
Contents lists available at ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/locate/apsoil

Consistent temperature sensitivity of labile soil organic carbon
mineralization along an elevation gradient in the Wuyi Mountains, China

Qian Lia, Xiaoli Chengb, Yiqi Luoc, Zikun Xud, Li Xua, Honghua Ruane, Xia Xue,⁎

a Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
b Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
c Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
d Administrative Bureau of Wuyishan National Nature Reserve, Wuyishan, Fujian, 354300, China
e College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China

A R T I C L E I N F O

Keywords:
Temperature sensitivity
Labile soil organic carbon
Mineralization
Elevation gradient
Vegetation types
The wuyi mountains

A B S T R A C T

Labile soil organic carbon (LOC) is an essential component in the global carbon (C) cycling due to its fast
turnover and sensitivity to environmental changes. However, responses of the mineralization of LOC to current
global warming are still not fully understood. In this study, we investigated LOC mineralization at 5, 15, 25 and
35 °C incubation temperatures through laboratory incubation of soil samples and estimated the temperature
sensitivity of LOC mineralization at various temperature ranges (i.e. 5–15, 15–25, and 25–35 °C) in an evergreen
broad-leaf forest (EBF), a coniferous forest (CF), a sub-alpine dwarf forest (SDF), and an alpine meadow (AM)
along an elevation gradient in the Wuyi Mountains in southeastern China. Our results showed that
mineralization of LOC significantly increased along the elevation gradient and with increasing incubation
temperatures. The interaction of elevation and incubation temperatures was additive on LOC mineralization.
Moreover, the temperature sensitivity (Q10) of LOC mineralization significantly decreased with increasing
incubation temperature ranges. However, elevation gradient had no statistically significant impact on Q10 within
each incubation temperature range. Our results suggest that soil organic C (SOC) at high elevations is more
vulnerable to global warming. Moreover, consistent Q10 of LOC mineralization along the elevation gradient
indicates that locally, C quality maybe a minor factor in affecting LOC mineralization and it may be adequate to
use a constant Q10 value to represent the response of LOC mineralization to warming in regional climate-C
cycling models.

1. Introduction

Global mean temperature is predicted to increase another 0.3 to
4.8 °C by the end of this century (IPCC, 2013). Temperature, which has
captured much attention in the global carbon (C) cycling, is undoubt-
edly one of the most important variables that can regulate mineraliza-
tion of soil organic C (SOC) (Davidson and Janssens, 2006; Xu et al.,
2012; Sierra et al., 2015). SOC decomposition is one of the two aspects
that determine soil C balance in terrestrial ecosystems (Davidson et al.,
2000; Wetterstedt et al., 2010). The potential loss of soil-stored C due to
an increase in temperature may result in a buildup in atmospheric CO2

concentration as well as a positive feedback on climate change (e.g. Xu
et al., 2010b). However, accurate prediction of future climate change is
greatly limited by our understanding of the land C cycling
(Friedlingstein et al., 2006, 2014; Luo et al., 2016). There is thus an
urgent need for more empirical knowledge of soil C decomposition and

its temperature sensitivity (Q10).
The process by which organic C (OC) are broken down and

transformed into inorganic C is known as mineralization.
Conceptually, SOC is usually divided into two fractions, labile OC
(LOC) and recalcitrant OC (ROC), in laboratory studies (e.g. Fang et al.,
2005b; Conant et al., 2008; Xu et al., 2010b). In comparison to ROC,
LOC functions as a good indicator for predicting minor changes in SOC.
LOC, a type of microbially degradable C associated with microbial
growth (Zou et al., 2005), is considered to be the labile C pool. It is
easily biodegradable and physically accessible by soil microbes and
accounts for a small part of the SOC pool, typically less than 8% (Xu
et al., 2010a). However, the rapid turnover of LOC is one of the main
aspects in the flux of CO2 between terrestrial ecosystems and the
atmosphere. It might be a potential C source since microbial decom-
position of SOC is sensitive to warming (Wetterstedt et al., 2010; Wang
et al., 2013; Luo et al., 2016).
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Consequently, temperature sensitivity (Q10) of SOC mineralization
has received much attention (e.g. Fang et al., 2005b; Davidson and
Janssens, 2006; Sierra et al., 2015). In climate-C modeling studies, Q10

of SOC decomposition is always considered to be a constant constraint
in prediction of the impact of climate change on soil C stock (Luo et al.,
2016). However, many empirical studies have proposed to use different
Q10 values to represent mineralization of LOC and ROC to temperature
changes in models (e.g. Liski et al., 2000; Melillo et al., 2002; Conant
et al., 2008; Hartley and Ineson, 2008; Xu et al., 2010b, 2012).
Moreover, one of the opinions in the SOC mineralization-temperature
relationship studies is that the mineralization of LOC is sensitive to
temperature variation (Liski et al., 2000; Fang et al., 2005b). To better
project future climate change, we undoubtedly need more knowledge
on Q10 of LOC mineralization and to find out whether LOC’s miner-
alization is in accordance with the “C quality-temperature hypothesis”,
which suggests that Q10 of C mineralization is inversely related to the C
quality of the SOC (Bosatta and Agren, 1999; Davidson and Janssens,
2006).

Soils in boreal forests and tundra at high latitudes are believed to
expect a high loss of C under current global warming due to the
predicted experience of the greatest temperature rise in these regions
(Dorrepaal et al., 2009). Elevational gradient of temperature changes in
mountains can be similar to that caused by latitudes (Smith et al.,
2002), which make mountains important regions in climate change
research. In this study, we aimed to: (1) assess the mineralization rates
of LOC and (2) estimate the temperature sensitivity of LOC mineraliza-
tion along the elevation gradient in the Wuyi Mountains. The Wuyi
Mountains have a typical vertical, well-reserved zonation of vegetation
communities in the subtropics in the southeastern China (Wang et al.,
2009; Xu et al., 2010b). The elevational temperature gradient, which
could resemble those observed along latitudinal gradients (Niklinska
and Klimek, 2007), provides us an ideal model ecosystem to investigate
the mineralization of LOC.

2. Materials and methods

2.1. Site description

The experimental sites are located in the Wuyishan National
Reserve Area in Fujian Province, China (27°33′—27°54′N,
117°27′—117°51′E), a 56,527 ha forested area in the southeast of
China. Mean annual temperature (MAT) is 15 °C and mean annual
precipitation (MAP) is 2,000 mm. The four typical, different vegetation
types along the elevation gradient are evergreen broad-leaf forest
(EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine
meadow (AM). See detailed site information in Table 1.

2.2. Experimental design and soil sampling

Four replicate plots (50 × 60 m) at each vegetation type (EBF, CF,
SDF and AM) were set along the elevation gradient in the Wuyi
Mountains. Each 50 m × 60 m plot was divided into four
25 m× 30 m subplots. Soil samples were randomly collected
(0–25 cm in depth) in all the subplots in November 2016 using a
2 cm-diameter soil corer. Ten soil cores were taken from each subplot
and pooled together, as a replicate. Samples were immediately sieved
(< 2 mm) to remove soil fauna, rocks and fine roots, thoroughly hand-
mixed and placed in plastic bags and transported in several coolers to
the ecological laboratory at the Nanjing Forestry University.

2.3. Methods

The LOC content was estimated using a sequential fumigation-
incubation method according to Zou et al. (2005) and Liu and Zou
(2002). Brief procedures were as follows: 30 g of fresh soil samples
were fumigated for 36 h with purified chloroform in a desiccator with Ta
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moist paper towels. Control (unfumigated) soil samples were placed in
another desiccator for 36 h. Then, chloroform was excluded from the
fumigated soil samples and all soil samples were inoculated with 1 g of
unfumigated soil. Each of the fumigated soil samples, control and
blank, along with a small plastic bottle (50 ml, with lid removed)
containing 15 ml of 1 M NaOH was placed in a 1 l Mason jar, and
incubated at 60% of water holding capacity (WHC) under different
temperatures (5, 15, 25, and 35 °C) for 10 days as a cycle. The amount
of CO2 was determined by titration of the NaOH with 1 M HCl to pH 8.3
in the presence of BaCl2. Mason jars were flushed with compressed air
to allow replenishment of O2 between each interval and deionized
water was added to maintain moisture. The sequential fumigation-
incubation had a total of 6 cycles in this study. The LOC content was
calculated according to (Stanford and Smith, 1972; Zou et al., 2005):

Mt = CLOC(1 − e−kt), (t= 1, 2,……, n); (1)

where Mt is the accumulated CO2-C during incubation; CLOC is the
estimated pool size of LOC; k is the potential turnover rate which could
be estimated using linear regression with the following equation:

Ln(Ct) = Ln(kCLOC) − kt, (t= 1, 2,……, n); (2)

where Ct is the CO2-C for each single incubation cycle; k is the slope; Ln
(kCLOC) is the intercept (a), and CLOC = ea/k. The mineralization rate
(mg kg−1 d−1) is calculated as:

R = CLOC/10t, (t = 1, 2,……, n). (3)

By definition, the temperature sensitivity of SOC mineralization is
the change in mineralization rates with temperature under otherwise
constant conditions (Fang et al., 2005b). It is estimated as:

Q10 = (r2/r1)10/(T2−T1); (4)

where r2 and r1 are mineralization rates at high and low incubation
temperatures, T2 and T1, respectively. The Q10 values were obtained for
soil LOC from each elevation site at three ranges of temperature: low
(5–15 °C, Q10L), medium (15–25 °C, Q10M), high (25–35 °C, Q10H).

SOC and total nitrogen (TN) were determined by combustion with
an elemental analyzer (Model CNS, Elementar Analysen Systeme
GmbH, Germany). Soil temperature and moisture were measured by
watchdog weather stations (Spectrum Technologies, Inc., IL, USA) at
the 15 cm soil depth. Soil pH values were measured with a Calomel
electrode on a paste of 1:1 (w:v) of fresh soil and deionized water. Plant
litter was collected by tents (1 mm× 1 mm in mesh size) in EBF, CF,
and SDF and by clipping in AM. Plant litter mass was determined by
weight in the laboratory after being oven-dried at 65 °C for 48 h. Fine
root biomass (≤ 2 mm in diameter) was seasonally estimated with soil
cores (Davis et al., 2004; Xu et al., 2014).

2.4. Statistical analysis

Two-way ANOVA was performed to examine the effects of elevation
and incubation temperatures or temperature ranges on the mineraliza-
tion rates of LOC, Q10 values. One-way ANOVA was used to examine the
effect of elevation on soil properties, litter mass and fine root biomass.

Linear regression analyses were used to evaluate the relationships of the
rates of LOC mineralization with litter mass and fine root biomass. All
statistical analyses were conducted using R 3.3.2 (R Development Core
Team, 2016).

3. Results

Along with the increasing elevation, MAT and soil temperature
decreased and MAP and soil moisture increased. While SOC, TN, and
fine root biomass significantly increased along the elevation, C:N ratio
was significantly higher in AM, litter mass was significantly higher in
CF, and pH value was significantly lower in CF (Table 1).

Elevation gradient and incubation temperatures had significant
impacts on the mineralization of LOC (all P < 0.001, Table 2,
Fig. 1). The mean mineralization rates of LOC substantially increased
along the elevation gradient from EBF, CF, SDF to AM. The mineraliza-
tion rates of LOC also significantly increased with increasing incubation
temperatures. Soils differed greatly in their C loss during incubation, for
example, ranging from 18.17 ± 1.49 mg kg−1 d−1 in EBF to
53.21 ± 0.66 mg kg−1 d−1 in AM at 25 °C (Fig. 1). The interaction
of elevation and incubation temperatures was additive on LOC miner-
alization (P < 0.001, Table 2). The mineralization of LOC was
positively regulated by microbial biomass C (all P < 0.001, Fig. 2)
and by fine root biomass (all P < 0.001, Fig. 3a) but negatively
regulated by litter mass (all P < 0.01, Fig. 3b) at each incubation
temperature.

Table 2
Results of two-way ANOVA (F tests) for responses of the rates and temperature sensitivity
(Q10) LOC mineralization to elevation and incubation temperatures (5, 15, 25, and 35 °C,
for rates) or incubation temperature ranges (5–15, 15–25, and 25–35 °C, for Q10).
***: < 0.001.

Elevation Temperature Elevation × Temperature

df F, P df F, P df F, P

Rates 3 750.33*** 3 1937.38*** 9 85.81***

Q10 3 1.22 2 64.37*** 6 0.41

Fig. 1. Mean mineralization rates of LOC along the elevation at different incubation
temperatures (values are mean ± SE, n = 4).

Fig. 2. Relationships between microbial biomass C and the mineralization rates of LOC at
different incubation temperatures. ***: P < 0.001.
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The Q10 of the mineralization of LOC was sensitive to temperature
changes (P < 0.001, Fig. 4) but not the elevation gradient (P > 0.05,
Table 2). The temperature sensitivity (Q10) of LOC mineralization
significantly decreased with increasing incubation temperature ranges:
Q10L > Q10M > Q10H (P < 0.001, Table 2, Fig. 4b). However, no
statistically significant differences were found in Q10 values along the
elevation gradient (P > 0.05, Table 2).

4. Discussion

In our study, the mineralization rates of LOC significantly increased
with the increasing elevation and the incubation temperatures. The
mineralization of LOC was the transformation of organic C into
inorganic C by heterotrophs. The process largely depends on substrate
quality (Niklinska and Klimek, 2007), which in turn controlled by
vegetation community (Raich and Tufekciogul, 2000). Soil decompo-
sability (quality), one of the dominant factors that control decomposi-
tion rates (Hobbie and Gough, 2004; Shaver et al., 2006), increased
along the elevation gradient. For example, LOC content significantly
increased with increasing elevation, supporting the high lability of
labile C pools with high decomposability at higher elevations. More-
over, the TN increased significantly with increasing elevation, which
may facilitate mineralization of LOC. Many studies had reported
substantial vegetation effect on microbial decomposition of LOC
through C input associated with litter and fine roots (e.g. Hobbie and
Gough, 2004; Fornara et al., 2009). Different vegetation types along the
elevation may have a strong impact on the quality of fine roots and

litter that eventually became organic matter (Hobbie and Gough,
2004). In accordance with those findings, our results showed that the
mineralization of LOC positively correlated with fine root biomass and
negatively with litter mass at each incubation temperature. Fine roots
were one of the labile C pools in the soil (Cheng and Kuzyakov, 2005),
which had rapid decomposition rates (Kuzyakov et al., 2007). Plant
litter, cut into small pieces by soul fauna, also was an important C
source (Loya et al., 2004). Though the values of litter mass in EBF and
CF were higher, it might be the decomposability of litter rather than the
quantity, closely relating to soil C mineralization. For instance, litter in
CF was resistant to decomposition due to the richness in waxes, resins
and lignin (Swift et al., 1981; Niklinska and Klimek, 2007).

On the other hand, in line with previous studies, our results showed
that the mineralization rates of LOC were significantly influenced by
temperatures and comparable with, for example, the rates found across
a network of European forest sites (e.g. Reichstein et al., 2005;
Davidson and Janssens, 2006; Rey and Jarvis, 2006). This is because
the decomposition process was microbially mediated and microbes
themselves were temperature sensitive (Xu et al., 2010b; Zhou et al.,
2012). Temperature had been found to be the major factor in control-
ling the mineralization of LOC in soil (e.g. Howard and Pja, 1993; Fang
et al., 2005a; Xu et al., 2010b). It significantly influenced a range of soil
parameters in the simulated rhizosphere, such as the amount of
microbes in the soil (Kuzyakov et al., 2007), and the intensity of
microbial activity. Soils at higher elevations contained significantly
more organic C (Garten et al., 1999; Kautz et al., 2004) partly because
the decomposition of LOC was limited by low soil temperatures and
often wet conditions. SOC was found more decomposable at lower
elevations (Giardina and Ryan, 2000) because SOC is both different in
quality and exposed to contrasting environmental conditions (Rasse
et al., 2006). In the Wuyi Mountains, EBF and CF at low elevations
experienced relatively high temperatures and lower moistures, which

Fig. 3. Relationships of fine root biomass (a) and litter mass (b) with the mineralization
rates of LOC at different incubation temperatures. **: P < 0.01; ***: P < 0.001.

Fig. 4. Q10 values of LOC mineralization along the elevation gradient under different
incubation temperature ranges (a, values are mean ± SE, n = 4). L, M, H indicate
temperature ranges (L: 5–15 °C; M: 15–25 °C; H: 25–35 °C). Panel (b) shows mean Q10

values of different incubation temperature ranges (values are mean ± SE, n = 16).
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caused great C losses. The high mineralization rates and high SOC
contents at high elevations seemed to be contradictory. However,
decomposition was only one of the processes of C turnover. The rate
of C sequestration at high elevations was supposed to be high because
we had increasing LOC and SOC contents with increasing elevation.

Significant differences in Q10 values were found between incubation
temperature ranges. The highest Q10 coefficient was found for the low
temperature range (5–15 °C), negatively correlated with incubation
temperature ranges as found by Hamdi et al. (2013). Our estimates of
Q10 ranging from 0.86 to 19.69 with 94% of the values falling with the
range 0–10 are comparable with a synthesis of laboratory incubation
studies with Q10 ranging from 0.5 to 344 with approximately 98% of
the values falling with the range 0–10 (Hamdi et al., 2013). Our
findings, the temperature sensitivity of LOC mineralization were not
constant across the temperature ranges, is in consistent with predictions
from chemical thermodynamics (Katterer et al., 1998; Davidson and
Janssens, 2006; Martin et al., 2009). Q10 values, derived from LOC
mineralization, declined with increasing temperature ranges because
substrate-availability differences from 5 to 15 °C was the largest and the
differences decreased with increasing incubation temperature ranges
(Belaytedla et al., 2009). Our results also support that the effect of
temperature on the mineralization rates was more intense at relatively
lower temperature ranges (Kirschbaum, 1995; Sjogersten and Wookey,
2002). The mean Q10 value for the high temperature range (25 to 35 °C)
was close to 1.0. It indicates that temperature around 30 °C was the
particular thermal niche for the microbial activity in the Wuyi
Mountains, outside of which microbial activity could be limited.
Importantly, our results suggest that soils at higher elevations may
release more CO2 to the atmosphere in the Wuyi Mountains because an
estimated temperature increase of 1.1–5.6 °C at the end of this century
(IPCC, 2013) falls into the low incubation temperature ranges (5–15 °C)
for the AM (MAT is 9.7 °C). This potential temperature increase makes
soils at high elevations more vulnerable to global changes.

It was unexpected that Q10 values along the elevation gradient were
constant within each incubation temperature range. Kinetic theory
indicates that Q10 of SOC mineralization is inversely related to the C
quality (Fissore et al., 2009). Interestingly, C:N ratio, as one of the
indicators of C quality, was found significantly higher in AM. This is not
contradictory to the kinetic theory since numerically, the differences
between C:N ratios along the elevation gradient is small. For example,
the mean C:N ratio in the Wuyi Mountains (8.4) is much lower than in
the Beskidy Mountains (22.0) in southern Poland (Niklinska and
Klimek, 2007) and nitrogen may not limit the mineralization of C in
the Wuyi Mountains. On the other hand, we know little about the roles
of microbes played in LOC mineralization, which is undoubtedly
important but insufficiently studied. Consistent Q10 of LOC mineraliza-
tion along the elevation gradient indicates that locally, C quality maybe
a minor factor in affecting LOC mineralization and it may be adequate
to use a constant Q10 value to represent the response of LOC decom-
position to warming in regional climate-C cycling models. Further
research of the effect of microbial community on the Q10 of SOC
mineralization is highly needed toward more realistic projections of soil
C dynamics by Earth system models.
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