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Abstract Substantial efforts have recently been made toward integrating more processes to improve
ecosystem model performances. However, model uncertainties caused by new processes and/or data sets
remain largely unclear. In this study, we explore uncertainties resulting from additional nitrogen (N) data
and processes in a terrestrial ecosystem (TECO) model framework using a data assimilation system. Three
assimilation experiments were conducted with TECO-C-C (carbon (C)-only model), TECO-CN-C (TECO-CN
coupled model with only C measurements as assimilating data), and TECO-CN-CN (TECO-CN model with
both C and N measurements). Our results showed that additional N data had greater effects on ecosystem
C storage (168% and 155%) compared with added N processes (132% and 245%) at the end of the
experimental period (2009) and the long-term prediction (2100), respectively. The uncertainties mainly
resulted from woody biomass (relative information contributions are 150.4% and 136.6%) and slow soil
organic matter pool (130.6% and 237.7%) at the end of the experimental period and the long-term
prediction, respectively. During the experimental period, the additional N processes affected C dynamics
mainly through process-induced disequilibrium in the initial value of C pools. However, in the long-term
prediction period, the N data and processes jointly influenced the simulated C dynamics by adjusting the
posterior probability density functions of key parameters. These results suggest that additional
measurements of slow processes are pivotal to improving model predictions. Quantifying the uncertainty of
the additional N data and processes can help us explore the terrestrial C-N coupling in ecosystem models
and highlight critical observational needs for future studies.

1. Introduction

Ecosystem and land surface models have incorporated an ever increasing number of processes and data sets
to simulate ecological responses to climate change as realistically as possible. For example, the Community
Land Model (CLM) has included the representations of the terrestrial nitrogen (N) cycle, transient land-cover
change, and wood harvest since version 4.0, which were not part of the previous versions [Oleson et al., 2013;
Gent et al., 2011]. Basically, complex models may integrate more process knowledge but result in more param-
eters being less identifiable, given certain data sets [Luo et al., 2009]. On the other hand, diverse and abundant
data have been used to inform land surface models at different temporal and spatial scales with the advent of
measurement networks (e.g., eddy-flux and satellite networks) over the past few decades [Luo et al., 2011].
These data sets have been applied to develop several carbon (C)-cycle data assimilation systems (CCDAS) to
constrain the estimates of both C input and residence times [Rayner et al., 2005; Kaminski et al., 2013]. In gen-
eral, different types of data constrain different parameters by providing relevant information [Keenan et al.,
2013; Du et al., 2015]. However, observed data properties such as error distributions, cross correlations among
multiple data sets, and the evolution of auto-correlations over time may introduce large uncertainties into
model parameters and outputs [Xu et al., 2006]. Those uncertainties from additional data and processes great-
ly limit our ability to accurately diagnose and assess the performances of complex land models.
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Recently, much research effort has been made toward understanding of N processes in terrestrial model simu-
lations [Zaehle et al., 2010; Koven et al., 2013, 2015]. First, model intercomparisons among different C-N cou-
pling models have been used to assess model performances [Zaehle and Dalmonech, 2011; Thomas et al.,
2013; Zaehle et al., 2014]. A second approach involves characterizing the role of the N module in the capacity
of ecosystem C storage by comparing a C-only model with a C-N coupled model under a single-model frame-
work [Xia et al., 2013]. Third, data assimilation approaches have been applied to capture the information from
both N-related observations and C-N coupled models by constraining key parameters [Shi et al., 2016]. Fourth,
alternative key processes of the N cycle in C-N coupled models have been employed to explore structural
uncertainties and their effects on C-cycle projections [Wieder et al., 2015]. These approaches yield valuable
insights of C-N interactions into differences in measurements, models, and responses to a future climate. How-
ever, these methods fail to quantify the uncertainties arising from different model structures, observational
data sets, and hypotheses in diverse ecosystem and land surface models.

Due to increased data availability from observational networks, data assimilation approaches are becoming
more effective in quantifying uncertainties from additional data [Luo et al., 2009]. For example, the Bayesian
framework has been widely applied to examine uncertainties in quantitatively projecting the discrepancies
between simulations and observations by assimilating a priori probabilistic density function (PDF) and
measurements [Dowd and Mayer, 2003; Wang et al., 2009]. Specifically, Markov Chain Monte Carlo (MCMC)
has been applied to ecosystem models to evaluate key parameters and predict ecosystem C dynamics by
assimilating both flux-based and biometric-based data [e.g., Du et al., 2015]. The conditional inversion tech-
nique has also been applied to a flux-based ecosystem model to improve the model performance and pro-
jection [Wu et al., 2009]. However, it is difficult to assess the uncertainty from additional processes due to
improved understanding of the mechanisms, since most studies use the fixed-model framework.

To quantify the uncertainty of the C dynamics resulting from additional data and processes under environ-
mental changes, the Shannon information index (SII) method has been introduced into data assimilation.
According to Shannon information theory [Shannon, 1948; Jaynes, 1957; Kolmogorov, 1965], the null knowl-
edge is defined by a uniform PDF within a prior range. The difference of information content between the
PDF of the modeled C pools after the data have been assimilated and the prior uniform PDF can quantify
the relative information contributions of data and the model associated with a random variable, as repre-
sented by PDFs of C-pool sizes [Weng and Luo, 2011]. The relative information contributions of models and/
or data sets can thus be used to evaluate the uncertainties associated with the model and data source by
comparing the effects of different models with and without additional data and processes.

The present study is designed to quantify uncertainty from additional N data and processes in an ecosystem
C-N coupling model framework by using a conditional inversion approach. Three assimilation experiments
were conducted as follows: (i) C-only version of the terrestrial ecosystem model (TECO-C) with assimilating
eight sets of C data (i.e., foliage, woody, and fine root biomass, litterfall, forest floor C, microbial C, soil C, and
soil respiration, TECO-C-C); (ii) the C-N coupled version (TECO-CN) with assimilating C data (TECO-CN-C); and
(iii) the C-N coupled version (TECO-CN) with assimilating both C and N data (i.e., N in foliage, woody tissues,
fine roots, litter fall, microbes, forest floor, and mineral soil, soil inorganic N, plant N uptake, and external N
input, TECO-CN-CN). All the measurements were collected from 2003 to 2009 at a subtropical coniferous plan-
tation in Qianyanzhou (QYZ), Jiangxi Province, China. To distinguish the information contributions of the N
processes and measurements, we introduced the SII to quantify the relative information by measuring a ran-
dom variable as represented by PDFs [Weng and Luo, 2011]. Our objective was to assess the uncertainties of
the additional N data, N processes, and both in the TECO framework by calculating the information contribu-
tion of the CN-C version minus that of the C-C version, the contribution of the CN-CN version minus that of
the CN-C version, and the contribution of the CN-CN version minus that of the C-C version, respectively.

2. Materials and Methods

2.1. Site Information and Data Source
The data used in this analysis were obtained from the Qianyanzhou site (QYZ, 2684402900N,
11580302900E,100 m above sea level), which belongs to the ChinaFLUX network, in Jiangxi Province, China.
This site is characterized by a subtropical monsoon climate, similar to the climate in southeast China [Huang
et al., 2007]. Based on the meteorological records from 1985 to 2007, mean annual temperature and

Journal of Advances in Modeling Earth Systems 10.1002/2016MS000687

DU ET AL. QUANTIFYING UNCERTAINTIES IN MODEL 549



precipitation were 17.98C and 1475 mm, respectively [Wen et al., 2010]. Soil parent material consists of red
sandstone and mudstone and the soils are mainly red earth. The current vegetation is a coniferous forest
plantation, which is 25 years old and �13 m tall. The dominant species are Pinus massoniana, Pinus elliottii,
and Cunninghaumia lanceolata. According to field measurements in August 2003, the average diameter at
breast height was 15.4 cm [Li et al., 2006a], and the leaf area index (LAI) of the plantation was 4.5 [Li et al.,
2006b]. The eddy flux observation tower was established in the plantation area in 2001. Around the tower,
the forest coverage was 90% within 1 km2 and 70% within 100 km2 [Hang et al., 2007].

The data sets used in the present study included climatic and biotic variables (i.e., air temperature at top
canopy [Ta], photosynthetically active radiation [PAR], relative humidity [RH], and LAI), eddy flux data (net
ecosystem exchange of CO2 [NEE]), carbon (C)-related measurements, and the corresponding nitrogen (N)
data sets, which had been collected from 2003 to 2009 at the QYZ site. In the models, the climatic variables
were used as driving data. The other data sets from 2003 to 2007 were used as assimilating data for param-
eter optimization and those from 2007 to 2009 as model evaluation.

Half-hourly NEE data and the corresponding climatic variables were downloaded from the Chinese Ecosys-
tem Research Network (CERN, www.cern.ac.cn). The C-related measurements included foliage, woody and
fine root biomass, microbial C, litterfall, forest floor C, soil C [Li et al., 2006a; Shen, 2006], soil respiration
[Zhang et al., 2006], and LAI [Song 2007]. The measurement methods, times, and frequencies for these data
sets have been described in detail by Du et al. [2015].

The corresponding N data sets for the same period included N pools in foliage, woody tissues, fine roots,
microbes, forest floor, and mineral soil, litterfall N, soil inorganic N, net soil N mineralization, plant N uptake,
and N input from atmospheric deposition and biological fixation. Wood cores, foliage, and fine roots were
extracted from the dominant species sampled in each plot during the autumn of 2000 and 2005–2007 [Chen
et al., 2001; Li et al., 2007; Yan et al., 2011]. Aboveground litter was collected from 100 3 100 cm baskets with
nine replicates at the QYZ site once per month during the growing season (May–October) in 2000 and 2002–
2004. All samples were dried to a constant weight at 708C within 48 h, and then the N concentrations were
quantified with a N/Protein analyzer (FlashEA 1112 series, Thermo Electron Co., Woburn, MA, USA).

Forest floor and soil N content were measured with an element analyzer (Thermo Electron Co., Woburn, MA,
USA) in 2012–2013. Details of the field soil sampling and chemical analysis can be found in Zhang [2013]. In
brief, forest floor and soil samples were collected from 2 m 3 2 m plots in July and October 2012 and Janu-
ary and April 2013 at the QYZ site. All samples were passed through a 2 mm mesh sieve to remove stones
and coarse roots and were dried at 488C for 4 days before measurements. Soil NH1

4 and NO2
3 concentrations

were measured by phenol colorimetry and ion chromatography, respectively. Soil microbial biomass N was
determined using the fumigation-extraction technique (48 h fumigation). Soil samples were collected from
three 3 m 3 3 m plots in April, July, and October 2006 and January 2007. For each plot, three out of six sub-
samples (each 25.0 g fresh soil) were fumigated with ethanol-free chloroform for 24 h at 258C in an evacuat-
ed extractor, while the remaining samples were treated as the control. Fumigated and nonfumigated soils
were extracted in 0.5 mol L21 K2SO4 (soil:extractant 5 1:4) at 258C for 1 h on a reciprocal shaker. The
extracts were filtered using Whatman No.42 filter paper with a diameter of 7 cm and stored at 2158C prior
to analysis. The total organic C and N contents in the extracts were measured using a multi N/C 3000 analyz-
er (Elementar Analysensysteme GmbH, Jena, Germany). To account for incomplete extractability, we used a
correction factor of 0.45 for microbial biomass N [Wang, 2008].

Gaseous losses of N2O were measured weekly using a static chamber from June 2012 to April 2013 (24
times) [Zhang, 2013]. Gas samples were collected from 20 m 3 20 m plots at the QYZ site. Each chamber is
composed of a base box (50 cm 3 50 cm 3 10 cm) and the chamber box (50 cm 3 50 cm 3 10 cm). The
base box was inserted into the soil approximately 24 h before sampling. Gas samples were taken between
9:00 A.M. and 10:00 A.M. with a 100 mL plastic syringe at 0, 10, 20, 30, and 40 min. All samples were taken
back to the laboratory and analyzed using a gas chromatographer (HP 4890D, Agilent, Wilmington, DE,
USA) within the same sampling day.

2.2. Model Description
The terrestrial ecosystem C-only model (TECO-C) used in the present study is a variant of the TECO model
[Luo and Reynolds, 1999] with adding short-term processes of canopy-level photosynthesis (Ac) and
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ecosystem respiration (Reco), which
has been fully described in Appendix
A and by Du et al. [2015]. Based on
the TECO-C model, the C-N coupled
model (TECO-CN) has been developed
by incorporating C:N ratios with eight
C and N pools in addition to one min-
eral N pool (Figure 1) [Shi et al., 2016].
In this model, N is absorbed by plants
from mineral soil, and then portioned
among leaves (N1), woody tissues (N2),
and fine roots (N3). Coupled with the
C-cycle processes, the N in plant detri-
tus is transferred among different eco-
system pools (i.e., metabolic litter [N4],
structural litter [N5], and fast [N6], slow
[N7], and passive soil organic matter
(SOM) [N8]). These N processes can be
described as:

d
dt

N tð Þ5n tð ÞACR21X tð Þ1ruNmin tð ÞP

N 0ð Þ5N0;

(1)

where N 5 (n1, n2, n3, . . ., n8)T repre-
sents the N pools in leaves, woody tis-
sues, fine roots, metabolic litter,
structural litter, microbes, and slow
and passive SOM, respectively. A and
C are 8 3 8 matrices, representing the
fractions of C transfer coefficients
among C pools and C transfer coeffi-

cients, respectively (see Appendix A for more detail). R is an 8 3 8 diagonal matrix with the diagonal ele-
ments given by the vector R 5 (r1, r2, r3, . . ., r8)T, representing the C:N ratios in the eight organic N pools.
P5 p1 p2 12p12p2 0 0 0 0 0ð ÞT is a vector of allocation coefficients of N assimilated into
leaves, woody tissues, and fine roots. ru is the rate of plant N uptake, and Nmin tð Þ is the amount of available
N in the soil at time t. The dynamics of the mineral N pool are determined by the balance between N input
(i.e., N mineralization, biological fixation, and atmospheric deposition) and output through plant N uptake
and loss (i.e., leaching and gaseous N fluxes), which can be expressed as:

d
dt

Nmin tð Þ52 ru1rlð ÞNmin tð Þ1n tð Þu�mACR21X tð Þ1F tð Þ

Nmin 0ð Þ5Nmin;0;

(2)

where ru and rl are the rates of N uptake and loss, respectively. The second term on the right side
(n tð Þu�mACR21X tð Þ) describes the amount of N released during mineralization. u�m5u9, where
u95 0 0 0 0:55c4 0:45c5 0:7c6 0:55c7 0:55c8ð ÞT . F(t) represents N input through biological
fixation and atmospheric deposition.

2.3. Conditional Bayesian Inversion Method and Model Validation
Conditional Bayesian inversion was built upon the Bayesian inversion approach described in Appendix B. In
our data assimilation system, we had n parameters to be estimated (24 for TECO-C and 38 for TECO-CN). At
the first step, we used all parameters (n) to conduct the Bayesian inversion and obtained maximum likeli-
hood estimators (MLEs) for several well-constrained parameters (referred to as n1). We then used the MLEs
for n1 well-constrained parameters as prior values in the model for the subsequent steps of Bayesian

Figure 1. Schematic diagram of the terrestrial ecosystem carbon (C) and nitrogen
(N) coupling model (TECO-CN) with canopy photosynthesis and pathways of C and
N fluxes for data assimilation. Black arrows indicate C-cycle processes and blue
arrows show N-cycle processes. LAI, leaf area index; Ta, air temperature; PAR,
photosynthetically active radiation; RH, relative humidity; Jc, rates of carboxylation
enzymes; Je, light electron transport rates; A, gross leaf CO2 uptake; Gs, stomatal
conductance; An, leaf-level photosynthesis; Ac, canopy photosynthesis, SOM, soil
organic matter.
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inversion. In this way, parameter dimensionality decreased to n 2 n1. The Bayesian inversion was repeat-
ed again to search for the posterior PDFs of the rest n 2 n1 parameters. The MLEs obtained for addition-
al well-constrained parameters (n2) were used as prior values for the following step of Bayesian
inversion. This process was repeated until there were no further parameters to be constrained [Wu
et al., 2009].

In our study, ecosystem C and N data from 2003 to 2007 were used in the conditional Bayesian inversion to
constrain the model parameters. Two data sets from field measurements were used to validate model per-
formance. One of these data sets was the 2 year measurements (2008 and 2009) for most C and N fluxes
and pools (e.g., foliage biomass and N, woody biomass and N, litterfall C and N, fine root C and N), and the
other one contained independent soil respiration data that were measured from March 2011 to March 2013
at the QYZ site [Wang et al., 2016].

2.4. Relative Information Contribution of Models
The Shannon information index (SII) was used to measure the relative information contribution from addi-
tional N data and processes to C pools at the end of the experimental period (2009) and a 90 year predic-
tion (2100, supporting information Figure S1). According to the information theory [Shannon, 1948, Jaynes,
1957, Kolmogorov, 1965], the entropy H of a discrete random variable X in x1; . . . ; xnð Þ is

H Xð Þ52
X

p xið Þlogb p xið Þ; (3)

where p xið Þ is the probability of event xi . The base b equals 2 with bit as the unit, and the entropy is logb n
for a uniform distribution.

The null knowledge on the C dynamics of a pool was defined by a uniform distribution u xð Þ of the pool size
within a range. The maximum and minimum values of the range were assumed to be the same as the maxi-
mum and minimum C-pool sizes of the PDFs ([PDFs]m). Thus, the entropy of null knowledge (H0) is

H05log2 n (4)

To estimate the relative information of the model (Im), we calculated the entropy of [PDFs]m (H(Xm)):

H Xmð Þ52
Xn

i

p xm;i
� �

log2 p xm;i
� �

(5)

where Xm is the state variable obtained by the model prediction, xm;i is a value of Xm, and n is the number
of bins with the same width in the range between the minimum and maximum values of the [PDFs]m. The
relative information index of the model (Im, supporting information Table S1), was expressed as

Im5H02H Xmð Þ (6)

H0 and H(Xm) are dependent on the values of n but Im changes little with n if n is sufficiently large [Stoy
et al., 2006]. A value of 600 was used after a sensitivity test from 60 to 2000 bins. We calculated Im for each
of the eight simulated C pools and for total ecosystem C storage at the end of the experimental period and
the end of the 90 year prediction.

The index Im only measures the decrease in the entropy by changing the shapes of the PDFs of the simulat-
ed C pools induced by models. Data assimilation may change both positions and shapes of the distributions
of C pools [Weng and Luo, 2011]. To measure the changes in the distributions of pool size caused by the N
module, we used information gain (Kullback and Leibler divergence, DKL, supporting information Table S1)
[Kullback and Leibler, 1951] to measure the differences in the distributions of simulated C pools between
two versions of the TECO framework (i.e., C-C and CN-C, CN-C and CN-CN, and CN-CN and C-C). Relative
information gain (DKL) was calculated as

DKL p Xm2ð Þp Xm1ð Þð Þ5
Xn

i51

p xm2;i
� �

log2
p xm2;i
� �

p xm1;i
� � (7)

The relative information contribution of each simulated C pool on the total C storage, which considers the
C-pool sizes as a weighting factor, (RIC, supporting information Table S1), was calculated as
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RICi tð Þ5 Xi tð Þ3Di
KL tð ÞP8

i51 Xi tð Þ3jDi
KL tð Þj

� �3100% (8)

where Xi(t) (i 51, 2, . . ., 8) is the C pool size at time t, and Di
KL :ð Þ is the respective information gain given by

equation (7).

2.5. Sensitivity of Simulated C Pools to Parameters
The sensitivity of the simulated C pools to the parameters was examined by the coefficient of determination
(R2) between the pool sizes and the parameters [Saltelli et al., 2004]. This R2 value represents the proportion
of the variance of simulated C pool sizes induced by an individual parameter when all parameters varied
randomly in each version (i.e., C-C, CN-C, and CN-CN). To calculate R2, we (1) randomly sampled 1000 param-
eter sets (each set included 24 parameters in the C-C model, and 38 parameters in the CN-C and CN-CN ver-
sions, respectively) from the optimal parameters in each experiment; (2) conducted 1000 simulations of the
C-pool sizes at the end of 2009 and 2100 with the 1000 parameter sets; and (3) calculated the correlation
coefficient between each C pool size and the corresponding parameter set. We analyzed the sensitivity of
each modeled C pool at the end of 2009 and 2100 to each parameter in three experiments.

3. Results

3.1. Parameter Estimations and Model Validation
The conditional Bayesian inversion method can substantially increase the number of constrained parame-
ters and improve the fitting between the observations and model simulations. Overall, 21 (for C-C version),
20 (for CN-C version), and 21 parameters (for CN-CN version) relating to the C cycle were well constrained in
the TECO framework but with considerable differences after the fourth step of conditional inversion in each
experiment (Figure 2 and supporting information Figure S2a). Eight and 14 parameters relating to the N
cycle were well constrained after the fourth and the third steps in the CN-C and CN-CN versions, respective-
ly (Figure 2 and supporting information Figure S2b). Among these constrained parameters, six relating to
the C cycle (i.e., the exit rate of C from the foliage pool [C1], wood pool [C2], and fine root pool [C3], ecosys-
tem respiration at 08C [R0

eco], temperature dependency of ecosystem respiration [Q10], and the ratio of
foliage N content to V25

m at 258C [LN]) were well constrained at the first step of the conditional Bayesian
inversion in all three versions. However, only two parameters relating to the N cycle (i.e., the C:N ratio in
foliage [CN1] and N uptake to leaves [p1�) were well constrained at the first step in the CN-C version. In the
CN-CN version, most of the parameters were well constrained except for three parameters (i.e., the C:N ratio
in slow SOM [CN7], N uptake [p2�, and rate of N loss [rl�) at the first step. Most of the estimated parameter
values (i.e., maximum likelihood estimators, MLEs) varied among the three experiments (e.g., C2, the exit
rate of C from the metabolic litter pool [C4], the structural litter pool [C5], and the passive SOM [C8], the can-
opy quantum efficiency of photon conversion [aq], the Michaelis-Menten constant for carboxylation [K c

25],
the activation energy of V 25

m [EVm ], the ratio of Jm to V 25
m at 258C [rJm Vm �, the ratio of internal CO2 to air CO2

[fci ], and CN1) but not for the canopy extinction coefficient for light (Kn), which was edge-hitting in all three
experiments.

The conditional Bayesian inversion constrained an ensemble of parameter sets (�24), which is likely to con-
tain parameter correlations caused by interdependence between the parameters pairs. Our correlation anal-
ysis showed that >90% of the correlations between parameters (jcorrj) were <0.3 (supporting information
Figure S4). Parameter pairs for high jcorrj values (>0.4) varied in all three experiments except for the pair
R0

eco 2 Q10 (jcorrj5 0.95, 0.95, and 0.97 for C-C, CN-C, and CN-CN versions, respectively).

To evaluate the validity of the conditional inverse method, it is essential to compare the modeled data with
observed data. In this study, two data sets (i.e., most C and N data in 2008–2009 and soil respiration in
2011–2013) were used to validate model performance. We found that the simulated results agreed well
with the observed data, particularly for the CN-CN version (supporting information Figures S3a–S3d). For
example, simulated soil respiration showed a better fit to the observed data in both the C-C and CN-CN ver-
sions as compared to that in the CN-C version. The coefficient of determination between the simulated and
observed NEE was higher (R2 5 0.324, p< 0.05) in the CN-CN version than those in the other two versions
(R2 5 0.253 in C-C and 0.259 in CN-C, p< 0.05, supporting information Figure S3d).
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3.2. Information Contributions of Models
In the three experiments, the simulated C contents of most pools substantially increased over time, such
as woody biomass (X2, average increasing rate is 5.3%), metabolic litter (X4, 10.5%), structural litter (X5,
7.6%), and fast (X6, 16.9%) and slow (X7, 4.2%) SOM, but foliage biomass (X1) and fine root pools (X3) quick-
ly stabilized during both the experimental period (2003–2009) and the 90 year prediction period (2010–
2100, Figure 3). The CN-CN version substantially reduced standard deviations (SDs) of the simulated C
contents, particularly for the fast turnover pools (e.g., foliage biomass (lower 94% and 88%), fine roots
(lower 59% and 93%), metabolic litter (lower 54.1% and 113.8%), and fast SOM (lower 145% and 79.8%))
both in the experimental period and for the long-term prediction period, in comparison with the C-C and
CN-C versions. This indicated that the N data offered substantial information in predicting C dynamics.
During the experimental period, the differences in the simulated C dynamics were negligible in some
pools (i.e., X1, X2, and X3) but not in the other pools (i.e., X4, X5, X6, X7, passive SOM [X8], and total ecosys-
tem C storage [TC]) for the three versions. In the long-term prediction period, the sizes of the three C
pools (X1 [lower 57.2% and 51.9%], X3 [95.4% and 69.6%], and X4 [189% and 67.4%]) were lower in the CN-

Figure 2. Maximum likelihood estimators (MLEs) (or means for unconstrained parameters) (a) for 24 parameters relating to carbon (C)
cycling in three experiments and (b) for 14 parameters relating to nitrogen (N) cycling in Experiments 2 and 3. Error bars represent
standard deviations (SDs) of parameters calculated from 50,000 samples of Metropolis-Hastings (M-H) simulations. The letters a, b, and c
above the bars indicate statistical significance (paired t test, a 5 0.05). See Table 1 for parameter abbreviations and units. C-C, C-only
terrestrial ecosystem (TECO) model and measurements; CN-C, the TECOC-N coupled model with only C measurements to constrain model
parameters; CN-CN, the TECOC-N coupled model with both C and N measurements to constrain model parameters.
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CN version than those in the other two versions, indicating that the N data induced nutrition limitation of
plant growth in these pools.

In the present study, the relative information index was used to measure the changes in shapes of the PDFs
for C pools from three experiments (i.e., C-C, CN-C, and CN-CN versions). These indices in the three versions
were stabilized in most C pools during the experimental period and the 90 year prediction period (Figure
3). However, the relative information indices of three C pools (i.e., metabolic litter and fast and slow SOM)
increased first and then became stabilized in the experimental period. During the long-term prediction peri-
od, the CN-C model contributed less information in constraining most of the C pools and total C storage,

Figure 3. Simulated carbon (C) contents and relative information indices (Im) during the experimental period (2003–2009) (left two
columns) and for the long-term prediction (2010–2100) (right two columns) in three experiments. SOM, soil organic matter; C-C, C-only
terrestrial ecosystem (TECO) model; CN-C, the TECOC-N coupled model with only C measurements as data constraints; CN-CN, the
TECOC-N coupled model with both C and N measurements.
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but contributed more information in constraining the slow SOM pool than the other two models did (i.e., C-
C and CN-CN). For woody biomass, the CN-CN model offered the most information in constraining parame-
ters among the three versions during both the experimental and the 90-year prediction periods.

3.3. Quantifying the Uncertainties From the Additional N Data and Processes
In this study, the index of relative information gain was used to quantify the uncertainty of the added N
module (including N data and processes) on C-cycle processes (Figure 4). A positive information gain indi-
cates that a greater amount of information is obtained by adding the N module on the C content with con-
vergence of the posterior PDFs, whereas a negative information gain indicates that less identifiable
parameters are introduced by adding the N module with divergence of the posterior PDFs. During the
experimental period, the information gain of woody biomass, metabolic litter, slow SOM and total ecosys-
tem C pools from additional N process was positive, whereas that of all C pools except metabolic litter and
slow SOM from the data source was positive (Figure 4a). However, for the long-term prediction of the C
dynamics, the information gains of structural litter and slow SOM from the N data were negative, whereas

Figure 4. Relative information gains (DKL) from the nitrogen (N) module (additional N processes, data and both combined) (a and b) and
relative information contributions (RIC) to total carbon (C) storage (c and d) of simulated C contents at the end of the experimental period
(2009) and the end of the long-term prediction (2100). Plus in parentheses (1), the positive contributions due to further information intro-
duced by adding N processes; Minus in parentheses (2), negative contributions due to more overparameterization and equifinality intro-
duced by adding N processes; SOM, soil organic matter; C-C, C-only terrestrial ecosystem (TECO) model and measurements; CN-C, the
TECOC-N coupled model with only C measurements as data constraints; CN-CN, the TECOC-N coupled model with both C and N
measurements.
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Figure 5. The sensitivity of the eight simulated carbon (C) pools at the end of both experimental periods (2009, a, c, e)) and long-term pre-
diction (2100, b, d, f) to the 24 parameters in Experiment 1 (a and b) and 38 parameters in Experiment 2 (c and d) and Experiment 3 (e and
f), respectively. P1–P38 are the parameters used in the three experiments. See Table 1 for parameter abbreviations and units.
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all C pools except slow SOM had negative information gains from additional N processes (Figure 4b). Both
during the experimental and long-term projection periods, the total information gain from additional N
data was more than that from N processes.

The relative information contributions of some C pools to total C storage were positive from woody biomass
(150.4%), slow SOM (130.6%), and fast SOM (10.32%) at the end of the experimental period, and woody
biomass (136.6%) and metabolic litter (10.42%) at the end of the long-term projection (Figures 4c and 4d).
The relative contributions of the remaining C pools were negative: foliage biomass (24.9%), fine root bio-
mass (22.1%), metabolic litter (20.15%), structural litter (24.4%), and passive SOM (27.0%) at the end of
the experimental period, and foliage biomass (21.5%), fine roots biomass (20.40%), structural litter
(217.5%), fast SOM (20.03%), and passive SOM (25.9%) at the end of the long-term projection (Figures 4c
and 4d).

3.4. Sensitivity of the C Contents to Parameters
Either at the end of 2009 or 2100, the simulated C content of eight pools had different sensitivities with
respect to the parameters in the three experiments (Figure 5). In the C-C version, most C pools (i.e., X2

[0.70], X4 [0.76], X5 [0.84], X6 [0.71], X7 [0.74], and X8 [0.92]) at the end of 2100 were highly sensitive (R2> 0.5)
to their respective transfer coefficients; however, this was not the case for two C pools (i.e., X5 [0.75] and X8

[0.91]) at the end of 2009. In the CN-C version, there were similar sensitivities to the 38 parameters in most
C pools except for the passive SOM, both at the end of 2009 and 2100. The passive SOM pool (X8) was high-
ly sensitive to C8 (0.94) and LN (0.65) and moderately sensitive (0.1< R2< 0.5) to CN1 (0.48) at the end of
2009, but it was sensitive to the exit rate of C from C7 (0.64) and C8 (0.61), CN1 (0.72) and rl (0.76) at the end
of 2100. In the CN-CN version, most C pools at the end of 2009 (i.e., foliage biomass [X1, 0.82], X2 [0.81], fine
root biomass [X3, 0.81], X4 [0.83], X5 [0.76], X6 [0.80], and X7 [0.77]) and at the end of 2100 (i.e., X1 [0.80], X3

[0.81], X4 [0.82], and X6 [0.65]) were highly sensitive to LN , whereas X8 was highly sensitive to C8 (0.89) and
the activation energy of K 25

c (EKc , 0.80). In contrast, X2 and X5 were sensitive to their respective transfer coef-
ficients (i.e., C2 [0.80] and C5 (0.74)) at the end of 2100, whereas X7 was sensitive to C5 (0.67) and p2 (0.62).

4. Discussion

4.1. Information Contributions of Additional N Data and Processes
Both added data and processes are important for improving model performance. Generally, the significant
investment in additional processes can improve the model ability to capture ecosystem responses to envi-
ronmental changes but may increase uncertainty with less identifiable parameters [Dufresne et al., 2013;
Thomas et al., 2015]. Meanwhile, increasing the observational data sets would decrease the uncertainty to a
certain degree by providing additional information [Du et al., 2015]. Overall, our results showed that the N
data offered ‘‘positive information’’ (i.e., positive information gain), whereas the added N processes provided
‘‘negative information’’ (i.e., negative information gain) for most C pools during the experiment period
(2003–2009) and the long-term projection period (2010–2100). Distinguishing the information in simulating
C dynamics by model intercomparison in the TECO framework can identify the effects of C-N interactions
on C dynamics, and can improve numerical implementation of terrestrial biogeochemistry in ecosystem
models as well as land surface models.

The present study quantified the differences in relative information between the CN-C and CN-CN versions
of the TECO framework to assess the contributions of additional N data on C dynamics (Figure 4). The posi-
tive effects indicated that the additional N measurements provided complementary information for most
simulated C pools, which is consistent with previous studies [Franks et al., 1999; Raupach et al., 2005; Du
et al., 2015]. The additional N data accelerated the convergence to a steady state by offering additional
effective information in constraining model parameters. Specifically, all 14 N-related parameters were well-
constrained after three steps of conditional inversion in the CN-CN version, but only eight parameters were
well constrained after four steps of conditional inversion in the CN-C version (supporting information Figure
S2b). The negative effects from the additional N data also existed in a few C pools in both experimental and
long-term prediction periods (i.e., metabolic litter and slow SOM as well as structural litter and slow SOM,
respectively). The uncertainty of litter pools may result from the total litter amount being partitioned into
metabolic and structural litter pools, whereas the information content contained in the N data is insufficient
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to separate these two pools. The lack of soil C and N data may be the major obstacle to evaluate the C pool
of slow SOM.

Additional processes in an ecological model represent our understanding of the underlying mechanisms in
ecosystems and earth systems [Luo et al., 2009; Wang et al., 2009; Wieder et al., 2015]. The relative informa-
tion from additional N processes was negative in most C pools, mostly due to a decrease in identifiable
parameters (Figures (2 and 4), and 5). In this study, five parameters were highly sensitive to the different
pools (R2> 0.5) in the C-C version but the number dropped to one in the CN-C version during the experi-
mental period and from six to two in the long-term prediction period (Figure 5). When model structure
became more complex, the number of parameters constrained by the observational data sets was limited
[Wang et al., 2009; Luo et al., 2015]. However, our results showed a positive contribution of additional N pro-
cesses on woody biomass and metabolic litter in the short term and slow SOM over the entire period, which
may arise from the limitations of prescribing the initial conditions and a large pool of slow SOM in the
TECO-C model. This suggests that the investment in N processes may improve the model performance to
some degree in the C-N coupling model compared with the C-only model. Future research should focus on
those components that are poorly understood in ecosystem models (e.g., initial conditions and flexible tis-
sue C:N). In addition, multiple sources of high-quality observations are necessary to improve model perfor-
mance and prediction [Luo et al., 2015].

4.2. Uncertainties From the Additional N Data and Processes in C-Cycle Simulation
Adding a new module to ecosystem or land surface models usually triggers various impacts on existing C
cycle processes [Xia et al., 2013]. In particular, we lack a detailed theoretical understanding and sufficient
empirical data to validate those impacts [Luo et al., 2015; Wieder et al., 2015]. In this study, the information
contributions of the additional N data and processes had different weights in affecting the uncertainty of
each component for both short-term and long-term predictions of ecosystem C dynamics (Figure 4). One of
the main sources of uncertainty was from the PDFs of some key parameters describing slow processes (e.g.,
turnover of wood and slow SOM). Although these parameters can be constrained by short-term experimen-
tal data to some degree, they cannot be used to accurately simulate long-term C dynamics in the future.
Another source of uncertainty was that additional N processes may lead to overparameterization and equi-
finality [Beven, 2006]. Quantifying these uncertainties can assist us to validate the schemes of terrestrial C-N
interactions in ecosystem and land surface models, allowing the identification of some aspects (e.g., initial
conditions, tissue C:N and slow-process data) to improve model performance.

In the short term, the uncertainties of C dynamics were mainly from additional N processes, which caused
perturbations in the initial values of the C pools, defining the first positions of these C pools along a trajec-
tory of the equilibrium states [Gough et al., 2007; Carvalhais et al., 2008; Luo et al., 2015]. The differences in
the simulated C dynamics were small in some pools (i.e., foliage, woody tissues, and fine roots) among the
three versions during the experimental period (Figure 3, left plots). However, the initial values of most C
pools (i.e., X4, X5, X6, X7, X8, and total ecosystem C storage) were almost the same between the CN-C and
CN-CN versions but they were largely different from the C-C version (Figure 3, left plots). This suggested
that the added representation of N processes was the main factor influencing the model uncertainty in the
short term. In addition, the convergence of the C equilibrium states was also altered by the additional N
processes, which affected the initial conditions (e.g., C input and loss rates, environmental constraints) and
then regulated the initial values. The lower initial value in most C contents implied the N limitation on plant
growth when N availability could not meet plant N demands in the CN-C and CN-CN versions compared
with that in the C-C version (Figure 3, left plots).

The long-term C dynamics in an ecosystem is determined by C influx and residence time [Luo et al., 2001;
Xia et al., 2013; Luo et al., 2015]. The C influx is from canopy photosynthesis, so the relevant parameters and
C residence times are crucial in C-cycle simulations. In this study, the relative information gain of C pools
can distinguish the effects of the N module on C cycle via the posterior PDFs of the key parameters in three
experiments (Figures 2, and supporting information S2a, S2b). The fast turnover C pools (e.g., foliage, fine
roots, and metabolic litter) in both C-C and CN-CN versions were very sensitive to parameter LN (foliage N
content, Figure 5). However, compared with those in the C-C version, our results showed smaller sizes of
these C pools in the CN-CN version, probably due to nutrient limitation in plant photosynthesis by LN (Fig-
ures 3 and 4). In the CN-C version, the C pools were not very sensitive to LN, likely because the N-related
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parameters could not be constrained by the same data sets as those in the C-C version. In this way, photosyn-
thesis has little effect on the slow turnover pools (e.g., woody tissues, slow and passive SOM) in the short term
and their differences are mainly due to changes in the initial value as discussed previously. Furthermore, the fac-
tors that dominated the highly sensitive parameters associated with the slow turnover C pools (i.e., wood and
SOM) varied in the long term. The N data were the dominant factor that constrained the key parameter C2 (exit
rate of C from the wood pool) and further regulated the long-term predictions of the woody C pool. For the dif-
ference in the woody C pool, the additional N processes were likely to be the main factor influencing the slow
SOM pool, which dominated the key parameter C7 (the exit rate of C from the slow SOM pool, Figure 5), proba-
bly because the CN-C version provided a greater amount of information to constrain C7 than the C-C version.

Currently, most biogeochemical models follow a similar structure for the C-N coupling in the TECO model. For
example, DAYCENT, G-DAY, O-CN, LPJ-GUESS, and TECO, which are all CENTURY-based models, share the
same representation of key C-N-cycle processes. Previous studies have demonstrated that these models can
be used to interpret terrestrial ecosystem dynamics in response to observed or manipulated environmental
change. For example, as one of eleven terrestrial C-N-cycle models, the TECO model was considered to cap-
ture some important features of terrestrial ecosystems (e.g., plant N uptake, net N mineralization, and ecosys-
tem C and N balance) in responses to elevated CO2 to some degree [Walker et al., 2014; Zeahle et al., 2014].
Despite specific representations of some processes in the TECO model framework compared with other mod-
els, our analysis showed an improvement in quantifying the uncertainty of adding a new module in terrestrial
ecosystem models. Long-term efforts should focus on improving theoretical understanding, such as exploring
potential C-N interactions in response to environmental change and collecting multiple effective observation-
al data sets to improve the long-term predictive ability of the less constrained components.

4.3. Sensitivity of the C Pools to Parameter and Model-Data Comparison
Sensitivity analysis showed that the sensitive parameters were largely associated with C influx and resi-
dence time, which determined the capacity of ecosystem C storage (Figure 5) [Zhou et al., 2012]. We also
found that the additional N process introduced a greater number of degrees of freedom on parameter con-
straints (Figures 5c and 5d). In our analysis, the leaf N content (LN) was highly related to almost all C pools
(except passive SOM) in the short-term and the fast turnover pools (X1, X3, and X4) in the long-term predic-
tions (Figures 5e and 5f). This indicated that the photosynthesis was the most essential C influx of the equi-
librium state in those fast turnover pools. The sensitivity analysis also suggested that the additional N
process introduced a greater amount of noise than signals in constraining parameters. The CN-C version
incorporated additional 14 N-related parameters, resulting in the low sensitivity of the C pools to almost all
parameters (except C8) compared with the C-C version. Collectively, the emphasis of incorporating related
processes in ecosystem and land surface models to simulate C-climate feedback should be on related C
influx in short-term simulations and C transfer coefficients for the long-term prediction.

Model-data comparisons can quantitatively measure the misfits between model and observations instead of
judging model performance by several given criteria [Xia et al., 2013]. In the present study, some simulated C
fluxes and pools agreed with observed C fluxes and pools very well among the three model versions, but
others showed considerable discrepancies, which may be captured to distinguish the sources of uncertainty.
In particular, the simulated soil respiration showed a better fit to the observed data in the C-C version com-
pared with that in the CN-C version (supporting information Figure S3c), indicating that the added N module
in TECO models introduced noise to the soil respiration. Moreover, almost all simulated N pools fitted their
respective observations better in the CN-CN version than in the CN-C version. This suggested that the N data
reduced model uncertainty by offering complementary information to parameter constraints. However, all
coefficients of determination between the modeled and observed NEE data were relatively low (R2< 0.33) in
all three experiments (supporting information Figure S3d). This likely results from the fact that the NEE is a
small net flux from a balance between two large fluxes of photosynthesis and respiration, which have high
standard errors and temporal variations [Valentini et al., 2000; Hollinger and Richardson, 2005; Du et al., 2015].

5. Conclusions

Improving uncertainty assessments is a high priority for ecosystem and land surface modeling in the future,
especially when these models include additional representations of biogeochemical processes to simulate
ecological responses to climate change. In our study, using a conditional inversion method, we investigated
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the differences of the relative information contribution from the additional N data and processes among
three model versions to quantify the uncertainties of the N module on ecosystem C dynamics. The results
showed that the additional N data and processes had the different weights in affecting ecosystem C
dynamics. The additional N processes induced fluctuations in the initial states of the C pools, which signifi-
cantly affected the short-term C dynamics. However, in the long-term predictions, both the additional N
data and processes were important in regulating C dynamics by adjusting the posterior PDFs of key param-
eters. Further study should incorporate additional measurements of slow processes (e.g., wood C pool and
slow and passive SOM C pool) in the long term to identify and test hypotheses and assumptions. Quantify-
ing the uncertainties from the additional N data and processes is essential to address and quantify the inter-
actions between terrestrial C and N cycles and climate in ecosystem and land surface models, improve
model projections, and highlight critical observational needs for the future studies.

Appendix A: TECO-C Models

The carbon (C) model used in this study is a variation of the terrestrial ecosystem (TECO) model [Luo and

Reynolds, 1999] with adding short-term processes of canopy-level photosynthesis (Ac) and ecosystem respiration

(Reco) (Figure 1) [Du et al., 2015]. Canopy photosynthesis was estimated from leaf area index (LAI) and leaf-level

photosynthesis [Sellers et al., 1993]. The latter was described using the model developed by Farquhar et al.

[1980] for both carboxylation (Jc) and electron transport (Je) processes together with a stomatal conductance

model [Leuning, 1995; vanWijk et al., 2000; Chang 2003]. Ecosystem respiration was modelled via the widely-

used Q10 function [van’t Hoff, 1899]. See Wu et al. [2009] for more details. C enters the ecosystem via canopy

photosynthesis and is then allocated into foliage biomass (X1), woody biomass (X2), and fine roots (X3). Dead

plant materials go to metabolic (X4) and structural litter (X5) compartments, and are decomposed by microbes

(X6). Part of the litter C is respired and the rest is converted into slow (X7) and passive soil organic matter (SOM,

X8). The C dynamics can be expressed mathematically by the following first-order ordinary differential equation:

d
dt

X tð Þ5n tð ÞACX tð Þ1BU tð Þ

X 0ð Þ5X0;

(A1)

where X (t) 5 (X1(t), X2(t), . . ., X8(t))T is a 8 3 1 vector, representing C-pool sizes in foliage, wood, fine roots,
metabolic litter, structural litter, microbes, slow and passive SOM at time t, respectively. A and C are 8 3

8 matrices given by

A5

21 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0

0 0 21 0 0 0 0 0

0:712 0 0:712 21 0 0 0 0

0:288 1 0:288 0 21 0 0 0

0 0 0 0:45 0:275 21 0:42 0:45

0 0 0 0 0:275 0:296 21 0

0 0 0 0 0 0:004 0:03 21

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

C5diagðCÞ;

(A2)

where diagðCÞ denotes an 8 3 8 diagonal matrix with diagonal entries given by the vector
c5 c1; c2; . . . ; c8ð ÞT . Components cj j51; 2; . . . ; 8ð Þ represent C transfer coefficients associated with
pool Xj j51; 2; � � � ; 8ð Þ. n :ð Þ is a scaling function accounting for temperature and moisture effects on C
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decomposition. U(.) is the C input fixed by canopy-level photosynthesis (Ac, i.e., gross primary productivity,
GPP). B 5 (0.15, 0.20, 0.20, 0, 0, 0, 0, 0)T is a vector that determines allocation of photosynthetically fixed C to
foliage, woody and fine root biomass, and the remaining 45% of the canopy input C is consumed by plant
respiration. X0 5 [327, 4818, 356, 104, 670, 113, 2434, 1397]T (The unit is g C m22) represents an initial condi-
tion based on an initial steady state C balance in the TECO-C model and experimental data at the start of
this study. Besides eight C transfer coefficients, 14 other parameters for calculating Ac and Reco were estimat-
ed simultaneously (Table 1).

Appendix B: Data Assimilation

We used a conditional Bayesian inversion approach which built upon the Bayesian probabilistic inversion to
assimilate the observed data sets into the models. Bayes’ theorem states that the posterior probability density
function (PDF) p cjZð Þ of model parameters c can be obtained from prior knowledge of parameters and informa-
tion generated by a comparison of simulated and observed variables. The theorem can be expressed as follows:

p cjZð Þ5 p Zjcð Þp cð Þ
p Zð Þ (A3)

where p(c) is the prior probability density distribution PDF, p cjZð Þ represents the probability of the observed
data, and p Zjcð Þ is the likelihood function for parameter c that expresses the fit between the modeled and

Table 1. Symbols and Description of the Model Parameters, Their Intervals (Lower and Upper Limits) and Units in This Studya

Parameters Intervals Unit Description
Number in

Figure 5

C1 0.176–2.95 mg C g21 d21 Exit rate of C from foliage pool P1
C2 0.0109–0.274b mg C g21 d21 Exit rate of C from wood pool P2
C3 0.176–2.95 mg C g21 d21 Exit rate of C from fine roots pool P3
C4 0.274–1.37b mg C g21 d21 Exit rate of C from metabolic litter pool P4
C5 0.274–1.37b mg C g21 d21 Exit rate of C from structural litter pool P5
C6 2.74–6.85 mg C g21 d21 Exit rate of C from fast SOM P6
C7 0.0274–0.137 mg C g21 d21 Exit rate of C from slow SOM P7
C8 0.00137–0.0091 mg C g21 d21 Exit rate of C from passive SOM P8
aq
%

0.3–0.9 mol mol21 photo Canopy quantum efficiency of photon conversion P9
K25

c 10–600b mmol mol21 Michaelis-Menten constant for carboxylation P10
EKc 10,000–100,000 J mol21 Activation energy of K25

c P11
Ek0 10,000–60,000 J mol21 Activation energy of K25

o P12
K25

o 0–0.5b mol mol21 Michaelis-Menten constant for oxygenation P13
EV m 500–50,000b J mol21 Activation energy of V25

m P14
U25
� 1–50b mmol mol21 CO2 compensation point without dark respiration P15

rJm V m 1–10b Dimensionless Ration of Jm to V25
m at 258C P16

R0
eco 0.1–5 mmol CO2m22s21 Whole ecosystem respiration at 08C P17

Q10 1–3 Dimensionless Temperature dependency of ecosystem respiration P18
LN 0–6 Dimensionless Ration of leaf nitrogen content to V25

m at 258C P19
f ci 0.5–0.9 Dimensionless Ration of internal CO2 to air CO2 P20
K n 0.7–0.9 Dimensionless Canopy extinction coefficient for light P21
EU25

�
30,000–100,000 J mol21 Activation energy of CO2 compensation point at 258C P22

gl 1000–4000b Dimensionless Empirical coefficient in Leuning model P23
D0 0.2–6 kPa Empirical coefficient in Leuning model P24
CN1 5–120 Dimensionless C:N ratio in foliage P25
CN2 20–800 Dimensionless C:N ratio in woody tissues P26
CN3 30–100 Dimensionless C:N ratio in fine roots P27
CN4 20–120 Dimensionless C:N ratio in metabolic litter P28
CN5 0.1–200 Dimensionless C:N ratio in structural litter P29
CN6 5–40 Dimensionless C:N ratio in fast SOM P30
CN7 5–40 Dimensionless C:N ratio in slow SOM P31
CN8 5–40 Dimensionless C:N ratio in passive SOM P32
p1 0.01–0.3 Dimensionless N uptake to leaves P33
p2 0.25–0.65 Dimensionless N uptake to woody tissues P34
ru 0.01–0.2 g N g N21 d21 Rate of N uptake P35
rl 0.00001–0.0001 g N g N21 d21 Rate of N loss P36
F tð Þ 0.008–0.04 g N g N21 d21 Rate of N input P37
Nmin(0) 0.05–0.5 g N m22 Initial values of mineral N pool P38

aC, carbon; N, nitrogen; SOM, soil organic matter.
bThose parameter intervals are not the same among three experiments for searching the optimal values.
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observed data. The prior PDF of the estimated parameters p(c) was specified as the uniform distribution
over a set of specific intervals (see Table 1). Lower and upper limits of the intervals were set by synthesizing
values from the literature, knowledge of the system, the raw model output, and prior information from Luo
et al. [2003], Wu et al. [2009], and Shi et al. [2016]. The likelihood function p Zjcð Þ was calculated with the
assumption that observation errors followed a Gaussian distribution with a zero mean, and it can be
expressed as follows:

P Zjcð Þ / exp 2
X

i

1
2r2

i

X
t2obs Zið Þ

ei tð Þð Þ2
8<
:

9=
; (A4)

where r2
i is the measurement error variance of each data set and ei tð Þ is the error for each modeled value

Xi tð Þ compared with the observed value Zi tð Þ at time t, expressed by

ei5Zi tð Þ2Yi tð Þ (A5)

To calculate Yi tð Þ from the modeled data Xi tð Þ, we used the mapping operator U5 uT
1 ;u

T
2 ; . . . ;uT

9

� �T to
match the simulated state variables (C and N contents of the eight pools) and fluxes to the observational
variables at time t [Luo et al., 2003; Du et al., 2015; Shi et al., 2016], and U is a 9 3 8 matrix given as

U5

0:75 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0:75 0 0 0 0 0

c1 0 0 0 0 0 0 0

0 0 0 0:75 0:75 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0:25c1 0:25c2 0:25c3 0:55c4 0:45c5 0:7c6 0:55c7 0:55c8

0 0 0 0:55c4 0:45c5 0:7c6 0:55c7 0:55c8

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

(A6)

For the each pool or flux, the modeled value was expressed as

Yi5uiX ið Þ; i51; 2; . . . ; 9 (A7)

whereas simulated net ecosystem exchange of CO2 (NEE) was calculated as

NEE5Reco2Ac (A8)

A positive NEE value represents the release of CO2 from the ecosystem, while a negative value denotes the
net uptake of CO2 from the atmosphere.

The posterior PDFs p cjZð Þ for the model parameters were generated from prior PDFs p cð Þ with observations Z
using a Markov chain Monte Carlo (MCMC) sampling technique. The Metropolis-Hastings (M-H) algorithm [Metropo-
lis et al., 1953, Hastings, 1970] was used as the MCMC sampler. New proposal parameter points were generated by:

cnew5ck211r hmax2hminð Þ (A9)

where hmax and hmin are the maximum and minimum values of the given parameter space, respectively,
and r is a random variable between 20.5 and 0.5 with a uniform distribution. Whether the new point cnew

was accepted or not was dependent on the value of the ratio R5
p cnew jZð Þ
p ck21 jZð Þ compared with a buffer factor N,

which is the random number from 0 to 1 used to increase sample-acceptance rate. Only if R � N, the new
point was accepted (i.e., ck5cnew); otherwise ck5ck21 [Xu et al., 2006]. We formally made five parallel runs
using the M-H algorithm with 600,000 simulations for each run. Each run started from a random initial point
in parameter spaces to eliminate the effect of the initial condition on stochastic sampling. The acceptance
rates for the five runs tested by the Gelman-Rubin (G-R) diagnostic method in the three experiments ranged
from 5% to 10% [Xu et al., 2006]. The initial samples (approximately 6000 for each run) were discarded after
the running means and standard deviations (SDs) were stabilized (regarded as the burn-in period).
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All the accepted samples from five runs after the burn-in periods (approximately 100,000 samples in total)
in each experiment were used to construct posterior PDFs. The same sets of simulated C contents of the
eight pools were generated by 98 year forward model runs with these accepted parameters.
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