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6.1 � Introduction

Observational studies, ecological experiments, and modeling are the three 
foundational approaches in ecological research. With increasing data 
availability from ecological observations and experiments, data–model 
integration becomes a critical tool to reduce model uncertainty and gain 
more reliable predictions of future ecosystem dynamics. In this chapter, 
we review the need, history, and current status of data–model integration 
to improve model simulations. Data from long-term manipulative experi-
ments (e.g., free-air CO2 enrichment experiments), observation networks of 
eddy covariance measurements (e.g., FLUXNET), and global databases (e.g., 
IGBP-DIS soil C database) have been successfully incorporated into ecosys-
tem or global biogeochemical models to improve model projections. We also 
take two ongoing projects, Spruce and Peatland Responses Under Climatic 
and Environmental Change Experiment (SPRUCE) and Extreme Drought in 
Grasslands Experiment (EDGE), as examples to illustrate how experiment–
model integration approaches are designed to achieve different research 
goals. In SPRUCE, the operational forecasting system is developed to assimi-
late data streams in real time to predict ecosystem responses to two global 
change factors, warming and elevated CO2, whereas in EDGE, the applica-
tion of data assimilation is designed to disentangle the role of environmental 
context versus ecosystem attributes in response to drought and eventually 
to scale findings obtained at distributed sites to regional scales. Finally, we 
review the challenges in data–model integration and propose a few strate-
gies to move forward.

6.2 � Experiment–Model Integration: Needs, 
History, and Current Status

In recent decades, tremendous efforts have been made to improve the pre-
dictability of ecosystem states and processes using three independent 
approaches: carefully designed long-term observational studies, ecologi-
cal experimentation, and process-based modeling. The state of this knowl-
edge is becoming increasingly important in light of global climate change. 
Ecological experiments, including in situ observations, have been conducted 
at many individual sites globally, and through these, we have obtained large 
amounts of observational and experimental data. Manipulative experiments, 
by creating novel conditions of projected climate, have improved our under-
standing of how ecosystems respond to climate change. While site-based 
experiments are still an important way to explore ecological patterns and 
underlying mechanisms, coordinated distributed experiments have become 
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an emerging tool to test hypotheses at the global scale (Fraser et al. 2012). 
More and more networks and cross-site studies at regional and global scales 
are generating huge amounts of data on daily or annual time scales such 
as FLUXNET, LTER Network, Nutrient Network, Drought-Net, NGEE-Aritic, 
NGEE-Tropics, and the National Ecological Observatory Network (NEON). 
Ecological research is now in a data-rich era (Luo et al. 2011b), and a major 
challenge is to know how to use those data in an efficient and appropriate 
manner to understand the ecological pattern and process and, based on that 
understanding, to forecast how ecosystems will change under global envi-
ronmental change.

Empirical data from observational and experimental studies are use-
ful in exploring general patterns of ecosystem phenomena and studying 
underlying mechanisms. However, ecological observations and experi-
ments have inherent limitations to predict future changes, such as (1) dif-
ficulties in observing or measuring certain critical variables (e.g., turnover 
of different nutrient or carbon pools in soils), (2) large costs of conducting 
observations and manipulations at high temporal and spatial resolutions, 
(3) expense associated with conducting experiments over a time period 
long enough to detect changes in slow processes (Luo et al. 2011a), and 
(4) logistical constraints when conducting experiments across broad spa-
tial scales; many difficulties remain for using empirical data to assess the 
impacts caused by changes in environmental conditions at multiple spa-
tial and temporal scales. In addition, observational data and manipulative 
experiments with certain treatments alone lack power to forecast future 
dynamics of ecosystems in response to global change, which is challeng-
ing because we now live in a world that is undergoing rapid environmental 
change and highly altered disturbance regimes (Clark et al. 2001, Luo et al. 
2011a,b, Niu et al. 2014).

Ecological models, particularly process-based models, can supplement lim-
itations inherent in observations and experiments (Luo et al. 2011b). Process-
based models have advanced quickly in recent years, which can partly be 
attributed to the dramatic increase of computational capability. Global mod-
els of the terrestrial carbon (C) cycle, developed about two decades ago, have 
been widely used to predict changes in terrestrial C storage under increasing 
atmospheric CO2 concentration and climate change (IPCC 2013). Models have 
become increasingly complex due to the need for incorporating additional 
ecosystem processes, such as multiple vertical soil layers in the Community 
Land Model, CLM4.5 (Koven et al. 2013) and dynamic vegetation model (e.g., 
Sitch et al. 2003). However, with more processes added to models, models 
are more complex and generate larger uncertainties in their projections of 
terrestrial carbon storage and uptake, thus poorly fitting observations as 
shown in a number of Model Intercomparison Projects (MIP, Friedlingstein 
et al. 2006, Jones et al. 2013, Todd-Brown et al. 2013, 2014, Carvalhais et al. 
2014, Jiang et al. 2015, Tian et al. 2015). On one hand, models need to include 
critical processes that predict future dynamics correctly; on the other hand, 
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models should lower their uncertainty in predictions. The large uncertain-
ties associated with projections among different models as well as between 
models and observations strongly limit their usefulness for informing policy 
makers. This makes experiment–model integration improve model behav-
iors and forecasting an urgent task (Clark et al. 2001, Luo et al. 2011a,b). The 
research community is still struggling to improve predictability of models 
(Luo et al. 2016). Informed by empirical data, models can obtain more reliable 
projections (Niu et al. 2014).

Empirical data can help model development and improvement through a 
few pathways: providing mechanistic understanding behind ecosystem pro-
cesses (e.g., photosynthesis and litter decomposition), generalizing patterns 
(e.g., vegetation distributions along temperature and precipitation gradients), 
identifying ranges and patterns of key model parameters, and constraining 
models. In practice, experiment–model integration can improve model per-
formance by evaluating the goodness-of-fit of models using data (i.e., bench-
marking, Luo et al. 2012, Walker et al. 2014), model parameterization with 
data, assimilating multiple streams of data to constrain models (Figure 6.1, 
Luo et al. 2011b, Niu et al. 2014), and representing unresolved processes with 
new algorithms supported by data (Williams et al. 2009).

Scientific questions
 

Observations and
experiments

 
Ecological models

Improved observations
and experimentsImproved models

Better understanding of ecosystem processes and more 
reliable predictions of future dynamics

To improve models
•  Benchmarking
•  Parameterization
•  Data assimilation
   (model structure, parameter
   optimization, initial
   conditions, state variables, and
   uncertainty quantification)  

To enhance observatory
systems

•  Uncertain processes
•  Ecosystems
•  Treatments
•  Key variables
•  Duration
•  Sampling strategies

Data-model
integration

FIGURE 6.1 
Conceptual flow of ecological research via experiment–model integration.
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Modeling studies, on the other hand, can guide observations and experi-
ments (e.g., Wang et al. 2009, Keenan et al. 2012). Modeling results may inform 
observational and experimental studies about the most uncertain processes 
that experiments should be conducted to explore, where or what ecosystems 
need more research, what treatments need to be considered, what measure-
ments should be added (i.e., key variables needed to improve modeling), 
how long a manipulative experiment should last, and appropriate sampling 
strategies such as sampling frequency and spatial resolution for sampling 
(Figure 6.1).

Observational and experimental data have often been used for evaluat-
ing process-based models since the early stages of their development (e.g., 
Parton et al. 1987, 1993, Pacala et al. 1993, Luo et al. 2012). It is still common 
practice for modelers to tune their models to match specific data or reflect 
general patterns. However, multiple factors could result in bias between 
model simulations and data, and it becomes frustrating to tune models if 
a model has lots of interacting parameters. Experiment–model integration 
via rigorous statistical methods such as the Bayesian approaches provides a 
new way to enable simultaneous analysis of diverse sources of data to train a 
process-based model (Ogle 2009). Data assimilation is such a cyber-enabled 
process, which incorporates data into models to determine initial values 
and state variables, estimate model parameters (Richardson et al. 2010), and 
evaluate alternative model structures (Figure 6.1; Keenan et al. 2012, Liang 
et al. 2015b). As a result, data assimilation can substantially improve model 
simulations and gain more reliable predictions for future ecosystem dynam-
ics (Raupach et al. 2005, Williams et al. 2005, 2009, Luo et al. 2011b, Peng et al. 
2011, Niu et al. 2014). Indeed, data assimilation is recognized as a top priority 
for near-term modeling research to reduce systematic biases in modeling 
soil carbon dynamics by Earth system models, making data assimilation 
an essential tool in ecological research in a data-rich era (Luo et al. 2016). 
Also, data assimilation allows quantification of uncertainties stemming 
from data, model structures, parameters, boundary conditions, and statisti-
cal method selection (Luo et al. 2003, 2011b, Weng and Luo 2011, Dietze et al. 
2013, LeBauer et al. 2013).

While data assimilation has been applied in biogeochemical cycles for a 
relatively short period, it has long been used in weather forecasts since the 
1950s when the advances in computational power allowed data assimila-
tion to be done within a reasonable time frame (LeBauer et al. 2013, Niu 
et  al. 2014). The application of data assimilation in process-based models 
has been largely motivated by the need for ecological forecasting to inform 
decision-making processes toward better management of natural resources 
in a world undergoing rapid global change (Clark et al. 2001, 2003, Luo et al. 
2011a,b). Since 2000, the application of data assimilation in process-based 
models has incorporated a variety of sources of data. For example, data from 
manipulative experiments (Luo et al. 2011a, Shi et al. 2015b,c), particularly 
those Free-Air CO2 Enrichment Experiments (FACE, Luo and Reynolds 1999, 
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Parton et al. 2007, Weng and Luo 2011, Walker et al. 2014, Medlyn et al. 2015, 
Norby et al. 2016, Xu et al. 2016), have been frequently assimilated to constrain 
model parameters and state variables to improve predictions; data contrib-
uted by the observational networks such as FLUXNET and AmeriFlux have 
been used to train ecosystem or land surface models (e.g., White et al. 2006, 
Williams et al. 2009, Wu et al. 2009, Zhang et al. 2010, Kuppel et al. 2012); 
compiled continental and global data sets of biomass and soil C content 
were found to be useful in improving models (Zhou and Luo 2008, Zhou 
et al. 2009, 2013, 2015, Hararuk and Luo 2014, Hararuk et al. 2014, 2015); soil 
incubation data were collected and used to evaluate model structures and 
responses of soil C decomposition to warming and the factors regulating 
soil C decomposition (Li et al. 2013, Schädel et al. 2013, Liang et al. 2015a, Xu 
et al. 2016).

Many data assimilation techniques have been employed to constrain mod-
els. Usually, model parameters are specified and set a priori according to 
knowledge of processes. Optimal solutions and uncertainty analyses are 
determined by searching and selecting within realistic ranges of the chosen 
parameter values. The applied optimization techniques include the adjoint 
method (White and Luo 2002), the Levenberg–Marquardt method in com-
bination with quasi-Monte Carlo algorithm (Luo et al. 2003), genetic algo-
rithms (Zhou and Luo 2008), Markov chain Monte Carlo (MCMC) with the 
Metropolis–Hastings algorithm (Xu et al. 2006, Zhou et al. 2010, Hararuk 
et al. 2015, Shi et al. 2016), conditional inversion (Wu et al. 2009), and the 
ensemble Kalman filter (Gao et al. 2011). These optimization techniques iden-
tify sets of parameters, which result in model output that best fits the data. 
One of the most important applications of data assimilation is addressing the 
initial condition problems. Traditionally, Earth system models usually use 
spin-up cycles with preindustrial forcing to determine the initial condition 
(i.e., steady state), which may overestimate terrestrial C pools (Wutzler and 
Reichstein 2007). By relaxing the steady-state assumption, data assimilation 
can significantly increase model efficiency and reduce normalized average 
error (Carvalhais et al. 2008, Williams et al. 2009).

However, applications of data assimilation, even at a regional or global 
scale, have mostly been conducted with simplified models that had a limited 
number of parameters to be constrained by data, typically from several to 
less than 20 parameters (e.g., Braswell et al. 2005, Williams et al. 2009, Zhou 
et al. 2009, 2012). Data assimilation with complex models containing thou-
sands of parameters are not feasible until a breakthrough in semi-analytic 
spin-up of global land model (Xia et al. 2012) and traceability analysis of 
model structures (Xia et al. 2013). High-fidelity emulators that reproduce 
original complex models are often used to make data assimilation computa-
tionally feasible. By assimilating a global soil carbon data set into an emula-
tor of the Community Land Model coupled with Carnegie-Ames-Stanford 
Approach biogeochemistry submodel (CLM-CASA) to optimize the param-
eters, Hararuk et al. (2014) were able to substantially improve soil carbon 
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simulations, increasing the correlation between model simulations and the 
observations from an R2 of 0.27 before calibration of parameters to an R2 of 
0.41. Using the emulator of CLM-CASA and a combination of global soil car-
bon and soil microbial biomass data sets, model simulations after parameter 
optimization via data assimilation detected stronger soil carbon responses 
to climate change (Hararuk et al. 2015).

6.2.1 � Experiment–Model Integration with Data from Global 
Change Experiments and Observational Networks

As mentioned earlier, traditionally, process-based models are usually vali-
dated by comparing model simulations with data from ecological observa-
tions or experiments. This validation, however, can be biased by limited 
availability of observations or experiments. Recently, large-scale bench-
marking, which includes as many available observations and experiments 
as possible, has been proposed and developed to evaluate the performance 
of models by scoring models based on how well the models reproduce data 
(Luo et al. 2012). While this approach provides comprehensive evaluations 
of model performance, benchmarking itself rarely leads to model improve-
ment because reasons for model performance are not typically identified 
(Medlyn et al. 2015).

Over the past decades, an increasing number of global change experiments 
have been initiated due to the need for information concerning ecosystem 
responses to a rapidly changing climate. Data from these global change 
experiments are valuable in helping models identify ecosystem responses 
to long-term climate change. Enormous efforts have been made to elucidate 
ecosystem dynamics in response to elevated CO2 and increased temperature. 
For example, a recent FACE Model-Data Synthesis (FACE-MDS) project was 
sponsored to assess terrestrial models by using observational data collected 
in two temperate forest FACE experiments in the United States (Walker et al. 
2014, Medlyn et al. 2015). In this project, 11 terrestrial models were evalu-
ated by comparing with data from the Oak Ridge National Laboratory FACE 
(ORNL FACE) and Duke FACE sites. In addition to comparing model simula-
tions with direct measurements, they also focused on assumptions resulting 
in disagreement among models (Medlyn et al. 2015). For example, the 11 ter-
restrial models generally reproduced the responses of NPP to CO2 enrich-
ment in the early years of the experiment, but they were not able to predict 
NPP responses in later years. By further decomposing NPP to nitrogen (N) 
use efficiency (NUE) and N uptake, they found that even if correctly esti-
mating the response of NPP to CO2 enrichment in the early years, models 
achieved that by overestimating NUE response but underestimating the 
response of N uptake (Zaehle et al. 2014, Medlyn et al. 2015).

In addition to NPP, other processes and ecosystem properties, such as sto-
matal conductance, water use efficiency, NPP allocation, N cycling, stoichi-
ometry, and leaf mass per area (LMA), were also studied in the FACE-MDS 
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project (De Kauwe et al. 2013, 2014, Walker et al. 2014, Zaehle et al. 2014, 
Medlyn et al. 2015). This project has identified specific aspects for improv-
ing model performance and experimental design. The identified aspects for 
model improvement include stomatal conductance, NPP allocation, LMA, 
plant stoichiometry, and priming (Medlyn et al. 2015). It is suggested that 
models should employ a proportional relationship between the ratio of pho-
tosynthetic C assimilation to stomatal conductance and atmospheric CO2 
concentration (De Kauwe et al. 2013, Medlyn et al. 2015). Dependence of NPP 
allocation to plant tissues (e.g., leaves, wood, and fine roots) on resource 
availability is necessary to match observations (De Kauwe et al. 2014, Medlyn 
et al. 2015). Moreover, priming of soil N release seems important to repro-
duce N transfer from soil organic matter to vegetation (Zaehle et al. 2014, 
Medlyn et al. 2015). In addition to these mechanisms on which clear sug-
gestions have been proposed, there are some others on which new theories 
are needed. For example, LMA is usually set constant in models, leading 
to a stronger response of leaf area index (LAI)—a key property that deter-
mines photosynthetic C assimilation in both models and reality—to CO2 
enrichment in models than identified in observations (Medlyn et al. 2015). 
Additionally, new theory of flexibility of plant stoichiometry is needed to 
better simulate the balance of N supply and demand (Zaehle et al. 2014, 
Medlyn et al. 2015).

Aspects of improvement of experimental design have also been identified 
based on findings in the FACE-MDS project. First, more empirical evidence 
is needed to determine the relative importance of electron transport and 
Rubisco limitations to photosynthetic C assimilation on the leaf and canopy 
scales (Medlyn et al. 2015). Additionally, observations of sensitivity of tran-
spiration to stomatal conductance, precipitation interception by canopy, the 
interactive effect of drought, turnover of plant tissues, and ecosystem’s N 
losses (e.g., leaching) are also needed to provide a scientific basis for model 
assumptions. However, one potential limitation of the FACE-MDS project 
is that only two FACE experiments, both located in temperate regions, are 
involved. Extensive meta-analyses (e.g., Liang et al. 2015b) and experiments 
in other regions, such as boreal and tropical systems, are necessary to help 
evaluate and improve the performance of Earth system models on the global 
scale (Norby et al. 2016).

In addition to site-level manipulative experiments, observations at larger 
scales are valuable resources that can be used to improve model perfor-
mance. One of the successful data set networks that has been assimilated 
to improve terrestrial model performance is the FLUXNET observations 
(Williams et al. 2009). FLUXNET is an international observation network 
based on the eddy covariance (EC) technique, which can provide continu-
ous measurements of land surface–atmosphere exchanges of C, water, and 
energy (Verma 1990). There are many regional EC networks across the globe, 
such as AmeriFlux (http://ameriflux.ornl.gov/), ChinaFlux (http://www.
chinaflux.org/), JapanFlux (http://www.japanflux.org/), and Swiss Fluxnet 
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(http://www.swissfluxnet.ch/). Each of the regional networks consists of 
a number of EC observation sites. These regional networks then form the 
global network FLUXNET (http://fluxnet.ornl.gov/), which provides rich 
collection of information concerning the exchanges of C, water, and energy 
between land surface and the atmosphere across spatial and temporal scales. 
FLUXNET observations have been widely used in data assimilation tech-
niques to improve model performance. For example, Zhu and Zhuang (2015) 
assimilated five sites of AmeriFlux carbon flux data to Terrestrial Ecosystem 
Model (TEM) to reduce uncertainty of 10 posterior parameters and improve 
simulations of regional carbon dynamics.

Those global change experiments and observational networks are usually 
designed for examining patterns of ecosystem responses to environmental 
changes and underlying mechanisms. The resulting data sets are then found 
useful for model improvements. Recently, a number of projects have been 
designed and initiated to conduct both experiment and data–model inte-
gration for forecasting or upscaling site-level knowledge to a regional scale. 
In the following text, we take two ongoing projects, SPRUCE and EDGE, as 
examples to illustrate how data assimilation is designed to achieve different 
research goals.

6.2.2 � Experiment–Model Integration: A Case 
Study with the SPRUCE Project

SPRUCE is a climate change manipulative experiment supported by 
Terrestrial Ecosystem Science Scientific Focus Area of ORNL’s Climate 
Change Program. The experiment aimed toward integration of experiments 
with ecosystem modeling, data assimilation, and model structure evalua-
tion to yield reliable model projections. Although the SPRUCE experiment 
only initiated the Deep Peatland Heating treatments in June of 2014 and the 
whole-ecosystem warming and elevated CO2 treatments will not start until 
June 2016, the integrated model-experiment approach based on pretreatment 
data sets and modeling activities have promoted an interactive and mutually 
beneficial engagement between modelers and experimentalists to advance 
predictions from experiments and models.

6.2.2.1 � Infrastructure Challenges in the SPRUCE Experiment

The SPRUCE experiment is being operated as the first whole-ecosystem, 
forest-scale experiment to increase temperature and CO2 concentrations 
from deep soil to the tops of tree canopies. This decade-long experiment is 
conducted in a weakly ombrotrophic peatland with a perched water table 
that has little regional groundwater influence and is located in northern 
Minnesota in the USDA Forest Service Marcell Experimental Forest (MEF). 
The 8.1 ha experimental site (S1-Bog) is dominated by Picea mariana (black 
spruce), regenerated from strip cuts in 1969 and 1974. Located at the southern 
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margin of the boreal peatland, this ecosystem is anticipated to be approach-
ing its tipping point with high vulnerability in response to climate change. 
Shifts of plant communities at the southern margin of boreal ecosystems 
under climate change is not fully understood, so large-scale long-term exper-
iments like SPRUCE are needed to improve mechanistic representation of 
unresolved processes in understudied ecosystems in Earth system models.

To achieve the overall goal of assessing ecosystem-level biological responses 
of vulnerable, high carbon terrestrial ecosystems to climate change, the 
SPRUCE experiment faces many infrastructure challenges including, but 
not limiting to, plot facilities, sensors and instruments, data acquisition 
and control system, automated data monitoring system, data management, 
model–data integration, and synthesis of model outputs. In this section, we 
do not attempt to describe all the research infrastructure challenges facing 
large-scale experiments like SPRUCE, but we highlight those key elements 
necessary for model–data integration.

Long-term monitoring of ecosystem dynamics is an important data source 
for data–model integration. But more powerful manipulative ecosystem 
experiments are needed to distinguish future climate change impacts from 
those inherent responses to natural variability. Climate change–caused 
warming scenarios predicted by the Intergovernmental Panel on Climate 
Change (IPCC 2013) are much higher than observed variation in mean 
annual temperatures (±2°C) under current climate. The SPRUCE experi-
ment provides a platform to understand physiological and biogeochemical 
processes under future climate through a combination of multiple levels 
of warming up to +9°C at ambient or elevated CO2 levels. Air warming is 
achieved with heating infrastructures enclosed in 10 plots of 12 m diameter 
by 8 m high open-top enclosures (Figure 6.2). The open-top enclosures can 
keep warming air around the enclosed plots by limiting air turnover, while 
still allowing natural precipitation to fall on experimental plots. The design 
also enables maintenance of high concentration of CO2 (800–900 ppm) in the 
elevated CO2 treatment. One unprecedented data set that the SPRUCE exper-
iment can provide for modeling activities is the Deep Peat Heating (DPH, 
−2 m) with belowground temperatures being consistent with future aboveg-
round warming scenarios (Hanson et al. 2011). Belowground deep warm-
ing evaluates responses of deep peat C stocks, microbial communities, and 
biogeochemical cycling processes, which can be used for evaluating model 
projections.

The SPRUCE program also provides data from real-time automated moni-
toring systems, which advance data–model integration approach in an inter-
active fashion. All data collected from sensors or instruments are recorded 
by dataloggers and then transferred to a data storage server every 30 min. 
Data are then published via a web server and used for remote monitoring 
and control (Krassovski et al. 2015). The standardized data streams are then 
immediately available to feed and inform models.
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6.2.2.2 � Informing Models Using the SPRUCE Experiment

Current Earth system models predict high variability of terrestrial carbon 
uptake with uncertainty in the direction and magnitude of global carbon 
cycling under future climate change (Friedlingstein et al. 2006, Arora et al. 
2013). Northern peatlands contain 200–400 Pg of carbon, about 30% of that 
contained in the global soil carbon pool. These peat carbon pools are sensi-
tive to climate change due to their tight dependence on hydrology and tem-
perature (Frolking et al. 2013). In spite of the importance of peat carbon, the 
dynamics are still less represented in most Earth system models. Current 
models often change parameter values related to wetland and peatland 
regions assuming the same formulation as other regions (Luo et al. 2016), 
and therefore underestimate peat carbon storage (Limpens et al. 2008).

Manipulative experiments are needed to improve the unresolved pro-
cesses in terrestrial carbon cycle models to refine projections of the net 

(a)

(b) (c)

FIGURE 6.2 
(See color insert.) View of SPRUCE experiment infrastructure with (a) exterior view of experi-
mental chamber, (b) interior view of experimental chamber, and (c) aerial view of the S1 Bog 
site. (Pictures a and c are Oak Ridge National Laboratory Images from: http://mnspruce.ornl.
gov. Image b is a PHENOCAM network SPRUCE image from http://phenocam.sr.unh.edu/
webcam/gallery/.)
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carbon balance of the northern peatlands in the face of a warming global 
environment. The SPRUCE experiment interacts with multiple model-
ing activities to improve the representation of terrestrial C processes 
required to reduce uncertainty in forecasting from ESMs. For example, the 
Community Land Model currently has poor representations of vegetated 
peatlands, where the carbon fluxes are strongly influenced by water table 
height. Future warming could drop the water table due to increased evapo-
transpiration, thus influencing the stability of carbon stocks. To improve 
the representations of peatland water tables, Shi et al. (2015a) modified CLM 
to include fully prognostic water table algorithms to improve projections 
of peatland responses to future climate change. The model was param-
eterized and evaluated against half-hourly measurements of daily water 
table levels for 3 years from the SPRUCE experiment. Those observations 
include pretreatment data sets and long-term peatland hydrology studies 
on the MEF, where the SPRUCE site located. To further quantify how warm-
ing may influence water table and carbon fluxes, however, we need data 
sets from manipulative experiments to validate models, and further refine 
related processes.

6.2.2.3 � Toward an Interactive Experiment–Model Approach

With more realistic representations of ecosystem processes, models become 
more complex and more parameters are required to be constrained. 
Developing an operational forecasting system is an interactive way to inte-
grate experiments and models to accomplish this. The forecasting system 
would assimilate various data streams into models so as to improve model 
predictions. Forecasting outcomes can provide feedback to experiments 
from which data sets are needed to further improve model predictions. In 
turn, new data sets can then be fed back into models further constraining 
and improving model predictions.

In the SPRUCE project, we are developing a data assimilation and 
operational ecological forecasting system called ECOlogical Platform for 
Assimilation of Data (ECOPAD). Pretreatment data sets from different field 
campaigns are compiled, including large-collar in situ CO2 flux measure-
ments across 4 years, aboveground NPP and carbon pool sizes from sam-
pled vegetation, phenological data derived from PhenoCam imagery, and 
peat carbon from core samples. The data sets are then assimilated into the 
Terrestrial ECOsystem (TECO) model using a Markov chain Monte Carlo 
technique to constrain parameters. The TECO model is used because it 
simulates processes of canopy photosynthesis, plant growth, carbon trans-
fer among compartments, and soil water dynamics. Unlike Earth system 
models, the TECO model is simple enough to overcome computational cost. 
With data assimilation, we can quantify how much uncertainty of forecast-
ing could be reduced as more data become available. The relative contri-
butions of external forcing versus model parameters to the uncertainty of 
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forecasting can also be estimated. The projections of carbon cycles will be 
compared to future data streams to refine model structure, update model 
parameters, generate new scientific questions, and test competing hypoth-
eses. The new data sets are then assimilated to enable new projections. This 
flow of work should be done regularly and automated in an operational sys-
tem such as ECOPAD.

Although researchers have collected enormous amounts of data to 
understand various ecosystem processes over past decades, a major chal-
lenge is to combine understanding of multiple processes together to form 
a complete picture of how ecosystems will respond as a whole. Usually, 
empirical data from observations and manipulative experiments are scat-
tered among individual teams and a significant proportion of them is not 
published in a timely manner, or is not available to modelers even after 
published. In the SPRUCE experiment, while individual teams collect data 
to answer questions related to specific ecosystem processes, they also work 
as a large group to confront models with data. ORNL is developing and 
deploying data and information management, and integration capability 
required for the collection, storage, processing, discovery, access, and deliv-
ery of data, including experimental data and model outputs. These capa-
bilities and systems are designed to facilitate uncertainty associated with 
characterization and quantification. The systems will also be developed 
for assimilation of available measurements, synthetic analysis of results, 
model forcing and boundary condition data sets, and model results. Such 
an information system facilitates data–model integration and provides 
accessibility to model output, benchmarking analysis, visualization, and 
synthesis activities.

6.2.3 � Experiment–Model Integration: A Case Study with EDGE Project

Site-level studies (e.g., a temperature manipulative experiment in a forest or 
measurements made in a grassland across years with different precipitation) 
can provide excellent information concerning ecological responses to cli-
mate change on small spatial scales. However, substantial limitations exist 
when trying to scale up to form regional and global predictions. Indeed, we 
know much more about how climate drivers are likely to be altered at vari-
ous spatial scales (Murphy 2000, Schoof et al. 2010) than how the resulting 
impacts on ecosystem processes will play out to affect ecosystem services.

There are a number of major challenges associated with extending field-
based findings to larger spatial scales. Two major ones are (1) understanding 
the mechanisms driving ecosystem responses to alterations in environmen-
tal variables and (2) obtaining knowledge about how these mechanisms vary 
across ecosystems. These challenges lead to an important overarching ques-
tion: what are the relative strengths of climatic context (e.g., wet versus dry 
systems) versus ecosystem attributes (e.g., types of plant community) in driv-
ing how sensitive an ecosystem will be to changes in climate? For example, 
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an arid system may have high sensitivity to drought because conditions 
are already dry and water is highly limiting. Yet on the other hand, xeric 
plant species may buffer primary production due to their having plant traits 
enabling growth even under stressful conditions. Indeed, empirical evidence 
has been shown for both increased sensitivity in drier systems (Huxman 
et al. 2004) and ecosystem attributes moderating responses to altered pre-
cipitation (Wilcox et al. 2015), yet methodological differences among stud-
ies obscure the relative strengths of these drivers in controlling ecosystem 
responses to climate change.

6.2.3.1 � Coordinated Experiments across Space in the EDGE Project

EDGE is a multisite study being conducted in six grasslands spanning cli-
mate gradients but also varying in their ecosystem attributes (Figure 6.3). 
The approach of this experiment solves three major problems typically con-
fronting single-site studies, meta-analyses, and data synthesis approaches 

HPG

CPR

HAR KNZ

SEV

Desert grassland
Shortgrass prairie
Mixed-grass prairie
Tallgrass prairie

FIGURE 6.3 
(See color insert.) Map of the Midwest United States showing locations of the six experimental 
sites of the EDGE project. SEV, Sevilleta National Wildlife Refuge, NM; CPR, Central Plains 
Experimental range; HPG, High Plains Grassland Research Center; HAR, Hays Agricultural 
Research Center; KNZ, Konza Prairie Biological Center.
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to predict large-scale responses to climate change. First, consistent method-
ology among sites removes the uncertainty associated with meta-analyses 
that often compare experiments having different techniques for measur-
ing ecosystem responses or implementing treatments; this allows for better 
detection of patterns of sensitivity across sites. For example, if a researcher 
has to compare results from two experiments, both simulating drought 
by removing 50% of ambient rainfall, but one study did this by removing 
rainfall from May to September and the other by removing rainfall from 
April to August, the researcher would not be able to know how much of the 
difference in responses was due to differential sensitivities of the systems 
and how much was due to the differences of drought timing. Second, the 
EDGE study is conducting extensive monitoring and sampling of ecosys-
tem attributes at each site before and during the experiment. Meta-analyses 
or data syntheses usually get partial information from each single study. 
This provides mechanistic understanding into why sensitivity differs across 
ecosystems and tracks changes in ecosystem attributes as well as overall 
responses. Third, the EDGE experiment is designed to have three pairs of 
sites (Figure 6.3), with each pair existing along a precipitation gradient rang-
ing from ~240 to 860 mm of mean annual rainfall and a temperature gra-
dient ranging from 7.6°C to 13.3°C of mean annual temperature. Yet each 
pair represents two different plant community types existing within a par-
ticular climate envelope. For example, the two arid sites at SEV; both receive 
~250 mm of precipitation on average and are quite close in space. However, 
one is a Chihuahuan Desert grassland dominated by Bouteloua eriopoda 
(black grama) while the other is more like the shortgrass steppe dominated 
by Bouteloua gracilis (blue grama). Comparison of differential responses 
between these two sites versus responses across the broad climate gradient 
will provide insight into how plant communities drive sensitivity of ecosys-
tems to drought within the context of climate.

6.2.3.2 � Integrating Experimental Findings and Process-Based Models

In EDGE, modelers and experimental ecologists are working in close col-
laboration to incorporate field data into an integrated experiment–modeling 
framework (Figure 6.4), where data are used to estimate parameters of the 
process-based model, TECO. In turn, this process identifies information 
gaps, for which additional sampling efforts can be conducted within the 
experiment. For example, some variables being measured in EDGE concern-
ing C cycling processes are aboveground and belowground standing crop 
biomass, aboveground litter, soil respiration, and total soil C content. By 
mapping and comparing TECO output to these measured variables using 
a Markov chain Monte Carlo technique (Metropolis–Hastings algorithm; 
Hastings 1970), multiple model parameters are able to be estimated for each 
site. Additionally, model parameters not well constrained using the current 
level of data inform where additional sampling efforts should be applied. 
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Once parameters are able to be properly estimated, they can then be linked 
with the climatic conditions across sites to provide insight into how eco-
system processes as represented by model parameters and climate should 
covary. Second, examination of parameter estimates in different sites, but 
within the same climate envelope, gives insight into how parameters should 
be assigned based on ecosystem attributes separate from climatic context. 
For example, despite both having mean annual precipitation close to 350 mm 
and mean annual temperature around 9°C, paired sites in northern Colorado 
and southern Wyoming have very different functional composition with 
one site being dominated by C4 warm-season grasses and the other by C3 
cool-season grasses. These different functional groups have very different 
growth strategies and water use efficiencies, which will impact how these 
grasslands respond to alterations in rainfall. Variation of estimated param-
eters in these grasslands provides insight into how mechanisms driving eco-
system responses to drought may differ along with plant functional types 
and how model projections should be scaled across ecosystems varying in 
plant functional types. Using the information about how model parameters 
vary across space due to environmental context and ecosystem attributes 
allows for model projections to be scaled up from single-sites to the regional 
level. Once scaling rules are established and incorporated into process-based 
models, hypotheses are then able to be tested at larger spatial scales.

Both the design of the EDGE study and integration of experiment and 
process-based models are extremely important for this study’s success. We 
suggest that, to provide much needed predictive power under altered climate 
regimes at regional scales, future studies examining ecosystem sensitivity to 

1.  Canopy model
Submodels:

5.  Plant community
     model

2.  Soil water
     dynamics model

4.  Soil carbon model
3.  Plant growth model

Integrated experiment–modeling framework

Data needed to
reduce uncertainty

Local scale

Data assimilation

Hypothesis
testing Regional

scale

Predict
future
states

Scaling
rules

EDGE
1. Response variables:

ANPP, BNPP
Soil C&N pools

2. Site-specific
    mechanisms

Soil CO2
Plant community
Plant traits
Soil moisture,
temperature

TECO

FIGURE 6.4 
Conceptual representation of the integrated experiment–modeling framework employed by 
EDGE to assess mechanisms behind differential ecosystem sensitivity to drought across grass-
lands spanning climatic gradients and having various ecosystem attributes. Data obtained 
from the multisite experiment are integrated into the process-based model, TECO, to identify 
scaling rules for model parameters. These, in turn, are incorporated into regional-scale pro-
jections that allow for broader testing of hypotheses related to future ecosystem status under 
altered climate regimes.
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environmental drivers should consider implementing consistent methodol-
ogy across study sites at least when experimental sites exist within the same 
biome. Assimilating data across those regional sites would improve model 
performance upscaling from distributed experiments.

6.3 � Challenges and Strategies to Promote Integrated 
Experiment–Model Approaches

Integrated experiment–model approaches will continue to serve a critical 
role for better understanding the natural world and more reliable predictions 
of future ecosystem states. Despite that experiment–model integration has 
the potential to significantly improve both model performance and experi-
mental design, several challenges need to be addressed when conducting 
experiment–model integration. To move the experiment–model integration 
approach forward, some key actions need to be considered and stimulated.

6.3.1 � Data Set Development

Incomplete use of empirical data in model parameterization is a major cause 
of model–model differences (Luo et al. 2016). More observational and exper-
imental data are needed to constrain model parameters (Bonan 2008, Luo 
et al. 2015, 2016), potentially helping address equifinality, an issue that models 
yield similar outputs with different combinations of parameters (Williams 
et al. 2009). Therefore, it is necessary to evaluate whether model parameters 
can be well constrained by the available data. Different types of observations 
and experiments may be helpful to reduce equifinality. Including various 
types of observational and experimental data, instead of a single database, 
can lead to more accurate and efficient data assimilation.

An enormous amount of site-level ecological data has been generated over 
many decades, and ongoing projects and research networks will increas-
ingly produce even more high-quality, high-resolution data. These data need 
to be synthesized, compiled, and often transformed before they can be used 
in model–data integration. To facilitate this process, it is vital that data are 
saved in a usable format, appropriately archived and well documented, and 
easily discoverable for use in synthesis and modeling.

Another challenge related to data set development is to fully address mea-
surement uncertainty when documenting data set contents and protocols. It 
is critically important to identify data bias due to techniques and/or spatial-
temporal distributions. Larger-scale data sets are essential to improve land 
surface models (Williams et al. 2009, Luo et al. 2016). A big challenge in 
compiling regional and global data sets is to harmonize data processing. 
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The schemes to process data should be documented clearly in the literature 
(Williams et al. 2009). Scaling site measurements to represent the whole grid 
is also problematic and the uncertainty related to scaling should be well 
specified. More well-designed experiments like EDGE could help to solve 
the scaling issue.

Moreover, new observations and experiments need to be designed to 
reveal mechanisms behind observed patterns and to discover some unre-
solved or missing processes. From the perspective of model improvements, 
future observational and experimental research should be focused on those 
model components whose predictability is poorly understood (Luo et al. 
2015). These components may include ecosystem state transitions, changes 
in disturbance regimes, disturbance events and recovery trajectories, and 
ecosystem response functions.

6.3.2 � Development of High-Fidelity Emulators and Traceability Analysis

Technical challenges of experiment–model integration impede the wide-
spread use of models (LeBauer et al. 2013). Models are becoming more and 
more complex, such as land surface models in Earth system models. It is 
infeasible for the complex models to assimilate multiple data streams with 
traditional data assimilation techniques due to computational cost. High-
fidelity emulators of complex models provide new ways to solve the prob-
lem. For a complex C model, an emulator is a simplified version of the model 
to describe the carbon flows and pools exactly as in simulations with the 
original model (Luo et al. 2016). Fox example, built upon the traceability 
framework proposed by Xia et al. (2013), Hararuk et al. (2014) developed an 
emulator of CLM-CASA, which enabled data assimilation with a global soil 
C data set. They first extracted the C cycle component of CLM-CASA into a 
set of C input–output equations that described C transfer among pools and 
then the set of equations was encoded into MATLAB® to perform data assim-
ilation. The steady-state soil C produced by the MATLAB version matched 
closely to that simulated by the original CLM-CASA despite that the former 
used the semi-analytic spin-up approach developed by Xia et al. (2012).

As model complexity increases, traceability becomes more and more dif-
ficult. It is still a big challenge to explain differences among models in model 
intercomparisons (Friedlingstein et al. 2006, Jones et al. 2013, Luo et al. 2015, 
2016). A clear traceability framework allows modelers to trace uncertainty 
back to each key component of a complex model (Xia et al. 2013, Ahlström 
et al. 2015) and thus lead to more practical strategies for model improvement.

6.3.3 � Infrastructure Development

Both data processing and archiving require significant computing 
resources. The demand for computing resources will increase as more data 
become available for public access through repositories such as DataONE 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
O

kl
ah

om
a]

, [
L

if
en

 J
ia

ng
] 

at
 1

2:
10

 0
8 

M
ar

ch
 2

01
7 



155Frontiers of Ecosystem Modeling and Large-Scale Experiments

(https://www.dataone.org/). The computational costs of data assimilation 
are already high and will become more so as data availability increases. The 
requirements for computational power to develop new data assimilation tech-
niques might even be higher. In addition, we need to develop online tools to 
assimilate real-time data streams including model outputs and to visualize 
data assimilation for forecasting as illustrated by SPRUCE, so more research-
ers can easily use the online tools to employ data assimilation even though 
they do not have much technical training. The online tools for forecasting 
may also help policy makers and land managers to make decisions. Both 
computational costs and development of online tools require improvements 
of existing cyber infrastructure or building of new cyber infrastructure.

On the other hand, new experiments that simultaneously manipulate mul-
tiple global change factors are critically needed to determine how interac-
tions among factors shape ecosystem responses to global change, to explore 
synergisms among variables and resolve complex processes, or to study 
highly sensitive ecosystems such as tundra and tropical forests (Seddon 
et al. 2016). Multifactor experiments are complicated to design and expensive 
to implement building and maintaining the required cyber infrastructure. 
Therefore, development of cyber infrastructure will be a key determinant for 
the success of experiment–model integration.

6.3.4 � Communications between Experimentalists and Modelers

Due to the strengths and limitations of both models and experiments, the 
advance of experiment–model integration depends on the effectiveness of 
communication between experimentalists and modelers. Opportunities 
should be created and funded to facilitate interactions among these research 
communities to design useful and appropriate sampling regimes (also see 
Luo et al. 2011b) to provide useful parameters for models and for modelers to 
improve their models. This will not only maximize the efficiency of mone-
tary investment into research but will also allow for rapid advancement and 
improvement of projections concerning future states of ecosystem services 
on a dynamic planet.

6.4 � Conclusions

We are living in a world that is undergoing rapid environmental changes. 
Ecological research is now in a data-rich era, with massive amounts of 
accumulated data distributed globally and large volumes of incoming data 
produced by many ongoing research projects and networks. Fortunately, 
advances in computational capacity continue to develop at an unprecedented 
rate. However, our ability to predict future states still remains limited, as 
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indicated by large uncertainties in current model projections. Enhancing 
the accuracy of predictions of future ecosystem states under global change 
remains a challenge that must be resolved to better manage resources for 
sustainable development.

Ecological observations, experiments, and models remain the three foun-
dational approaches for ecologists to tackling scientific problems. Field 
research, no matter how complex, only provides partial information about 
the system under study, whereas models, no matter how comprehensive, 
are always imperfect. To maximize gain from imperfect data and models, 
integrated experiment–model approaches are becoming a high priority. In 
the next a few decades, data–model integration to enhance observatory sys-
tems and to improve model projections will be critical to advance ecological 
understanding of dynamic systems. Closer collaborations between experi-
mentalists and modelers will likely enhance data collection while new data 
assimilation techniques will improve model projections, resulting in better 
decisions for sustainable management of natural resources.
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