., 2011]. Calibrating and validating models in diverse regions might
help to improve the model performance across space and time. However, evaluating the model behavior
temporally and spatially is of great importance for reducing model uncertainty and providing accurate
results.

Figure 12. The international comparison of (a and b) total and (c and d) area averaged mean, global and regional NPP
(Figures 12a and 12c) and NBP (Figures 12b and 12d). Global NPP was taken from Ito [2011], global NBP was taken from
75 estimations (Table S10), and Africa’s NPP and NBP were from Williams et al. [2007] and Ciais et al. [2011], respectively.
The conterminous United States’ NPP and NBP were from 5 and 10 estimations, respectively (Table S11). The Europe’s
NPP and NBP were from eight and four estimations (Table S11), respectively. The error bars represented the SDs.
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