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Abstract Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and
an improved representation of the C cycle in permafrost regions in the current generation of Earth system
models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity
(NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In
comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS;
246±6gCm�2 yr�1), most models produced higher NPP (309±12gCm�2 yr�1) over the permafrost region
during 2000–2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based
database, we found that although mean GPP among the models was only overestimated by 10% over
1982–2009, there was a twofold discrepancy among models (380 to 800gCm�2 yr�1), which mainly resulted
from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency
(CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability
of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of
carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. Themodels also varied in their sensitivities
of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results
indicate that model predictive ability of the C cycle in permafrost regions can be improved by better
representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.

1. Introduction

Permafrost regions in theNorthernHemisphere store ahugeamountof carbon (C) andplay a critical role in reg-
ulating terrestrial feedbacks to climate change [Schuur et al., 2008;McGuire et al., 2009; Tchebakova et al., 2009;
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Schaefer et al., 2014; Schuur et al., 2015]. However, the key C processes in permafrost regions have not been
well represented and evaluated in terrestrial ecosystem models, partially leading to the large uncertainty in
future projections of climate-C cycle feedbacks by Earth systemmodels [Koven et al., 2011; Friedlingstein et al.,
2013; Schaefer et al., 2014; Koven et al., 2015]. Net primary productivity (NPP), the total net C influx into an
ecosystem, is the key C process determining C stock in permafrost regions [McGuire et al., 2010]. Previous
model intercomparison exercises have emphasized the importance of NPP in simulations of the stimulate
global carbon cycle [Todd-Brown et al., 2013; Hajima et al., 2014], but a spread of twofold to threefold in simu-
lated global NPP has been revealed since the late 1990s [Cramer et al., 1999], e.g., 35.3 to 91.3 Pg C yr�1

among CMIP5 models [Todd-Brown et al., 2013]. In comparison with the global average, the CMIP5 models
havemuch larger disparity in simulated NPP for boreal forest (fourfold; 2.3–9.1 Pg C yr�1) and tundra (sixteen-
fold; 0.3–4.7 Pg C yr�1) [Todd-Brown et al., 2013], biomes which are mainly located in the northern permafrost
region. Thus, identification of systematic biases in carbon cycle models for simulating NPP in permafrost
regions can be instructive to enhance the skill of Earth ecosystem models.

NPP can be decomposed as the product of gross primary productivity (GPP) and carbon use efficiency (CUE;
the ratio of NPP to GPP). Most previous efforts focused on diagnosing differences in simulated NPP among
models have primarily analyzed differences in GPP. There is a large difference among the CMIP5 models’
simulation of contemporary global total terrestrial GPP, which ranges from 105.3 to 176.9 Pg C [Anav et al.,
2013]. In the latest two Intergovernmental Panel on Climate Change Assessment Reports, substantial uncer-
tainties have been revealed by carbon cycle models with the same climate forcing in simulated GPP
responses to changes in climate and atmospheric CO2, with 0.8–7.6 Pg C yr�1 per 100mm precipitation,
�2.5 to 2.0 Pg C yr�1 °C�1, and 8.1–30.0 Pg C yr�1 per 100 ppmv to increases in global total annual precipita-
tion, mean annual temperature, and atmospheric CO2 concentration, respectively [Piao et al., 2013]. The CUE,
which describes the capacity of an ecosystem to transfer assimilated C to biomass [Cheng et al., 2000; DeLucia
et al., 2007; Bradford and Crowther, 2013;Dillaway and Kruger, 2014], is a conceptually simple ratio, but it varies
with climate [Metcalfe et al., 2010; Dillaway and Kruger, 2014; Zhang et al., 2014], stand age [Piao et al., 2010],
and vegetation type [Litton et al., 2007; Zhang et al., 2009]. Also, the models have diverse representations of
the allocation of NPP to different plant tissues [De Kauwe et al., 2014], which in turn could affect CUE because
of the different respiratory demands among those plant tissues. Hence, it is important to evaluate (1) whether
the factors affecting CUE have been well represented by the models and (2) the relative contributions of GPP
and CUE to the large uncertainty in NPP estimates among models.

In this study, we examine 10 process-based models for their ability to estimate NPP and its response to cli-
mate change in permafrost regions of the Northern Hemisphere from a series of retrospective simulations
during 2000–2009. We aim to address the following questions: (1) Does CUE contribute to the differences
in NPP among models and between data products and model outputs? If so, how? (2) What are the key
sources of the intermodel variations of simulated GPP and CUE in the permafrost region? and (3) What is
the relative importance of air temperature, precipitation, and atmospheric CO2 in regulating the temporal
trend of simulated NPP since 1960 across the permafrost region?

2. Materials and Methods
2.1. Model Input Data and Simulation Experiments

The primary focus of this study is to evaluate NPP, GPP, and CUE simulated by 10 terrestrial ecosystemmodels
(Table 1) that have participated in the activities of the model integration group of the Permafrost Carbon
Network (http://www.permafrostcarbon.org/). The model ensemble includes CLM4.5 [Koven et al., 2013;
Oleson et al., 2013], CoLM [Dai et al., 2003; Ji et al., 2014], ISBA [Gibelin et al., 2006], JULES [Clark et al.,
2011], LPJ-GUESS [Smith et al., 2001], MIROC-ESM [Sato et al., 2007; Watanabe et al., 2011], ORCHIDEE
[Krinner et al., 2005], TEM6 [Zhuang et al., 2003; Hayes et al., 2011], UVic [Cox, 2001; Matthews et al., 2004],
and UW-VIC [Knorr, 2000; Bohn et al., 2007]. A description of the 10 models can be found in Rawlins et al.
[2015] andMcGuire et al. [2016]. The calculations of growth and maintenance respiration as well as photosyn-
thetic capacity (Vcmax) for different models are shown in Table S1 in the supporting information. A detailed
description of the prescribed plant functional type (PFT) (Figure S1) and associated parameterizations of
specific leaf area (SLA) and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25) in
each model is provided in Table S2. Different approaches have been applied to model soil thermal
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dynamics [Peng et al., 2016], and the information on these approaches are provided by McGuire et al. [2016].
The models were run retrospectively from 1960 to 2009 at 0.5° × 0.5° spatial resolution over the northern
permafrost region (Figure 1). The spatial domain of permafrost region includes five subregions: boreal Asia
(BOAS), boreal Europe (BOEU), boreal North America (BONA), other permafrost areas (Other), and
glaciers/ice sheets. Each model was allowed to choose appropriate driving data sets for atmospheric CO2,
N deposition, climate, disturbance, and other forcings. The different forcing data sets for climate and other
model boundary conditions collectively represent both uncertainty from climate forcing (and other forcings)
and from model parameterization and structure in simulating C dynamics across the permafrost region. As
analyzed by McGuire et al. [2017], there were little differences in the atmospheric CO2 concentrations used
to drive the models, and the trend in annual air temperature across the permafrost regions from 1960 to

Figure 1. The spatial domain of permafrost region in the Northern Hemisphere defined in this study. The permafrost region
includesfive subregions, includingboreal Asia (BOAS), boreal Europe (BOEU), borealNorthAmerica (BONA), otherpermafrost
areas (Other), and Glaciers and Ice Sheets (Ice). The black stars represent the forest sites in the northern permafrost region
with both GPP and NPP data from a global database [Luyssaert et al., 2007].

Table 1. A Brief Comparison of Conceptual Representation of Processes Affecting NPP Among the 10 Models

Model Dynamic Vegetation Light Limitation N Limitation CO2 Effect Prognostic Raa Prognostic LAIa

CLM45 Yes Yes Yes No Yes Yes
CoLM Yes Yes No No Yes Yes
ISBA No Yes No Yes Yes Yes
JULES No Yes No Yes Yes Yes
LPJ-GUESS Yes Yes Yes Yes Yes Yes
MIROC-ESM Yes Yes No No Yes Yes
ORCHIDEE Yes Yes No No Yes Yes
TEM6 No Yes No No Yes Yes
UVic Yes Yes No No Yes Yes
UW-VIC No Yes Yes No Yes No

aRa, autotrophic respiraiton; LAI, leaf area index.
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2009 was the same for all models (0.03°C yr�1). Precipitation trends from 1960 to 2009 across the permafrost
regions varied substantially among the model (�2.1 to 0.8mmyr�1). Although long-wave radiation trend is
important for changes in soil temperature in the models [Peng et al., 2015], it is not related to change in
permafrost area.

To better understand the sensitivity of the models to historical changes in climate, including atmospheric
CO2, temperature, and precipitation, four simulation experiments were conducted to determine the relative
contributions of these drivers on C cycle changes during 1960–2009. These experiments were (1) all historical
forcing data (all input data kept changing through time; the baseline simulation R01), (2) constant tempera-
ture (detrended temperature from 1960 to 2009 with all other input data kept changing with time; the R02
simulation), (3) constant CO2 (the R03 simulation), and (4) constant temperature and precipitation (the R04
simulation). The effect of temperature, CO2, and precipitation on C processes was estimated via R02� R01,
R03� R01, and R04� R02, respectively.

2.2. Satellite-Derived NPP Data

Satellite-derived NPP data from the MODIS aboard the National Aeronautics and Space Administration Terra
satellite (MOD17A3 NPP) were used to evaluate the modeled NPP [Heinsch et al., 2003]. The data product
(available from the Land Processes Distributed Active Archive Center; https://lpdaac.usgs.gov/dataset_dis-
covery/modis/modis_products_table/mod17a3) was generated by Numerical Terradynamic Simulation
Group/University of Montana as Version-55 [Running and Zhao, 2015] and included global NPP estimates
since 2000 at 1 × 1 km resolution and on an annual basis. The accuracy of this data product, which corrects
for cloud contamination, has been assessed and widely used to evaluate biogeochemical processes in north-
ern permafrost regions [e.g., Tuanmu and Jetz, 2015; Mao et al., 2015]. Since the MODIS NPP is estimated
based on a light-use efficiency algorithm driven by fixed parameters within each biome type, it inevitably will
lead to uncertainty in temporal and spatial variations. The daily meteorological inputs to MOD17 algorithm is
derived from the global meteorological reanalysis data provided by Global Modeling and Assimilation
Office/NASA [Running and Zhao, 2015]. The mean ratio of root-mean-square error (RMSE) of MOD17 NPP
to mean measured NPP is 0.26, ranging from 0.13 to 0.53, across different vegetation types [Turner et al.,
2006]. In this study, the MOD17A3 NPP estimates were compared to the multiple-year average of NPP over
2000–2009 as simulated by the models. The data were mosaicked and reprojected by using the MODIS
Reprojection Tool and mosaicked images resampled into 0.5° × 0.5° (latitude × longitude) resolution by using
the nearest neighbor algorithm.

2.3. Data-Oriented GPP Estimates

To maintain independence between NPP and GPP data, a global monthly gridded GPP data product derived
from FLUXNET measurements with a machine learning technique termed model tree ensemble (MTE) [Jung
et al., 2011] was used to evaluated the modeled GPP over 1982–2009. The MTE approach statistically scales
up the FLUXNET GPP (about 20 sites are located in the permafrost region as shown by Figure 1) to a spatial
resolution of 0.5° × 0.5° by integrating satellite-derived indices, meteorological data, and land use information
[Jung et al., 2011] (hereafter JU11 GPP). The global grids of monthly precipitation in JU11 algorithmwere from
Global Precipitation Climatology Centre [Schneider et al., 2008] The JU11 GPP data product has a relatively
small uncertainty (about 119 ± 6 PgC yr�1globally) and has been widely used for benchmarking model
performance in recent years [Anav et al., 2013; Piao et al., 2013; Tjiputra et al., 2013; Peng et al., 2015].

2.4. Carbon Use Efficiency

The CUE was calculated as NPP divided by GPP at both regional and site scales. The regional distribution of
CUE was calculated from the MODIS NPP and JU11 GPP at the 0.5° × 0.5° resolution. Based on a global data-
base of forest GPP and NPP [Luyssaert et al., 2007], we selected eight sites which are located in the study
region and had measurements for both GPP and NPP (Figure 1). Annual mean GPP and NPP were used for
the calculation if there are multiple years of measurements. The database was established based on pub-
lished literatures, existing data sets [Olson et al., 2001; Papale et al., 2006], and measurements from
FLUXNET [Baldocchi et al., 2001]. In this study, NPP and GPP in the eight forest sites were measured in natural
conditions without any manipulative treatments [Tang et al., 2014]. NPP in the database include above-
ground and belowground NPP and was obtained directly from harvest or indirectly from biometric methods
at most sites. NPP was estimated with process-based models with calibration and/or validation against
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biomass observations at about 5% of the total sites. A more detailed description of the NPP methodologies
can be found in Campioli et al. [2015]. GPP was mostly estimated from eddy covariance (73% of the sites) or
process-based models with data calibration or validation (20% of the sites).

2.5. Analytical Methods

Due to the diverse resolution of original outputs from themodels, we aggregatedmonthly outputs of NPP and
GPP data from all models to 0.5° × 0.5° spatial resolution. We used a relative importance analysis approach to
quantify the relative contributions of temperature, CO2, and precipitation changes to dynamics of GPP and
CUE over 1960–2009. This analysis was conducted using the “relaimpo” package in R, which is based on
variance decomposition for multiple linear regression models [Gromping, 2006]. The relaimpo package pro-
vides six different methods for analyzing relative importance of each regressor in linear regression. We
chose one of the most computer-intensive and commonly used methods named “lmg,” which averages
the sequential sum of squares for all possible orders of terms to estimate the percentage of the variance
from each term [Linderman et al., 1980]. The relaimpo package has been widely used for separating the rela-
tive roles of various factors in ecological studies in recent years [Sonnentag et al., 2010; Wu et al., 2013;
Belmaker and Jetz, 2015; Fernandez-Martinez et al., 2015]. Since MODIS NPP and JU11 GPP were derived
from satellite- and flux-based data, respectively, each has uncertainties. Given that the percentage of true
observations within one or two standard deviation of JU11 estimates was 73% and 90%, respectively [Jung
et al., 2009], we assumed a 20% uncertainty for both data sets at 0.5° resolution and then applied a random
sampling (with sample size of 500) to estimate the CUE.

3. Results
3.1. Biases of NPP as Determined by GPP and CUE

The estimated mean annual NPP of the northern permafrost region during 1960–2009 by the 10 models was
285 ± 69 gCm�2 yr�1 (±SD of NPP among models), ranging from 198 ± 12 gCm�2 yr�1 (±SD of NPP over
years) in LPJ-GUESS to 434± 27 gCm�2 yr�1 in ORCHIDEE (Figure 2a). Most models produced higher values
than the MODIS NPP over 2000–2009, leading to an ensemble model average NPP that is about 20% higher
than the MODIS NPP over 2000–2009 (Figure 2b).

Thedifferences amongmodels andbiases fromobservedNPP canbedecomposed into biases of GPP andCUE.
As shown in Figure 2c, although there was also an approximately twofold difference (380 ± 24 g Cm�2 yr�1 in
LPJ-GUESS to 800 ± 49 gCm�2 yr�1 in ORCHIDEE) in averaged annual GPP among themodels, themultimodel
ensemblemean GPP was only 10% higher than the JU11 average GPP over 1982–2009 (Figure 2d). It suggests
that the high values of NPP from most models reflect large values of CUE. As shown in Figure 3a, with an
assumed uncertainty of 20% for both MODIS NPP and JU11 GPP, the estimated CUE ranged from 29% to
58% over 2000–2009. Twomodels, i.e., UW-VIC (68%) and ISBA (63%), had larger CUE than that estimated from
MODIS NPP and JU11 GPP. The estimated CUE had very small variation in all process-based models. As com-
pared to the observations (45 ± 4%; ±SE of CUE across sites) from eight forest sites in a global data set
[Luyssaert et al., 2007], most models overestimated CUE in the grid pixels including those sites (Figure 3b).

The CUE is determined by GPP and respiration, both of which are directly or indirectly affected by leaf area
and leaf level photosynthetic capacity (e.g., Vcmax) (Table S1). The key parameters, such as SLA and
Vcmax_25, are not the same among the models (Table S2), and they contribute to the NPP variation among
models in different ways. As shown in Figure 4, SLA was nonlinearly correlated with GPPmax (R2 = 0.90,
P= 0.01), while Vcmax_25 contributed to NPP variation among models by affecting CUE (R2 = 0.70, P= 0.09).

3.2. Temporal and Spatial Variability of GPP Model Performance

The low interannual variability of CUE derived from the simulations indicated that the temporal variation of
simulated NPP is mainly determined by variations of GPP in the models. As shown in Figure 5, the 10 models
agreedwell that GPPwas initiated inMarch and terminated inNovember. Although the ensemblemodelmean
monthly GPP was similar to the seasonal pattern of the JU11 data, there was an approximately twofold differ-
ence in the maximum monthly GPP among models, varying from 91± 5 gCm�2month�1 in LPJ-GUESS to
205± 12 gCm�2month�1 in ORCHIDEE (Figure 5a). Linear regression analysis showed that the model-to-
model difference in annual GPP was well explained by the seasonal maximum GPP (GPPmax; R

2 = 0.78,
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P< 0.001; Figure 5b). We further found that the variation in GPPmax was associated with variation in SLA rather
than Vcmax_25 among the models (Figure 4).

Spatially, the modeled annual GPP decreased along with increasing latitudes (Figure 6). Simulated GPP was
higher than 450 g Cm�2 yr�1 over about 90% of the BOEU subregion, whereas it was less than
450 g Cm�2 yr�1 over 55%, 51%, and 74% of the BONA, BOAS, and Other subregions, respectively
(Figure S2c). The model-to-model difference in annual GPP was especially greater in the lower latitude
regions (Figure 6). The spatial pattern of model ensemble mean GPP was similar to that of the JU11 data
(Figure S2a), except for the regions at latitudes lower than 35°N (Figure 6). These regions were mainly
located in the Tibet Plateau, where the coefficient of variance (CV; CV = 100%× SD/mean) of GPP among
models was high (21% of area-weighted CV among models over the permafrost region) (Figure S2d) but
the GPP value was low (7% of area-weighted GPP over the permafrost region) (Figure S3c). However, the
distributions of the ensemble model biases are similar across the study regions (Figure S3d).

3.3. Relative Contributions of Temperature, CO2 and Precipitation to NPP Changes

All the 10models show an increasing trend of annual NPP from 1960 to 2009 (Figure 2). Based on the six mod-
els that provided outputs for simulation experiments R02–04, we found that the increase in ensemble mean
NPP over 1960–2009 predominantly resulted from increasing air temperature and atmospheric CO2 concen-
tration, while precipitation change showed nearly neutral contribution (Figures 7a–7c). Note that radiation
trend may also have significant contribution to NPP changes [Peng et al., 2015], but this study only focuses

Figure 2. Yearly averaged (a) NPP and (c) GPP over permafrost region in the Northern Hemisphere since 1960 frommodels
and data sets. Note that the MODIS NPP data are plotted since 2000 and the JU11 GPP data are plotted since 1982. The
model biases of (b) NPP (over 2000–2009) and (d) GPP (over 1982–2009) are represented by the relative differences
between model results and MODIS NPP and JU11 GPP estimates, respectively.
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on the contributions of temperature, CO2, and precipitation changes [McGuire et al., 2016]. Although all the
six models showed negative effects of temperature on CUE (Figure 7g), its changing magnitudes were not
large enough to negate the positive effects of temperature change on GPP (Figure 7d). The positive
impact of temperature change on GPP is produced by almost all the models except for the UVic model
(Figure 7d). Increasing CO2 enhanced both GPP (Figure 7e) and CUE (Figure 7h), leading to a positive effect
on NPP over 1960–2009 (Figure 7b). For precipitation change, there was no clear trend for either GPP
(Figure 7f) or CUE (Figure 7i).

We applied the relative importance analysis to separate the effects of temperature, CO2, and precipitation
changes on GPP and CUE over 1960–2009 (Figure 8). The results show that four (LPJ-GUESS, ORCHIDEE,
TEM6, and UW-VIC) out of the six models produced very similar contributions of temperature, CO2, and

Figure 4. Dependences of (a) GPPmax on SLA and (b) CUE on Vcmax_25 among models. Note that the medians of
SLA and Vcmax_25 across the permafrost region in each model were used in the regression analyses
(GPPmax =�568678SLA2 + 25760SLA� 92; CUE =�0.04Vcmax_25

2 + 3.39Vcmax_25� 15.80).

Figure 3. Carbon use efficiency (CUE), as calculated by dividing NPP by GPP. (a) Each data point represents one year since
1960. The shaded gray area is the calculated standard deviation (SD) of CUE based on MODIS NPP and JU11 GPP. In the
insert panel, each symbol represents the temporal average of CUE for one model, and the dashed line is the calculated
mean CUE based on MODIS NPP and JU11 GPP for 2000–2009. Note that the model symbols are shared by the main and
insert panels. (b) Comparison of model-derived CUE (mean ± SE) with observation-derived CUE from the eight forest sites in
the northern permafrost region from the database of Luyssaert et al. [2007]. The dashed line represents the mean CUE
derived from the observations.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003384

XIA ET AL. MODELED PRODUCTIVITY IN PERMAFROST REGIONS 436



precipitation changes on GPP. The
increasing GPP in the JULES model
mainly resulted from CO2 effect
(~81%), whereas only the UVic model
estimated a greater contribution from
precipitation (~39%) to its GPP
increase over 1960–2009 (Figure 8a).
For the CUE changes, therewere large
model-to-model differences in the
relative contributions of CO2 (from
8% inUVic to 53% in LPJ-GUESS), tem-
perature (from 21% in LPJ-GUESS to
46% in UVic), and precipitation (from
25% in JULES to 46% inUVic) changes.
There were large spikes in CO2 effects
in 2000 (Figures 7b, 7e, and 7h), which
were caused by the extremely low
GPP in the R01 simulation from the
ORCHIDEE model.

4. Discussion
4.1. Disagreement on Carbon Use
Efficiency Among Models

Although many previous model
intercomparison projects and bench-
marking studies have attempted to
quantify the importance of model
uncertainty for GPP in estimating glo-
bal carbon budget [Anav et al., 2013;
Piao et al., 2013; Peng et al., 2015;
Rawlins et al., 2015], our analyses indi-
cate that CUE varied among models
in permafrost regions. The higher
CUE in the models (54 ± 9%; ±SD

among models) than calculated from the gridded database (Figure 3a) and forest sites (Figure 3b) suggest
an overestimation of CUE by the models in permafrost regions. More information on CUE of different vegeta-
tion or biome types is needed, and the development of a global database of CUE would be helpful for more
completely evaluating the accuracy of CUE simulated by models. It should be noted that the regional CUE is
calculated from two independent data products, which may generate uncertainty for estimating the CUE.
However, a recent global analysis [Campioli et al., 2015] showed that CUE in natural ecosystems globally
converges on 46 ± 1%, which is close to the estimates fromMODIS/JU11 (47 ± 0%) and site level observations
(45 ± 4%) reported in this study.

This study found a very low interannual variability of CUE in most models (Figure 3), but some observational
studies have reported substantial interannual variability in CUE [Campioli et al., 2011; Zhang et al., 2014]. In fact,
there is evidence showing that the temporal decreasing trend in global CUE is associatedwith increasing tem-
perature [Zhang et al., 2014] and that CUE increases with higher nitrogen availability [Chen et al., 2013; Vicca
et al., 2012] and human management [Campioli et al., 2015]. None of the models in this study use fixed CUE,
and the CUE from each model is collectively determined by GPP and autotrophic respiration, including main-
tenance and growth respiration (Table S1). As shown by Table S1, the simulations of maintenance and growth
respiration vary greatly amongmodels. In general, because simulatedmaintenance andgrowth respiration are
strongly determined by plant biomass, they could be affected by the parameterization of the Vcmax indirectly.
This study found a positive correlation between CUE and Vcmax_25 among most models (Figure 4). This could

Figure 5. (a) Monthly dynamics of GPP for the northern permafrost region
from model and JU11 estimates. (b) The relationship between annual total
GPP and GPP in July among the models.
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due to an increasing Vcmax_25 directly
enhancing leaf level photosynthesis
but only indirectly affecting respira-
tion via vegetation growth in most
models (Table S1). Although our
understanding of the intermodel dif-
ferences in CUE is limited by the lack
of detailed outputs for all elements
in the equations in Table S1, those
equations provide useful information
for the potential causes. For example,
although models (i.e., JULES, CoLM,
TEM6, andUVic) simulated thegrowth
respiration based on the scheme of
“TRIFFID” global dynamic vegetation
model [Cox, 2001], they still use differ-
ent coefficients (e.g., 25% for JULES,
CoLM, and UVic but 20% for TEM6).
The ORCHIDEE model calculates
growth respiration as a fraction
(28%) of the remaining allocatable
biomass, whereas CLM4.5 calculates
growth respiration as 30% of the total
carbon in new growth (Table S1). The
lowest CUE in TEM6 could result from

Figure 7. The impacts of air temperature, atmospheric CO2, and precipitation on (a–c) NPP, (d–f) GPP, and (g–i) CUE over 1960–2009. The gray lines are individual
model results (note that only 6 out of the 10 models have done the R02–R04 simulations; Table 1) and the bold black line is the ensemble model mean.

Figure 6. Latitudinal gradients of GPP estimates from the models in this
study and the JU11 data product. The bold line shows the multimodel
mean, while the grey lines show results from individual models. The shaded
gray area is the calculated standard deviation of GPP from JU11 data.
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the large impact of temperature on
maintenance respiration (Figure S4),
and the relatively low CUE in CLM4.5
could be partially caused by the large
fraction of assimilated carbon allo-
cated to growth respiration (Table S1).

The coefficients in the equations for
maintenance and growth respiration
as well as Vcmax (Table S1) have been
elucidated in a number of previous
ecological studies, but they still act
as a large source of uncertainty in
most model intercomparison ana-
lyses, including the current study. As
summarized by Atkin et al. [2014],
several causes are responsible for
the simplistic representation of plant
respiration in terrestrial ecosystem
models, including the limited data
availability describing the regulating
mechanisms of plant respiration
[Wright et al., 2006] and the unclear
responses of plant respiration to cli-
mate changes [Huntingford et al.,
2013; Kornfeld et al., 2013; Liang
et al., 2013]. Thus, more research is
still needed on how to incorporate
into models the underlying mechan-
isms regulating variability of plant
respiration and therefore CUE. For
example, the temperature impact on
the sink-limited plant growth
[Korner, 2003; Wan et al., 2009;
Fatichi et al., 2014] is probably an
important process missing in models,
and it should lower CUE compared to

source-based allocation of GPP to growth. Another example is the exploration of the variable relationships
among plant traits, e.g., leaf nitrogen concentration, Vcmax, and plant respiration [Kattge et al., 2009; Reich
et al., 2009; Atkin et al., 2015], which could be helpful to constrain the key parameters of canopy carbon
dynamics in the models [Wang et al., 2011].

4.2. High Uncertainty in Simulated GPP During Summer and at Lower Latitudes

Thehighly variable summerGPPmax amongmodels could be collectively determinedby theuncertain parame-
terizations of leaf area dynamics and themaximumrate of carboxylation (i.e., Vcmax) (Table S1). In this study, the
large variation in GPPmax amongmodels mainly results from that in SLA but not Vcmax_25 (Figure 4), but it does
notmean that GPP simply varieswith SLA. For example, the CoLMhas large SLAbut relatively lowGPP because
of its strong temperature limitation (Figure S5) and the additional water constraint in the estimate of Vcmax

(Table S1). The CLM4.5 model has high Vcmax_25 but low SLA, leading to its intermediate GPPmax among the
models. The high GPPmax with intermediate Vcmax_25 in the ORCHIDEE model could result from the limitation
of Vcmax by age but not by other environmental factors (Table S1) [Krinner et al., 2005].

The models have a comparable ensemble mean GPP to the flux tower-based data across the permafrost
region (Figure S6), but there is a fourfold difference among models at lower latitude areas, and in particular
for the Tibetan Plateau (ranges from about 29°N to 40°N; Figure 6). Although the “Other” permafrost region,

Figure 8. The relative contributions of air temperature, atmospheric CO2, and
precipitation change to dynamics of (a) GPP and (b) CUE from 1960 to 2009.
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mostly the Tibetan Plateau, only contributes to about 7% of the area-weighted GPP over permafrost region in
theNorthernHemisphere, its contributions toGPPvariation (about 21%; Figure S2d) andensemblemodel bias
(Figure S3d) are both high. It is important to note that no flux site from the Tibetan Plateau was used with the
MTE approach in the JU11 GPP database [Jung et al., 2009; Beer et al., 2010]. Given that the environmental
dependence of plant photosynthesis is strongly regulated by vegetation type and local climate [Piao et al.,
2013; Liang et al., 2013], the JU11 data itself may have large uncertainty in the Tibetan Plateau. Thus, our
confidence in the global GPP data products will be enhanced if they can incorporate more flux sites from
areas that represent data gaps, e.g., the Tibetan Plateau [Yu et al., 2006; Zhu et al., 2014]. The higher GPP in
models than JU11 data at areas around 35°N has also been revealed in the CMIP5 models [Shao et al., 2013],
suggesting that more research efforts are still needed in this region. A higher modeled GPP than the JU11
data has been widely reported by various model intercomparison projects in the tropics [Anav et al., 2013]
and at the global scale [Anav et al., 2013; Piao et al., 2013; Shao et al., 2013], but this pattern was not found in
the northern permafrost regions by this study nor for the CMIP5 models [Shao et al., 2013]. However, we
recommend more observations at high latitudes since flux sites are unevenly distributed over the globe and
very few sites are located within the northern permafrost domain [Schimel et al., 2015].

Since the climate forcings between models (Table 2) and JU11 data product [Jung et al., 2009, 2011] are simi-
lar, the spatial difference in GPP amongmodels and JU11 data could not result from differences in the climate
forcings. However, the variation in productivity among models could be largely attributed to their different
representations of plant functional types (PFT) across the permafrost region (Figure S1). Since key parameters
in photosynthesis algorithms used by most models in this study, e.g., SLA and Vcmax_25, are usually fixed
based on PFT (Table S1), the different distributions of PFTs generate diverse spatial patterns of SLA and
Vcmax_25 (Figure S7). For example, the greatest GPP from ORCHIDEE among the 10 models largely results from
its high SLA (0.026; Table S2 and Figure S7d) and large distribution of boreal deciduous broadleaf forest at
high latitudes (Figure S1). In contrast, the low GPP in LPJ-GUESS is strongly determined by its small SLA
(0.0093; Table S1 and Figure S7c) and the large area of needleleaf evergreen forest. Thus, a standard vegeta-
tion or land cover map with accurate photosynthetic parameters would be valuable for reducing uncertainty
in modeled productivity in the permafrost region.

4.3. Vulnerability of NPP to Temperature, CO2, and Precipitation Changes

There are large differences in the sensitivities of GPP and CUE to changes in air temperature, atmospheric
CO2, and precipitation among models (Figures 7 and 8). The trends in GPP of LPJ-GUESS, ORCHIDEE, TEM6,
and UW-Vic are collectively driven by changes in atmospheric CO2 and air temperature, while the increase
in GPP by JULES is mainly driven by the enrichment of atmospheric CO2. The sensitivity of GPP to precipita-
tion change is more sensitive in UVic than in other models (Figure 8). The high GPP sensitivities to the CO2

Table 2. A Brief Description of Driving Variables for the 10 Models

Model Name Climate Data Disturbance Land Use Time Step

CLM45 CRUNCEP4a Fire Yes 30min
CoLM Princetonb Fire No 30min
ISBA WATCH (1901–1978)c and WFDEI (1978–2009)d No No 1 h
JULES WATCH (1901–2001)c No No 30min
LPJ-GUESS CRU TS3.1e Fire No 1 day
MIROC-ESM CMIP5 Driversf No No 30min
ORCHIDEE WATCH (1901–1978)c and WFDEI (1978–2009)d No Yes 30min
TEM6 CRUNCEP4a Fire No 1month
UVic CRUNCEP4a No Yes 1 h
UW-VIC CRUg and UDelh No No 3 h

aViovy and Ciais (http://dods.extra.cea.fr/).
bSheffield et al. [2006] (http://hydrology.princeton.edu/data.pgf.php).
cWeedon et al. [2011] (http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century).
dhttp://www.eu-watch.org/gfx_content/documents/README-WFDEI.pdf.
eHarris et al. [2014], University of East Anglia Climate Research Unit (2013).
fWatanabe et al. [2011].
gTemperature from Mitchell and Jones [2005].
hWillmott and Matsuura [2001] for wind speed and precipitation with corrections [see Bohn et al., 2013a, 2013b].
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change by LPJ-GUESS, ORCHIDEE, and JULES have been reported in other model intercomparison projects
[Piao et al., 2013;Mystakidis et al., 2017]. Although the results of sensitivity analyses are not available for some
models (CLM4.5, CoLM, ISBA, and MIROESM) in this study, their sensitivities have been evaluated by previous
studies. For example, MIROESM has similar strength of climate-carbon feedback as ORCHIDEE and JULES, but
its sensitivity of land C storage to atmospheric CO2 change is much smaller [Mystakidis et al., 2017]. The sen-
sitivity of land C storage to changes in climate and atmospheric CO2 changes by CLM4.5 is relatively weak
among the CMIP5 models [Arora et al., 2013; Mystakidis et al., 2017]. For the four models (LPJ-GUESS,
ORCHIDEE, TEM6, and UW-Vic) with similar sensitivity to climate and CO2 changes, they simulate different
CUE sensitivities (Figure 8b). This implies that their different sensitivities of NPP trend to climate and CO2

changes could be largely determined by the differences in their representation of plant respiration.

Evidence for the positive impact of climate warming on vegetation growth and NPP have been widely
reported in permafrost regions [Chapin et al., 1995; Hobbie and Chapin, 1998; Arft et al., 1999; Lin et al., 2010;
Natali et al., 2012; Xia et al., 2014]. However, the impact of elevated CO2 on NPP is found to be positive
[Grulke et al., 1990] or neutral [Oberbauer et al., 1986; Schappi and Korner, 1996; Korner et al., 1997; Inauen
et al., 2012] in northern permafrost regions. This neutral response could largely be due to nitrogen limitation
on the CO2 effect on NPP, which was widely reported in many temperate ecosystems [Luo et al., 2004; Finzi
et al., 2006; Reich et al., 2006; Norby et al., 2010] and is more generally observed across a broad array of ecosys-
tems [McGuire et al., 1995]. Globally, it is clear that plant production is more limited by nitrogen availability in
tundra and boreal ecosystems than in temperate and tropical ecosystems [Chapin et al., 1986; Vitousek and
Howarth, 1991], and it has been inferred that the response of NPP to elevated CO2 should bemore constrained
in boreal and tundra ecosystems than in temperate and tropical ecosystems [McGuire et al., 1997].

Indeed, modeling studies that have analyzed local and regional responses of models in which GPP is con-
strained by nitrogen availability indicate that the CO2 response of GPP in tundra and boreal ecosystems is
substantially constrained by nitrogen availability [McGuire et al., 1997; Clein et al., 2000; Koven et al., 2015].
In this study, only two models (CLM4.5 and TEM6) incorporated coupled carbon-nitrogen cycles and another
two models (LPJ-GUESS and UW-VIC) have nitrogen limitation on photosynthesis (Table 1). However, among
the models that represent nitrogen limitation of productivity, the productivity response to elevated CO2 for
1960–2009 is not significantly different from that of the models that do not represent nitrogen limitation.
Clearly, the influence of nitrogen availability on production in general and on the response of production
to changes in atmospheric CO2 concentration in particular is not adequately constrained by observations.
Part of the reason for this is that the role of nitrogen availability on the response of high-latitude plant growth
and NPP to increases in atmospheric CO2 has received very little experimental attention in tundra and boreal
forest compared to temperate ecosystems [Norby et al., 2015]. Because model responses of biogeochemistry
in the northern permafrost region depend substantially on the response of NPP to increases in CO2, more
experimental data are needed to adequately constrain model responses.

Experimental studies or data-based analyses about CO2 impacts on CUE do not exist for ecosystems in the
northern permafrost region. However, a recent modeling study has shown that elevated CO2 increases C allo-
cation to woody biomass, which has lower respiratory demand than leaves and roots [De Kauwe et al., 2014].
The CO2-induced change in C allocation could increase CUE in themodel, though experimental evidence from
a desert ecosystem [Cheng et al., 2000] showed that CUE might be invariant under elevated CO2. The unclear
trend of either GPP or CUE in response to regional change in annual precipitation (Figures 7f and 7i) contrasts
with some recent findings of increasing drought stress and associated vegetation browning or productivity
declines with climate warming at high latitudes [Zhang et al., 2008; Beck and Goetz, 2011; Bhatt et al., 2013;
Jeong et al., 2013]. One potential reason could be the poor representation of vegetation phenology in the
models. It has been reported that spring phenology is critical in controlling the annual productivity at tempe-
rate and high latitudes [Richardson et al., 2010; Piao et al., 2011; Xia et al., 2014, 2015], and increasing drought
stress in spring could negatively affect annual GPP via affecting spring phenology [Yi et al., 2014; Xia et al.,
2014]. However, most models in this study simulate vegetation phenology with thermal conditions
[Richardson et al., 2012] but neglect the role of water availability. Also, either increasing [e.g., Niu et al.,
2012] or declining [e.g., Ciais et al., 2005] GPPmax with rising temperature has been reported by analyses with
eddy flux data, suggesting thatmore knowledge about the PFT-specific optimal temperatures for plant photo-
synthesis and their covariations with temperature change is needed in the permafrost region.
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4.4. Limitations of Current Model Intercomparison Analyses

Although multiple processes that determine NPP uncertainty have been discussed in this study, the experi-
mental design of this model intercomparison project did not allow us to do comprehensive evaluations. Thus,
this study has some limitations that should be addressed by future observational and modeling efforts.

First, CUE is highly variable among models but nearly invariant within models, suggesting that more mea-
surements and analyses are needed to quantify the ranges of CUE and its dynamics in the permafrost region.
It should be noted that CUE is not only directly affected by GPP and respiration but also directly influenced by
the allocation of NPP (e.g., more NPP allocation to leaf tends to increase CUE via more photosynthetic than
respiratory tissues). Given the poor representation of allocation in current models [De Kauwe et al., 2014], var-
iation in allocation could be an important contribution to the variation in CUE among models.

Second, large differences in the distributions of PFTs and their associated photosynthetic parameters exist
among the models. The contribution of the different PFT maps to the uncertainty of modeled C cycle needs
to be better quantified.

Third, themodels in this study simulate very high production in permafrost regions, which could partly be the
result of the lack of nutrient limitation on productivity in most models.

Fourth, the global data sets used in this study have large uncertainty. For example, both data products of
MODIS and JU11 rely heavily on the fractional photosynthetically active radiation (FPAR) absorbed by the
canopy, while environmental changes such as the CO2 elevation affect NPP via increasing light-use efficiency
[De Kauwe et al., 2016]. How the impact of FPAR on NPP differs between data products andmodel outputs has
not been comprehensively evaluated in this study.

Lastly, long-term CO2 flux measurements by eddy flux towers have been widely used for benchmarking
models. Interannual variability [Keenan et al., 2012] and seasonality [Peng et al., 2015] of measured GPP by flux
towers are useful ecosystem properties for diagnosing simulated environmental impacts on GPP by models.
For example, the ORCHIDEEmodel has larger interannual variability of NPP (Figure 2) and a larger response to
climate change than other models in this study, which could be further evaluated at the site level if there are
more long-term observations. However, as shown by the recent release of FLUXNET2015 data set (http://flux-
net.fluxdata.org/data/fluxnet2015-dataset/), there are only a few eddy flux towers providing >10 years mea-
surements in the permafrost region. Thus, when the flux measurements become richer in the permafrost
region, a comparison of model performance against flux data between extremely warm and cool years would
be insightful for improving the simulation of NPP in the permafrost region.

5. Conclusion

It is critical to reduce the uncertainty of NPP estimates in the northern permafrost region formaking better pro-
jections of the permafrost carbon feedback to climate change. This study found that the large NPP uncertainty
in current models stems from not only GPP but also CUE. The ensemble mean GPP among models is slightly
higher than the flux-based estimate, which is largely associated with the higher simulated GPP that was simu-
lated by ORCHIDEE in comparison to other models. The large intermodel variation in CUE has not been suffi-
ciently studied in previous model evaluations. Reducing such uncertainty is challenging because the models
have different structures (Table S1), parameters (Table S2), and representations of PFTs (Figure S1) for simulat-
ing key processes of NPP in the permafrost regions. Models also disagreewith each other on the contributions
of environmental factors toward increasing NPP during between 1960 and 2009. Thus, systematic approaches
that link C processes and environmental factors should be used for diagnosing terrestrial C cycle issues in
models. Overall, the modeling of the global C cycle will be greatly improved with databases of estimated
productivity and better understanding of the environmental regulation of both GPP and CUE dynamics in
the northern permafrost region.
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