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Abstract

Soil organic carbon (SOC) dynamics are regulated by the complex interplay of cli-

matic, edaphic and biotic conditions. However, the interrelation of SOC and these

drivers and their potential connection networks are rarely assessed quantitatively.

Using observations of SOC dynamics with detailed soil properties from 90 field trials

at 28 sites under different agroecosystems across the Australian cropping regions,

we investigated the direct and indirect effects of climate, soil properties, carbon (C)

inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C

ha�1 yr�1). Among these variables, we found that the most influential variables on

rC were the average C input amount and annual precipitation, and the total SOC

stock at the beginning of the trials. Overall, C inputs (including C input amount and

pasture frequency in the crop rotation system) accounted for 27% of the relative

influence on rC, followed by climate 25% (including precipitation and temperature),

soil C pools 24% (including pool size and composition) and soil properties (such as

cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a

network of intercorrelations of climate, soil properties, C inputs and soil C pools in

determining rC. The direct correlation of rC with climate was significantly weakened

if removing the effects of soil properties and C pools, and vice versa. These results

reveal the relative importance of climate, soil properties, C inputs and C pools and

their complex interconnections in regulating SOC dynamics. Ignorance of the impact

of changes in soil properties, C pool composition and C input (quantity and quality)

on SOC dynamics is likely one of the main sources of uncertainty in SOC predic-

tions from the process-based SOC models.
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1 | INTRODUCTION

Soil is the largest reservoir of carbon (C) in the terrestrial biosphere.

How this soil C pool responds to environmental and management

changes is vital for climate change mitigation and sustainable soil

management (Davidson & Janssens, 2006; Lal 2004, Paustian et al.,

2016). A series of mechanisms have been proposed to explain soil

organic carbon (SOC) dynamics over space and time (Davidson,

Savage, & Finzi, 2014; Dungait, Hopkins, Gregory, & Whitmore, 2012;

Lehmann & Kleber, 2015; Schmidt et al., 2011). Involved in these

mechanisms are mainly three groups of factors including (1) climatic

variables such as precipitation and temperature, (2) soil conditions

including various physico-chemical properties, and (3) biotic proper-

ties consisting mainly of the quantity and quality of C inputs into soil.

These factors work together to regulate SOC dynamics. Therefore,

any studies focusing on single effects of these factors to predict SOC
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change would lead to great uncertainties (Bradford et al., 2016; Luo,

Keenan, & Smith, 2015). Any observed effect of a particular factor

may be the combined consequences of direct and indirect (via affect-

ing other soil processes) effects of the factor on SOC dynamics. A big

challenge is to elucidate how these various forces work together to

directly and/or indirectly regulate SOC dynamics, and thus provide

robust mechanistic understanding towards reliable predictions.

Climate is generally regarded as the dominant control over soil C

dynamics and often explains the largest proportion of variations in

SOC decomposition at global and regional scales (Carvalhais et al.,

2014; Mahecha et al., 2010). This climate–SOC relationship has been

adopted in ecosystem C cycle and Earth system models (ESMs), and

SOC decay is usually simulated as a first-order decay process modi-

fied by soil moisture and temperature (McGuire and Treseder, 2010,

Xu et al., 2014). As a result, modelled soil C dynamics are very sensi-

tive to precipitation and temperature changes, and ESMs predict that

soil is a significant source of atmospheric CO2, particularly under glo-

bal warming. However, large uncertainties remain in ESMs’ predic-

tions of soil C dynamics (Carvalhais et al., 2014; Luo, Ahlstrom et al.,

2016; Negron-Juarez, Koven, Riley, Knox, & Chambers, 2015; Todd-

Brown et al., 2013). Both current experimental observations (Doetterl

et al., 2015; Hamdi, Moyano, Sall, Bernoux, & Chevallier, 2013) and

modelling exercises (Sulman, Phillips, Oishi, Shevliakova, & Pacala,

2014; Tang & Riley, 2015) suggest that the effect of climate on SOC

dynamics should be assessed with the consideration of physical pro-

tection of SOC from decomposition. In the context of global change,

fertilization effect of atmospheric CO2 enrichment may also result in

another indirect effect on SOC dynamics through its regulation on

the quantity and quality of C inputs into soil (Guo & Gifford, 2002;

Hyv€onen et al., 2007; Magnani et al., 2007; Norby & Luo, 2004).

The quantity and quality of C inputs into soil indeed exert signifi-

cant direct impacts on SOC dynamics (Bardgett & Wardle, 2010; De

Deyn, Cornelissen, & Bardgett, 2008; Luo, Wang, & Smith, 2015).

The importance of the quantity of C input is straightforward as

C influx to soil directly determines soil C balance. The quality of

C inputs (e.g., the ratio of lignin or C to nitrogen) influences the uti-

lization by microbes, microbial community structure and substrate

utilization strategies, and finally the composition and distribution of

SOC pools and their decomposability as a cohort (Bending, Turner, &

Jones, 2002; Cotrufo, Wallenstein, Boot, Denef, & Paul, 2013;

Prescott, 2010; Raich & Tufekciogul, 2000). In general, the quantity

and quality of C inputs associate with vegetation type, which is pre-

dominantly controlled by climatic conditions and interacts with soil

environment (Beer et al., 2010; Finzi, Van Breemen, & Canham,

1998; Raich & Schlesinger, 1992).

Besides climate and C inputs, there is growing evidence that soil

conditions reflected by geochemistry and physical structure also have

significant direct effects on SOC stability through physico-chemical

barriers from microorganisms to access C sources (Delgado-Baquerizo,

Garcia-Palacios, Milla, Gallardo, & Maestre, 2015, Doetterl et al.,

2015). For instance, SOC can be occulated into soil aggregates and/

or adsorbed to mineral surfaces, and thus is protected from decom-

position. The protective capacity of different soils would vary

significantly depending on soil type and physico-chemical conditions

(Feng, Plante, & Six, 2013; Krull, Baldock, & Skjemstad, 2003; Six,

Conant, Paul, & Paustian, 2002). In mineral soils, Schimel and Schaef-

fer (2012) argued that soil physical protection of SOC from decom-

position is the dominant mechanism controlling SOC stability.

Constraining a theoretical model that considers protected and unpro-

tected SOC using incubation data sets also suggested that the pro-

tected SOC accounts for more than 95% of total SOC, and SOC

dynamics depend on the dynamics of the protected SOC (Luo, Bal-

dock, & Wang, 2017). Other than the physical protection of SOC

itself, soil physical (e.g., bulk density) and chemical properties (e.g.,

pH) also directly determine the microbial processes involved in

decomposition. Under similar climate and C inputs, microbial decom-

position processes would be significantly different among soils

because distinct microbial enzyme activities (Derrien et al., 2014)

and community structure (Bernard et al., 2012, Foesel et al., 2014)

as a result of specific soil conditions, leading to soil-dependent stabi-

lization/destabilization of SOC (Keiluweit et al., 2015; Waldrop &

Firestone, 2004).

It is apparent that complex interconnections exist among climatic,

biotic and edaphic controls over SOC dynamics. While most studies

focus on the overall effect of one or several typical factors, few

studies have quantitatively partitioned the direct from indirect

effects directly based on observational data. Such quantitative analy-

sis can provide new insights into mechanisms underpinning SOC

dynamics and are critical for robust SOC predictions under global

and environmental changes. Path analysis (also known as “structural

equation modelling”) is a powerful approach designed for the study

of multivariate interacting systems (Grace & Kelley, 2006). It has

been widely used in ecological studies and can effectively distinguish

between direct and indirect effects (Grace & Kelley, 2006; Jonsson

& Wardle, 2010). In this study, we applied a hypothesis-oriented

path analysis to a large-scale observational data set collected from

90 trials at 28 sites across the Australian cropping areas. The data

set includes temporal measurements of SOC stocks with detailed

measurements and records of climatic, edaphic and biotic variables.

Combining with path analysis, the data set provides us a good

opportunity to identify the potential direct and indirect effects of

these variables and quantify their relative contributions to the

observed SOC dynamics. Specifically, we ask and try to answer the

following questions: (1) What is the relative importance (i.e., which

factor is more important) of climatic, edaphic and biotic controls over

SOC dynamics? (2) Whether and how do these controls directly

and/or indirectly affect overall SOC dynamics? (3) Whether and how

are the effects of climatic, edaphic and biotic variables on SOC

dynamics dependent upon each other?

2 | MATERIALS AND METHODS

2.1 | Study sites

Legacy data from 90 trials located at 28 sites (Figure 1) were used

in this study. These trials were initially selected to collect data to
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estimate changes in soil C resulting from land use changes (Skjem-

stad & Spouncer, 2003). Most of the trials were conducted during

the period from 1970–2000 (Table S1). The 28 sites span the Aus-

tralian cereal-cropping areas, covering diverse climate, soil and agri-

cultural management conditions. The duration of the 90 trials ranged

from 5–82 years with an average duration of 26 years (Table S1).

Crop sequence, annual crop yield and residue production (estimated

according to harvest index), and agricultural practices such as residue

management (removal or retention) were recorded each year,

enabling the calculation of aboveground residue C input (Mg C

ha�1 yr�1) into the soil. The meteorological records for each site

include total monthly precipitation and pan evaporation, and mean

monthly temperature. This climatic data can be obtained from the

SILO Patched Point Dataset (https://www.longpaddock.qld.gov.au/

silo/ppd/). On average, the annual rainfall across the sites ranges

from 221–892 mm, and annual mean temperature from 12.8–21.9°C.

More details about the sites, trial design and measurements were

described by Skjemstad and Spouncer (2003).

2.2 | SOC measurements, fractionation and other
soil properties

SOC stock was determined for representative samples in the 0–

30 cm soil at the beginning and end of each trial at least (Table S1).

At each time point of measurements, soil cores (up to 80 cores

depending on trials) were randomly sampled from the experimental

field. Then, a composite bulk sample was produced by thoroughly

mixing all the cores and was sieved as <2 mm materials. Total SOC

stock (Mg C ha�1 in the top 30 cm soil) was determined using a

Leco combustion furnace (Merry & Spouncer, 1988) taking into

account the bulk density and gravel content. Soils were fractionated,

and the allocation of total SOC to its component fractions was

determined (Janik, Skjemstad, Shepherd, & Spouncer, 2007; Skjem-

stad, Spouncer, Cowie, & Swift, 2004). The fractions of SOC

quantified include the following: (1) charcoal C, particle size <2 mm

with a poly-aromatic chemical structure, which is recalcitrant to

decomposition; (2) particulate organic C (POC), organic carbon

contained in particulate organic matter with particle size of

53 lm–2 mm; and (3) mineral-associated organic C (MOC), organic

C contained in organic matter particles <53 lm excluding charcoal C.

The detailed procedures for SOC measurements and pool fractiona-

tion were reported elsewhere (see the section 1.6 Analytical Meth-

ods in the report by Skjemstad & Spouncer, 2003). As only charcoal

C and POC were directly determined, the amount of MOC was cal-

culated as: MOC = TOC – POC – charcoal C. These measurements of

SOC fractions represent three C pools with different decomposabil-

ity (POC > MOC > charcoal C). The temporal data of total SOC

stock and its fractions at each site were presented in Table S1.

Along with the measurements of total SOC and its fractions, key

soil geochemical characteristics were also estimated including calcium

carbonate (CaCO3), pH in water (pH), electric conductivity (EC), cation

exchange capacity (CEC), total content of silicon (Si), aluminium (Al)

and iron (Fe), bulk density (BD), total nitrogen (TN) and percentage

clay content. These estimations used the prediction algorithm coupled

with spectral analyses developed by Haaland and Thomas (1988) and

had been described by Skjemstad and Spouncer (2003). In brief, the

algorithm predicts soil properties using soil spectral data, which was

obtained for the soil by a mid-infrared spectrometer. Viscarra Rossel,

Walvoort, McBratney, Janik, and Skjemstad (2006) have demon-

strated the suitability of this approach for predicting various soil

properties (explaining >80% of the variance in most soil properties

tested in their study). All the data sets used in this study were from

the calibration and enhanced paired sites reported by Skjemstad and

Spouncer (2003) and are available for public on: http://www.fullcam.

com/FullCAMServer/Help/reps/ (TR 36 Soils Modelling for NCAS).

Here, we want to emphasize that no information about the vari-

ability of the data in individual trials is available; thus, it is impossible

for us to assess uncertainties induced by measurement/estimation

errors. However, the 90 trials cover a wide range of spatial variabil-

ity (e.g., SOC ranges from 13.7–106 Mg ha�1), and the uncertainty

at the trial level would be negligible compared to the large spatial

variability. In addition, most of the studied sites were newly cleared

from natural grassland or forest. These newly cultivated soils may

rarely stay at the equilibrium state, and may experience soil weather-

ing, erosion and other soil physiochemical changes. However, the

estimated temporal soil properties may quantitatively reflect the soil

status of the studied systems, which have been explicitly assessed in

the following data assessment.

2.3 | Calculation of SOC change rate

We calculated the SOC change rate (rC, Mg C ha�1 yr�1) as:

rC ¼ CtþDt � Ct

Dt
(1)

where Ct and Ct+Dt are the SOC stocks (Mg ha�1) in the 0–30 cm

soil at time t and t+Dt, respectively. As all other soil geochemical

F IGURE 1 The location of the studied 28 sites across Australian
cropping areas. Some sites are very close to each other, and thus,
the corresponding symbols are overlapped to some extent
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variables were measured with the SOC measurement and to exploit

and amplify available information, we calculated rC for all combina-

tions of measurement time points. For example, if SOC is measured

in years 1, 2 and 3, there are three combinations: rC from year 1

(i.e., t = 1) to 2 (Dt = 1) and 3 (Dt = 2), and from year 2 (t = 2) to 3

(Dt = 1). As a result, a total of 509 rC were estimated, with the cor-

responding C input, soil properties, climate calculated as the average

of all measurements between t and t+Dt. For POC, MOC and char-

coal C, we used their estimations at time t to calculate the variables

indicating C pool composition in the following path analysis,

acknowledging that initial pool size and composition would have

significant effect on the following SOC dynamics.

2.4 | Path analysis

We used a path model (i.e., structural equation model) with four

latent variables, that is, climate, soil (i.e., various soil physical and

chemical properties), C input (both quantity and quality) and soil C

pools, to assess their direct and indirect effects on rC. The latent

variables were reflected by observed variables (i.e., indicators). For

the latent variable “climate,” we considered three indicators: temper-

ature, precipitation and evaporation. All measurements of soil geo-

chemical properties including pH, clay, EC, CEC, Si, Al, Fe, CaCO3,

TN and BD were considered as potential indicators for the latent

variable “soil”. For “C input”, we considered two indicators: the abso-

lute amount of C input (e.g., residue C input amount per year) and

the relative frequency of pasture in the crop-pasture system. For

example, the relative frequency was assigned to be 0 if there is no

pasture in the system (i.e., continuous cropping), 0.5 if half of the

time from t to t+Dt was pasture and 1 if it is a pure pasture system.

In the data sets, pasture is mostly dominated by legumes which have

lower C:N ratio than that of cereal crops. The frequency of pasture

can therefore reflect the quality of retained residue. For soil C pools,

we estimated the ratio of POC to MOC, the fraction of charcoal C

in total SOC and the total C pool size (i.e., the total SOC stock) as

indicators.

We considered the following potential paths in a hypothesis-

oriented path model. First, we hypothesized that all the four latent

variables have direct effect on rC. Second, climate may also indirectly

affect rC through its effect on soil geochemical properties, C input,

and soil C pools. Third, soil may indirectly affect rC through its effect

on C input and soil C pools. At last, C input may indirectly affect rC

through its effect on soil C pools.

Prior to the path analysis, we screened the indicators by con-

ducting a boosted regression trees (BRT) to identify the influential

factors controlling SOC stocks (Elith, Leathwick, & Hastie, 2008).

The BRT involves a type of data-mining (machine-learning) algorithm

that combines the advantages of a regression tree (decision tree)

algorithm and boosting. It can analyse different types of variables

and interaction effects between variables and are applicable to non-

linear relationships. The BRT analyses also can identify the relative

importance (percentage of influence or contribution) of a predictor

variable (explanatory variable) compared with other variables

considered (Elith et al., 2008). The significant variables (i.e., indica-

tors) identified by the BRT were used in the path model. The pre-

dicted rC by the BRT driven by the identified variables was

compared with observed rC calculated based on Equation (1). This

comparison allows us to judge the overall predictive power of all

considered variables.

The partial least squares (PLS) approach was used for the path

analysis. The PLS path analysis is different from the conventional

covariance-based path analysis, and does not impose any distribu-

tional assumptions on the data which is usually difficult to meet

(Sanchez, 2013). So, the criteria (e.g., chi-square estimates to judge

model fit) used in covariance-based approaches is invalid for PLS

path analysis. In the PLS path analysis, the loading of each indicator

variable is the key to estimate latent variable scores and calculated

as the correlation between a latent variable and its indicators. An

iterative algorithm is used to estimate the loadings until the conver-

gence of the loadings is reached to maximize the explained variance

of the dependent variables (both latent and observed indicator vari-

ables). A non-parametric bootstrapping (200 resamples in this study)

was used to estimate the precision of the PLS parameter estimates.

The 95% bootstrap confidence interval was used to judge that

whether the estimated path coefficients are significant. To ease

interpretation, if an indicator has a negative loading, its opposite was

used in the model to ensure a positive loading, and all indicators

were standardized. The BRT and PLS path analyses were performed

using the package gbm and plspm, respectively, in R 3.3.1 (R Core

Team 2016).

2.5 | Testing inter-correlations among soil, climate,
C input and soil C pools

The PLS path analysis quantified the potential cause–effect relation-

ships involved in rc. Another interesting question is that whether and

how the effect of a particular variable is dependent upon other vari-

able(s). In the PLS path analysis, latent variable scores are calculated

as weighted sums of their indicators (i.e., different indicators have

different loadings). These scores are quantitative representations of

the latent variable. Using the latent variable scores, we assessed the

bivariate correlations between the latent variable scores of climate,

soil, C input, soil C pools and rC using zero-order correlations and

partial correlations (Pearson correlation) by controlling for one vari-

able (Doetterl et al., 2015). Partial correlations control the effect of

a given variable on the correlation between other variables and

response variables (rC in this study), and estimate the strength of the

linear associations between two variables (e.g., rC with climate) that

cannot be accounted by the variability in other variables (e.g., C

input). For example, if the correlation between a latent variable and

rC is increased/decreased by controlling another variable, it means

that the effect of the former variable depends on the latter variable.

The estimated mean and standard error (SE) of the correlation coef-

ficient were used to calculate the 95% confidence interval

(mean � 1.96SE). If the 95% confidence intervals of the coefficients

of the zero-order and partial correlations do not overlap, it indicates
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the controlled variable in the partial correlation has significant effect.

The partial correlation was performed using functions in the package

ppcor in R 3.3.1 (R Core Team 2016).

3 | RESULTS

The result of boosted regression trees suggested that C input

amount, total SOC content at the beginning of trials and precipita-

tion were the three most influential variables on rC (>20%, Figure 2)

among the studied 17 variables. The three variables together

accounted for 63% of the overall influence of all assessed variables

(Figure 2). The relative individual influence of soil properties was

small, but the overall contribution of soil properties to observed rC

was 24%, while it was 27%, 24% and 25% from C inputs, soil C

pools and climate, respectively (Figure 2). Some variables had little

contributions and were dropped from the boosted regression trees.

Overall, the boosted regression tree model driven by the variables

showed in Figure 2 explained 79% of the variance in observed rC

(Figure 3).

The variables identified by the boosted regression trees were

grouped to indicate four latent variables (i.e., climate, soil, C input

and soil C pools) in the PLS path analysis. Figure 4 shows the stan-

dardized loading of each indicator to the corresponding latent vari-

able. The loading scores suggested that precipitation, C input

amount and total SOC stock were more powerful indicators of cli-

mate, C input and soil C pools, respectively, compared with other

indicators of that latent variable (Figure 4). This result verified the

results of the boosted regression trees on the relative important of

these variables in the related variable groups (Figure 2).

The PLS path analysis could explain 57% of the variance in rC

(R2 = .57, Figure 5). Climate had direct and indirect significant asso-

ciations with rC via all hypothesized pathways in the study, including

that involving soil, C inputs and composition of soil C pools, and a

direct path (Figure 5). Climate (i.e., precipitation and temperature as

indicated in Figure 4a) significantly and negatively associated with rC,

while its association with the studied soil properties, C input and C

pool size were significantly positive. Soil properties (i.e., CEC, –Si, –

BD, clay, Al and Fe as indicated in Figure 4b) significantly and posi-

tively but only indirectly associated with rC via negatively associating

with C pool size and composition (i.e., the ratio of POC to MOC as

indicated in Figure 4d), which negatively associated with rC. C input

(i.e., the C input amount and pasture frequency in the system as

indicated in Figure 4c) not only had direct positive effect on rC, but

also indirectly affected rC via its positive effect on C pools, which

negatively associated with rC (Figure 5).

F IGURE 2 The relative contributions (%) of predictor variables
for the boosted regression tree model of soil organic carbon change
rates. POC:MOC, the ratio of POC (particulate organic carbon) to
MOC (mineral-associated organic carbon); Fe, Si and Al, contents of
total iron, silicon and aluminium; BD, bulk density; CEC, cation
exchange capacity; Clay, soil clay content; pH, soil pH

F IGURE 3 Observed and predicted SOC change rates (rC) by the
boosted regression tree model using predictors showed in Figure 2.
The dashed line shows the 1:1 line

F IGURE 4 Latent variables with their indicators considered in
the path analysis. Numbers in the parentheses show the loading
scores (i.e., the correlation coefficient between the latent variable
and its indicators). Si and BD have been transferred to their
opposite to ensure positive loading. All symbols are as that in
Figure 2
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The importance of the interconnections was further evidenced

by the partial correlation analysis (Figure 6). The negative correla-

tion between climate and rC (i.e., the zero-order correlation with

Pearson’s r = –.45) significantly enhanced after removing the effect

of C input (r = –.64). As demonstrated by the PLS path analysis,

this result was due to the fact that the indirect effect of climate

on rC via C input (positive) was opposite to the direct effect of

climate (negative, Figure 5). In contrast, the correlation between

climate and rC significantly decreased if removing the effect of soil

(r = –.25) and C pools (r = –.079). Meanwhile, if the climate was

controlled, the correlation between soil and rC also significantly

decreased (Figure 6). With the results of the PLS path analysis

(the path coefficient from climate to soil was 0.69 in Figure 5),

these results highlighted the close interrelation of climate and soil

in determining SOC dynamics. Although the zero-order correlation

between rC and C input was much weaker than the correlations

of rC with climate, soil and C pools (Figure 6), the correlation of

rC with C input was significantly increased if removing the effect

of climate, soil or C pools (Figure 6). C pools showed the stron-

gest zero-order correlation with rC (r = –.50), and this correlation

could be significantly weakened (r = –.24) and strengthened

(r = –.73) by removing the effect of climate and C input, respec-

tively (Figure 6).

4 | DISCUSSION

A great number of observational and modelling studies have

acknowledged the general importance of climatic, edaphic and biotic

factors in controlling SOC dynamics in different context (Carvalhais

et al., 2014; Luo et al., 2013; Schimel et al., 1994; Wynn et al.,

2006). Our results identified that C input amount, total SOC content,

and precipitation are the three most important variables controlling

SOC dynamics and could explain the majority of the variances in

observed SOC change rates for the environments included in this

study. Moreover, the results provided quantitative analyses of the

direct and indirect contributions of soil, climate and C input in regu-

lating SOC dynamics (Figure 5).

As expected, climate has significant direct effect on SOC change

rate rC. However, its overall direct contribution for explaining the

variance of observed SOC change rates was comparable to other

variables including soil C pools, C inputs and soil properties in our

studied agricultural systems (Figure 2). Climate mainly plays a key

role in regulating plant growth thus potential C input to the soil and

microbial decomposition activity. This role can be largely mediated

by land use types and intensive agricultural practices including the

selection of cropping systems, fertilizer and residue management,

and tillage, which have strong impact on final C inputs and soil envi-

ronment. Even in natural systems, the effect of climate is subject to

great uncertainties (Bradford et al., 2016). A recent study focusing

on the wood decomposition on soil surface suggested that the effect

of climate was only secondary compared with that of the soil geo-

chemistry (Bradford et al., 2014). These results may imply that the

direct impact of climate in controlling SOC decomposition dynamics

may be overestimated. Nevertheless, climate represented by precipi-

tation and temperature are the mostly widely considered controls

over SOC decomposition dynamics. The uncertainties in SOC predic-

tions from the Earth system models are likely due to incorrectly

accounting for the indirect impact of climate (e.g., its impact on soil

property [CEC, texture, minerals, etc.] and on C input quantity and

quality) together with inaccurate simulations of SOC decomposition

in response to moisture and temperature changes (Todd-Brown

et al., 2013), which may be mediated by variations in microbial com-

munity. Among the climate variables, our results further suggested

F IGURE 5 Path analysis results on the direct and indirect effects
of soil, climate, C input and C pools on soil organic carbon change
rates. Numbers show the path coefficients. Grey path and number
indicate that the effect is insignificant, and dashed paths and the
associated numbers indicate the effect is negative. See Figure 4 for
the indicators of the four latent variables

F IGURE 6 Partial correlations (Pearson’s r) between SOC change
rates and the four latent variables in the path analysis. Changes of
correlation between SOC change rates and climate, C input, soil and
C pools, controlled for one variable. Difference between zero-order
and partial correlations indicates the level of dependency of the
correlation between a given variable and the SOC change rates. The
colour and numbers indicate the sign (red and green colours indicate
negative and positive correlations, respectively) and strength (the
intensity of the colour) of the correlation. No change in colour
between controlled variable and zero-order = no dependency;
decrease/increase of colour intensity = loss/gain of correlation. Bold
values indicate that the correlation is significant at p < .05. Italic
numbers indicate that the coefficients are significantly changed
(increased or decreased) compared with the coefficient of zero-order
correlation (the first column). See Figure 4 for the indicators of the
four latent variables [Colour figure can be viewed at
wileyonlinelibrary.com]
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that precipitation is more important than temperature in the studied

environments. This result may attribute to the fact that Australian

agro-ecosystems are mainly water- rather than temperature-limited,

resulting in the greater response of SOC change to precipitation than

to temperature. This result is also consistent with our previous mod-

elling study assessing drivers of SOC change across the Australian

cropping regions (Luo et al., 2013).

The impact of climate on soil properties and the subsequent

effect on SOC dynamics are well-documented, but rarely quantified.

A direct evidence is that the same volcanic soil has evolved distinct

soil properties (e.g., reactive-phase minerals, the content of major

elements and soil nutrient conditions) after only 20,000 years (this is

a very short time in terms of soil weathering) of weathering across

an altitude climate gradient on Mauna Kea, Hawaii (Kramer & Chad-

wick, 2016). These distinctions in soil geochemical properties further

lead to different capacity of retaining soil C and SOC dynamics

(Doetterl et al., 2015; Kramer & Chadwick, 2016). Bradford et al.

(2014) found that local-scale variables explained 73% of the variance

in wood decomposition, while climate only 28%. Although they did

not identify the specific local-scale variables, soil properties may

account for a large part as their great spatial variability even at a

plot scale (Zhou et al., 2008). Our results showed that soil structure

(BD and clay content) and soil chemistry (CEC, Fe, Si and Al) all have

significant direct effect on soil C pools (the path from soil to soil C

pools in Figure 5), which directly affect SOC dynamics. Another

noteworthy point is that the positive association between climate

variables and soil properties. As a result, the direct negative associa-

tion of climate with rC will be further enhanced by the indirect effect

of climate through affecting soil properties. This is proved by the

partial correlation analysis. The correlation of rC with climate was

changed from –0.45 to –0.25 if the effect of soil was controlled,

while the correlation with soil was changed from –0.42 to –0.20 if

the effect of climate was controlled (Figure 6). These results demon-

strated that climate–soil intercorrelations must be considered simul-

taneously to reliably predict SOC dynamics.

Climate (i.e., temperature and, particularly, precipitation in this

study) has significant positive effect on C input and soil C pool size

and composition, leading to positive and negative effects on rC,

respectively. The positive correlation between climate and C input is

straightforward. For example, high precipitation and temperature

usually couple with high plant productivity (Beer et al., 2010) and

thus high amount of C inputs to soil. In terms of pasture frequency,

under Australian conditions, the high rainfall and warmer areas are

characterized by the high-value grazing land use, and perennial pas-

ture like lucerne is grown more often during wetter periods to con-

trol drainage. The effect of climate on the soil C pools may attribute

to the direct linkage between climate and microbial processes. It will

be of interest to empirically and directly test that how climate regu-

lates the transfer of new fresh C substrates to different SOC pools,

given soil and C input. Similar to the intercorrelation between cli-

mate and soil, both C input and C pool size were intercorrelated

with climate to affect SOC dynamics (Figure 6), with the positive

effect of C input on rC was increased from 0.17–0.49 and 0.35 if the

effect of climate and soil was controlled, respectively. However, the

corresponding negative association of rC with soil C pools was

decreased from –0.50 to –0.24 and –0.28, respectively. These results

suggested that the effect of C input and C pool size on soil C

dynamics was largely weakened by the effects of climate and soil.

As such, the consequences of changes in C input and soil C pools

induced by potential environmental and management changes on soil

C dynamics will significantly depend upon local soil and climatic con-

ditions.

Besides the direct effect of C inputs on rC, it also indirectly

affects rC via its influence on C pools. The two indicators of C input

here were the amount of C input and pasture frequency (Figure 3).

In Australian pasture systems, legumes such as lucerne and clover

are common species. The residues of these nitrogen-fixing species

have lower C:N ratio than cereal crops such as wheat—the dominant

crop in our data set, resulting in high quality of C inputs to soil in

systems with high pasture frequency. Thus, the two indicators reflect

the quantity and quality of C inputs to soil, respectively, which

directly affect the size and composition of soil C pools (POC:MOC

and the total C pool size in this study).

While the effects of soil properties on SOC storage and dynam-

ics have received much attention in recent years (e.g., Doetterl et al.,

2015; Hoyle, O’Leary, & Murphy, 2016; Rabbi et al., 2015; Sollins

et al., 2009), less quantitative relationships have been developed to

describe such effects. Our results provide such quantitative analyses

to describe the importance of soil properties. Comparing to the

impacts of climate, C inputs, and soil C pools, however, the relative

influences of individual soil properties are very limited, implying the

difficult to quantify the specific role of a particular soil physico-

chemical properties in SOC dynamics. We need a novel approach to

work out a metric representing soil heterogeneity that can generally

describe the effects of various soil properties on SOC dynamics

across space and time. It also should be noted that the complexity

of soil physico-chemical environment inhibits the identification of

the typical role of individual soil properties in regulating SOC dynam-

ics. We also know much little about which soil properties and how

they respond to environmental and management changes. This is

certainly a knowledge gap.

The results in this study provide useful mechanistic insights into

process-based soil C modelling. While some SOC models take addi-

tion of new C into the system as model input, most soil C models

take into account the effect of climate on the quantity and quality

of C inputs and the impact of soil moisture, temperature (and some

clay content) on SOC decomposition. However, the changes in soil

properties and soil C pool composition in response to climate and

management changes are largely ignored. This is likely one of the

main sources of uncertainty in SOC predictions. For example, climate

may have direct effects on soil texture, mineralogy and chemical

properties, which also closely link with SOC turnover (Figure 5).

Another point should be highlighted was the importance of soil

C fractions represented by POC:MOC, their contributions to explain

the variability in SOC change was relative small. The C fractions in

this study were currently measured based on soil particle size, they
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may not match the conceptual C pools in models, which are usually

estimated based on model-fitting. It is unsurprising that these models

may generate great uncertainties in their predictions (Todd-Brown

et al., 2013; Luo, Wang et al., 2015) because of unrealistic estima-

tion of C pools even at model initialization stage (Luo, Wang, & Sun,

2017). These results demonstrate the requirement to better under-

stand the composition and decomposability of SOC. While the mea-

surable fractions of SOC can be a step forward to initialize C pools

in models and thus reduce model uncertainties (Luo et al., 2017), the

association of climate, soil properties and C inputs with the distribu-

tion of those C pools also should be considered (Figure 5). Another

point is that the path modelling (Figures 4 and 5) and partial correla-

tion (Figure 6) suggest that POC:MOC negatively associates with rC;

that is, the higher POC:MOC is, the lower the rC is. This is reason-

able as POC (particulate organic carbon) is more vulnerable than

MOC (mineral-associated organic carbon) to decomposition. The

SOC content is a key indicator of soil productivity and health, partic-

ularly in agroecosystems. Our results highlight that the soil C pool

composition is also important. Sequestering more C as MOC or

reducing the disturbance on MOC will reduce the vulnerability of

SOC to potential management and climate changes.

We acknowledge that there are uncertainties also associated

with our data and assessment approach, but believe that such uncer-

tainties do not change our main results. Firstly, most of the soil

properties are not directly measured but estimated based on predic-

tion algorithms, and the data set were mainly from cultivated soils in

Australia. Although the algorithm approach is cost-efficient and easy

to operate, more precise measurements in situ would enhance the

data quality and reduce the uncertainties in the results. In other land

uses and/or ecosystems rather than agroecosystems, the relative

importance of climate, soil properties, C inputs and soil C pools may

be different among ecosystem types. More comprehensive data set

covering more land uses and management with detailed monitoring

of various soil properties will be valuable for further identifying pri-

mary controls over SOC dynamics. Secondly, the path model did not

consider the potential interactions between the indicators for a par-

ticular latent variable. This would also be one of the reasons that

the path model explained less variance (57%, Figure 5) of the SOC

change than the boosted regression model (79%, Figure 3) which

does consider the interactions of variables. Thirdly, the results of

boosted regression trees indicated that SOC change rates were rela-

tively poorly estimated when SOC is experiencing large changes

(decrease or increase, Figure 3). Land management such as land use

transitions and tillage, which usually result in sharp changes in SOC

stocks, may explain such discrepancies, while it was not well repre-

sented in the statistical model. Long-term monitoring of SOC and C

input changes, together climate conditions, and soil properties, would

help to identify site-specific sensitive controls and develop mathe-

matic solutions to improve process-based models.

Using the large-scale observational data sets from 90 trials under

diverse soil, climate and management conditions, our analyses pro-

vide quantitative evidences on the relative importance of climatic,

edaphic, and biotic variables as they impact on SOC dynamics

through direct and indirect pathways. We found that antecedent

SOC stocks, C input amount and precipitation are the three most

influential variables to influence SOC dynamics under the studied

environments. Climate impacts on SOC dynamics through its direct

influence on SOC decomposition/formation processes and its indi-

rect impact on C input (via primary productivity) and soil properties.

Our results demonstrate that the indirect impact can be larger than

the direct impact, reflecting the importance of the interactions

between climate, soil and C input amount and quality. This implies

that the effect of climate largely depends on its correlation with

pathways that have different or opposite effects on SOC dynamics,

suggesting that the sensitivity of SOC dynamics to climate variability

may be buffered by changes in primary productivity and soil proper-

ties. These results have important implications for climate-smart soil

management and reliable model predictions. While current Earth sys-

tem models consider the direct impact of climate on SOC decompo-

sition processes (e.g., in response to soil moisture and temperature

over space and time), they ignore, to large extent, the changes in soil

properties and the subsequent impact on SOC dynamics, and to less

extent, the potential impact of climate on C input quality and quan-

tity. These shortcomings have to be overcome in order to reduce

the uncertainty in SOC productions in response to climate, soil and

vegetation conditions. Novel approaches are required to specifically

target the indirect effects and interactions, and develop mechanistic

understanding to improve next generation models.
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