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Abstract Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for
determining future climate. However, Earth system models project large uncertainties in future C storage.
To help identify sources of uncertainties in model predictions, this study develops a transient traceability
framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into
two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an
ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C
input and output for a network of pools. Xc is codetermined by net primary production (NPP) and residence
time (sN), with the latter being determined by allocation coefficients, transfer coefficients, environmental
scalar, and exit rate. Xp is the product of redistribution matrix (sch) and net ecosystem exchange. We applied
this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model.
This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests
to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this frame-
work, we found that different mechanisms lead to a similar trajectory between the two ecosystems. This
framework has potential to reveal mechanisms behind transient C storage in response to various global
change factors. It can also identify sources of uncertainties in predicted transient C storage across models
and can therefore be useful for model intercomparison.

1. Introduction

Terrestrial ecosystem carbon (C) dynamic is one of key components that determine future climate since ter-
restrial ecosystems can uptake a substantial fraction of the important greenhouse gas, carbon dioxide (CO2)
emissions by anthropogenic activities. Land has sequestered approximately one-third CO2 emissions from
fossil fuels and cement and land use change during 2004–2013 (Le Qu�er�e et al., 2015). However, several
model intercomparison projects (MIPs) have demonstrated large uncertainty in the projections of terrestrial
C dynamics by land surface models (LSMs). For example, Tian et al. (2015) reported substantial differences
in estimated contemporary global soil C stocks ranging from 425 to 2111 Pg C by 10 terrestrial biosphere
models in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP); Todd-Brown
et al. (2014) showed large differences in modeled soil C stock changes ranging from a loss of 72 Pg to a
gain of 253 Pg C in the next 100 years by the Earth system models (ESMs) involved in Coupled Model Inter-
comparison Project Phase 5 (CMIP5).

Great effort has been made to identify the causes of model uncertainty among ESMs. For example, climatic
forcing from the general circulation models (GCMs) explains the majority of uncertainties in the projected
21st century terrestrial C balance by a dynamic global vegetation model (Ahlstr€om et al., 2013); using a
reduced complexity model, Todd-Brown et al. (2013) found that differences in the simulated soil C across
CMIP5 ESMs can be explained by net primary production (NPP) and the parameterization of soil heterotro-
phic respiration; C residence time is responsible for the major uncertainties in the modeled vegetation or
soil C storage by LSMs or CMIP5 ESMs (Friend et al., 2014; He et al., 2016; Jiang et al., 2015; Wang et al., 2011).
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Even though these processes or parameters have been identified to be responsible for model uncertainty, sys-
tematical analysis across models is lacking and remains challenging for model improvement due to the low
practicability (Fisher et al., 2014). In addition, more and more processes are incorporated into LSMs or ESMs,
which makes identifying sources of model uncertainty even more difficult.

Shared properties among most land C cycling models make systematical analysis possible (Luo et al., 2015,
2016). Using a traceability framework, Xia et al. (2013) successfully traced the difference in ecosystem carbon
storage capacity among different biomes to four model components: NPP, baseline C residence times, envi-
ronmental scalars, and climate forcing. As most LSMs share the same model structures, this traceability frame-
work has the potential to help diagnose the sources of uncertainties in LSM projections of C storage. For
example, it has been applied to a global vegetation model, LPJ-GUESS, to trace ecosystem C cycle processes
and to evaluate the importance of vegetation dynamics for future terrestrial C cycling (Ahlstr€om et al., 2015).

The traceability framework proposed by Xia et al. (2013) was developed to trace C storage capacity of an eco-
system under steady state. It is even more important to understand future terrestrial C storage dynamics (i.e.,
transient state). In order to reduce uncertainties in model projections, we need to understand responses of
C storage dynamics to future climate and other global change factors and the underlying mechanisms.
Recently, Luo et al. (2017) conducted a theoretical analysis on the determinants of transient C storage dynam-
ics, by adding another term, C storage potential, to the steady state traceability framework developed by Xia
et al. (2013). C storage potential represents instantaneous C pool size at a time step at which disturbances
such as temperature and precipitation prevent the actual C storage of an ecosystem away from its maximum
C capacity if the ecosystem keeps at equilibrium at that time (Luo et al., 2017). The theoretical analysis on tran-
sient C storage dynamics has potential applications in several different ways, among which are to explore the
mechanisms underlying the responses of ecosystem C cycle to climate change and to identify the sources of
model uncertainties to improve model performance for more reliable predictions of future C storage status.

In addition to evaluate uncertainty among models, the transient traceability framework can also be applied to
different simulated ecosystems to identify the difference of the components of the framework. While Luo
et al. (2017) focused on mathematical foundation of the transient framework, this study explores its applica-
tion by providing step-by-step details to carry out the analysis and by comparing different components of the
framework in two different ecosystem types. Specifically, the transient traceability framework is explored with
the Terrestrial ECOsystem (TECO) model in two contrasting ecosystems, Duke needleleaved forest and Harvard
deciduous broadleaved forest. We investigate how the traceable components of transient C storage dynamics
responded to the rising CO2 and climate change in the two contrasting ecosystem types.

2. Materials and Methods

2.1. The Transient Traceability Framework: Technical Details
This study proposes a traceability framework to trace modeled transient C storage dynamics of terrestrial
ecosystems, which is based on the theoretical analysis on transient C dynamics by Luo et al. (2017) and the
steady state traceability framework on C storage capacity by Xia et al. (2013).

It has well been documented that ordinary differential equations that characterize C movements from one
pool to another in most terrestrial C cycle models can be represented by a matrix formula (Luo et al., 2017;
Manzoni & Porporato, 2009; Sierra & M€uller, 2015; Xia et al., 2013):

X 0ðtÞ5BðtÞuðtÞ2AnðtÞKXðtÞ (1)

where X0(t) is net change of any individual C pool at time t, which is a vector for a multipool model, and the
sum of X0 of all individual C pools is net ecosystem production (NEP) or negative net ecosystem exchange
(NEE); B(t) is a vector of allocation coefficients of C input to each pool; u(t) is C input, i.e., NPP or gross pri-
mary production (GPP); A is a matrix of transfer coefficients between C pools; n(t) is a diagonal matrix of
environmental scalars to reflect the control of physical and chemical properties, e.g., temperature, moisture,
nutrients, litter quality and soil texture, on C cycle processes; and K is a diagonal matrix of exit rates from
donor pools, which is mortality rates for plant pools and decomposition coefficients for litter and soil pools;
and X(t) is individual pool size at time t, which is also a vector in a multipool model (Luo et al., 2017; Xia
et al., 2013). Fox example, in the TECO model (Luo et al., 2016; Shi et al., 2015; Weng & Luo, 2008), which
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has eight carbon pools (leaf, wood, root, litter, coarse wood debris, and fast, slow, and passive soil organic
matter (SOM) pools, supporting information Figure S1) with feedback between the three soil C pools, the
vector B, matrix A, and diagonal matrices n and K are as follows, respectively:

BðtÞ5

b1ðtÞ

b2ðtÞ

b3ðtÞ

0

0

0

0

0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

where b1(t), b2(t), and b3(t) are allocation coefficients of NPP to pool 1 (leaf), pool 2 (wood), and pool 3
(root), respectively.

A5

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

2a41 2a42 2a43 1 0 0 0 0

0 2a52 0 0 1 0 0 0

0 0 0 2a64 2a65 1 2a67 2a68

0 0 0 0 2a75 2a76 1 0

0 0 0 0 0 2a86 2a87 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

where aij is a transfer coefficient from pool j to i, for example, a41 is the coefficient for C transferred from
pool 1 (leaf) to 4 (litter), and so on.

nðtÞ5

n1ðtÞ 0 0 0 0 0 0 0

0 n2ðtÞ 0 0 0 0 0 0

0 0 n3ðtÞ 0 0 0 0 0

0 0 0 n4ðtÞ 0 0 0 0

0 0 0 0 n5ðtÞ 0 0 0

0 0 0 0 0 n6ðtÞ 0 0

0 0 0 0 0 0 n7ðtÞ 0

0 0 0 0 0 0 0 n8ðtÞ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

K5

k1 0 0 0 0 0 0 0

0 k2 0 0 0 0 0 0

0 0 k3 0 0 0 0 0

0 0 0 k4 0 0 0 0

0 0 0 0 k5 0 0 0

0 0 0 0 0 k6 0 0

0 0 0 0 0 0 k7 0

0 0 0 0 0 0 0 k8

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

And the matrix An(t)K can be derived as follows:
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An tð ÞK5

n1 tð Þk1 0 0 0 0 0 0 0

0 n2 tð Þk2 0 0 0 0 0 0

0 0 n3 tð Þk3 0 0 0 0 0

2n1 tð Þk1a41 2n2 tð Þk2a42 2n3 tð Þk3a43 n4 tð Þk4 0 0 0 0

0 2n2 tð Þk2a52 0 0 n5 tð Þk5 0 0 0

0 0 0 2n4 tð Þk4a64 2n5 tð Þk5a65 n6 tð Þk6 2n7ðtÞk7a67 2n8ðtÞk8a68

0 0 0 0 2n5 tð Þk5a75 2n6 tð Þk6a76 n7 tð Þk7 0

0 0 0 0 0 2n6 tð Þk6a86 2n7 tð Þk7a87 n8 tð Þk8

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

By letting equation (1) equal zero, Xia et al. (2013) developed a traceability framework to decompose steady
state ecosystem C storage into four fundamental components. Luo et al. (2017) further analyzed the deter-
minants and the characteristics of transient dynamics of terrestrial C storage based on mathematical analy-
sis of equation (1) with numeric examples. In detail, multiply both sides of equation (1) by An tð ÞKð Þ21 and
move X(t) to the left-hand side, then equation (1) can be transformed to

XðtÞ5 ðAnðtÞKÞ21BðtÞuðtÞ2 ðAnðtÞKÞ21X 0ðtÞ (2)

The term An tð ÞKð Þ21 in equation (2) is a matrix of C residence time through a network of individual pools.
This matrix is named as redistribution matrix, sch(t), which measures time needed for net C pool change to
be redistributed in the network containing all C pools. The matrix of sch(t) can be expressed as

An tð ÞKð Þ21
5

s1 0 0 0 0 0 0 0

0 s2 0 0 0 0 0 0

0 0 s3 0 0 0 0 0

f41s4 f42s4 f43s4 s4 0 0 0 0

0 f52s5 0 0 s5 0 0 0

f61s6 f62s6 f63s6 f64s6 f65s6 s6 f67s6 f68s6

f71s7 f72s7 f73s7 f74s7 f75s7 f76s7 12a68a86ð Þs7 f78s7

f81s8 f82s8 f83s8 f84s8 f85s8 f86s8 f87s8 12a67a76ð Þs8

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

where the diagonal elements of the matrix An tð ÞKð Þ21 measure C residence times (s) of individual pools.
The term, a68a86, is added to the seventh diagonal element to indicate the loop that does not go through
pool 7 (slow SOM). Similarly, the term, a67a76, is added to the eighth diagonal element to reflect the loop
that does not go through pool 8 (passive SOM). The nondiagonal elements measure residence times of a
fraction of C transferred from pool j to i, fij , through all pathways as following:

f41 5 a41

f42 5 a42

f43 5 a43

f52 5 a52

f61 5 a64a41

f62 5 a64a42 1 (a65 1 (a67 1 a68a87)a75)a52

f63 5 a64a43

f64 5 a64

f65 5 a65 1 (a67 1 a68a87)a75

f67 5 a67 1 a68a87

f68 5 a68

f71 5 a76a64a41

f72 5 a76a64a42 1 (a76a65 1 a75 - a68a75a86)a52

f73 5 a76a64a43

f74 5 a76a64

f75 5 a76a65 1 a75 – a68a75a86

f76 5 a76

f78 5 a76a68
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f81 5 (a86 1 a87a76)a64a41

f82 5 (a86 1 a87a76)a64a42 1 ((a86a67 1 a87)a75 1 (a86 1 a87a76)a65)a52

f83 5 (a86 1 a87a76)a64a43

f84 5 (a86 1 a87a76)a64

f85 5 (a86a67 1 a87)a75 1 (a86 1 a87a76)a65

f86 5 a86 1 a87a76

f87 5 a86a67 1 a87

Multiplying sch(t) by B(t), the allocation coefficients, we can obtain C residence time of individual pools in
the network, sN:

sNðtÞ5 ðAnðtÞKÞ21B tð Þ (3)

Ecosystem C residence time, sE, is the sum of C residence time of all individual pools, sN. C storage capacity
at time t is the product of C input (NPP or GPP) and C residence time (sN), and is defined as C storage capac-
ity, Xc. The product of redistribution matrix, sch, and net C pool change, X0, represents the redistribution of
X0 through the network containing all individual pools. It is an indicator of the potential of an ecosystem to
sequester C (positive values) or release C (negative values) at time t and is named as C storage potential, Xp.
Therefore, equation (2) can be rewritten as

X tð Þ5Xc tð Þ–Xp tð Þ (4)

By incorporating the theoretical foundation above by Luo et al. (2017) on transient C storage dynamics into
the existing traceability framework on steady state ecosystem C storage capacity by Xia et al. (2013), we
propose a transient traceability framework to trace the components of transient C storage as shown in Fig-
ure 1. This transient traceability framework allows us not only to investigate transient C storage dynamics in
response to rising CO2, climate change, disturbances such as fire and drought, and land use change, etc.,
but also to understand the underlying mechanisms that cause the changes in C storage in a variable of eco-
systems with ecosystem models or globally with LSMs or ESMs.

Figure 1. Schematic diagram of the traceability framework to analyze transient carbon storage dynamics of terrestrial
ecosystems. nW and nT are water and temperature scalars, respectively. Dashed lines show the components that
determine redistribution matrix (sch).

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001004

JIANG ET AL. TRACEABILITY OF TRANSIENT C STORAGE 2826



2.2. The TECO Model
We explore this transient traceability framework with an ecosystem model, TECO model, to simulate C stor-
age dynamics of Duke Forest and Harvard Forest in response to rising CO2 and climate change from 1850
to 2100. The structure of TECO model is shown in supporting information Figure S1. It has eight C pools,
which are three plant pools: leaf, wood, and root; litter; coarse wood debris; and three soil pools, consisting
of fast, slow and passive SOM.

GPP is calculated using a canopy photosynthesis model embedded in the TECO model (Weng & Luo, 2008).
In brief, leaf photosynthesis is estimated using the Farquhar photosynthesis model (Farquhar et al., 1980)
and a stomatal conductance model (Ball et al., 1987). Leaf photosynthesis upscales to the canopy photosyn-
thesis by a multilayer process-based model, which is mainly based on the model developed by Wang and
Leuning (1998). Foliage is divided into sunlit and shaded leaves. It simulates radiation transmission in the
canopy based on Beer’s law.

A plant growth submodel simulates carbon allocation in TECO. Allocation of assimilated carbon among the
leaves, stems, and roots depends on their growth rates. The plant growth submodel simulates plant growth
rate by root/shoot ratio, scalar of NSC (nonstructural carbon), and a scalar of leaf area index. Gi 5 Gmaxi 3

BMi 3 Sr/s 3 Snsc 3 SLAI, where, i 5 leaf, stem, or root. Gi is the growth rate, Gmaxi is the maximum relative
growth rate, BMi is the biomass of leaves, stems or roots. Sr/s, Snsc, and SLAI are the scaling factors derived
from root/shoot ratio, the size of nonstructural carbon pool, and leaf area index, respectively. bi 5 Gi/

P
(Gi),

where bi is the allocation of NPP to leaf, stem or root.

The overall relationship among them is GPP 5 Ra 1 NPP (aka u(t)) 1 NSC, where GPP is gross primary pro-
ductivity, Ra is autotrophic respiration, NPP is net primary productivity, and NSC is nonstructural carbon in
plants.

The decay of C pools is modified by environmental scalars. The environmental scalar is the product of
temperature scalar (S_t) and moisture scalar (S_omega), with S_t 5 Q10** ((Tsoil-0.)/10.) and S_omega 5

S_w_min 1 (1.-S_w_min) * Amin1 (1.0, 2.0*omega). Q10 is temperature sensitivity, omega is the soil water
content, and S_w_min is the permanent wilting point.

Photosynthesis, after deducting plant autotrophic respiration, i.e., NPP, is allocated to leaf, wood, and root
with allocation coefficients of b1, b2, and b3, respectively. C in the three plant pools will enter either litter or
coarse wood debris pool when plant organs die. C will transfer from one pool to another as indicated by
the arrows in supporting information Figure S1 with transfer coefficients that are specific for the donor
pools and the receiving pools. There are corresponding CO2 fluxes resulting from plant respiration or
decomposition of litter and SOM. Full description of the TECO model equations is available in Weng and
Luo (2008, Appendix A).

2.3. Study Sites
The two ecosystems that we simulate, Duke Forest and Harvard Forest, are both temperate forests in U.S.
but have distinct vegetation types. In addition, there are plenty of studies that have been done in these two
forest ecosystems, making it more easily to parameterize and validate the TECO model. Duke Forest site is
located in North Carolina, USA (35858041.4100N, 7985039.1200W) with a vegetation type of evergreen needle-
leaf forests. Mean annual temperature of Duke Forest is 14.368C and mean annual precipitation is
1,170 mm. The dominant tree species at this site is Pinus taeda (loblolly pine), which were planted in 1983
after a clear cut and a burn. There are some emergent Liquidambar styraciflua (sweetgum) in canopy. The
understory consists of 26 woody species and diversity of the understory is still growing (AmeriFlux, 2016).

Being a deciduous broadleaf forest, Harvard Forest is located in Massachusetts, USA (42832016.0800N,
72810017.4000W) and has a much colder mean annual temperature of 6.628C than Duke Forest and a similar
mean annual precipitation of 1,071 mm with Duke Forest (AmeriFlux, 2016). Harvard Forest is dominated by
Quercus rubra (red oak) and Acer rubrum (red maple) and was 75–110 years old in 2006 (Urbanski et al.,
2007).

2.4. Implementation of the Transient Traceability Framework With TECO
Climate forcing data, including air and soil temperature, precipitation, photosynthetically active radiation,
vapor-pressure deficit, and relative humidity, are derived from offline run of the Community Land Model 4.5
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(CLM4.5, Oleson et al., 2013) for both historical (1850–2005) and RCP8.5 (2006–2100) simulations. Historical
climate forcing data of CLM4.5 are CRUNCEP data set of which the missing values have been filled with
Qian et al. (2006) data set according to the descriptions of CLM offline model forcing data at National Center
for Atmospheric Research (http://www.cesm.ucar.edu/models/cesm1.2/clm/clm_forcingdata_esg.html). The
above climate data in the grid where Duke Forest or Harvard Forest are located are extracted as forcing to
drive the TECO model to simulate transient C storage dynamics from 1850 to 2100.

To calibrate the TECO model for simulating C storage dynamics at Duke Forest and Harvard Forest, GPP
data by eddy flux measurements at Duke Forest during 2003–2006 and at Harvard Forest during 1997–2006
are downloaded from AmeriFlux website (http://ameriflux.lbl.gov/). After calibration, the agreements
between the modeled GPP and the observed GPP from eddy flux measurements are good at both sites
(supporting information Figure S2). Before running the TECO model for simulations from 1850 to 2100, cli-
mate forcing data of 10 years from 1850 to 1859 are recycled to spin up the TECO model to the equilibrium
state in preindustrial environmental conditions. Then the model is driven by the climate data from 1850 to
2100 to simulate C dynamics for that time period. Variables that are needed for the transient traceability
framework are output for analysis of transient C storage dynamics. That is, we use the matrix of the TECO
model, i.e., equation (2), to calculate X, Xc, and Xp and further analyze how transient X, Xc, and Xp are deter-
mined by their components. The workflow for conducting the transient traceability analysis is summarized
in supporting information Figure S3.

3. Results

3.1. Transient Ecosystem Carbon Storage Dynamics, Capacity, and Potential
The transient traceability framework works very well to simulate C storage dynamics in response to rising
CO2 and climate change (supporting information Figure S4). The transient traceability framework using
matrix representation can derive almost identical ecosystem C storage with the direct model outputs for
both Duke Forest and Harvard Forest. This allows further analysis of C storage dynamics and their compo-
nents. In both Duke and Harvard Forests, transient C storage, X, is mostly determined by its maximum stor-
age capacity, Xc, and C storage potential, Xp, only accounts for a small proportion of Xc (Figure 2a). As time
progresses, the differences between Xc and X, i.e., Xp, become larger and larger in both ecosystems.

The trajectories of X, Xc, and Xp are very similar between Duke Forest and Harvard Forest. X, Xc, and Xp are all
increasing over time, indicating that both Duke and Harvard Forests sequester more and more C from 1850
to 2100. X and Xc in Harvard Forest are systematically higher than those in Duke Forest. In detail, X and Xc

are approximately 10 kg C m22 greater than those in Duke Forrest. For example, mean X of last 10 year his-
torical simulations (1996–2005) and last 10 year future projections (2091–2100) in Duke Forest are 18.46
and 24.89 kg C m22, respectively, and those values for Harvard Forest are 28.02 and 34.75 kg C m22, respec-
tively. Mean Xc during the periods of 1996–2005 and 2091–2100 in Duke Forest are 19.35 and 27.50
kg C m22, respectively, whereas the corresponding Xc in Harvard Forest are 29.20 and 37.65 kg C m22,
respectively. Different from X and Xc, Xp in the two ecosystems is close to each other.

Figure 2. (a) Transient carbon storage (X), carbon storage capacity (Xc), and carbon storage potential (Xp) of the whole
ecosystem in Duke and Harvard Forests and (b) their changes by the end of the 21st century.
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Predicted changes in X by the end of the 21st century, that is, 10 year mean of X during 2091–2100 minus
10 year mean of X during 1996–2005, are a little higher in Harvard Forest than that in Duke Forest (6.73 ver-
sus 6.44 kg C m22, Figure 2b), which exactly follows the patterns of the changes in Xc: an increase of 8.45
kg C m22 in Harvard Forest versus an increase of 8.16 kg C m22 in Duke Forest. With increased Xp in both
forests, the magnitudes of changes in Xp by the end of the 21st century are very similar between the two
ecosystems.

3.2. Transient Carbon Storage Dynamics, Capacity, and Potential of Individual Pools
As ecosystem C storage dynamics, X of individual pools closely tracks Xc in the two ecosystems (Figure 3).
X and Xc of all eight C pools in the two forests are increasing with time. Xp is small for most of the C pools in
Duke and Harvard Forests, especially for leaf, root and litter pools so that X for these three pools is very
close to Xc throughout the simulation period. Being increasing over time as well, the increments of Xp are
also small in most C pools, but substantial increments occur in slow and passive soil C pools in both forests.

Given the different C amounts in individual pools between Duke Forest and Harvard Forest, the temporal
patterns of X, Xc, and Xp of individual pools are very similar between the two ecosystems, except for a little
difference in leaf and wood pools. In the deciduous broadleaf forest, Harvard Forest, leaf pool does not
increase as much as that in the evergreen needleleaf forest, Duke Forest. Another noticeable phenomenon
is that although Xp for leaf is very small in both Duke and Harvard Forests, the interannual variability of leaf
pool in Duke Forest becomes larger and larger over time while the interannual variability of leaf pool in Har-
vard Forest is not as significant as that in Duke Forest. X, Xc, and Xp in wood in Harvard Forest are much
higher than those in Duke Forest. Correspondingly, the increments of X, Xc, and Xp in wood are greater in
Harvard Forest than in Duke Forest.

3.3. Net Primary Production and Ecosystem Carbon Residence Time
By decomposing Xc into NPP and C residence time, we find that NPP increases over time in both ecosystems
and does not differ much between Duke Forest and Harvard Forest (Figure 4a). Unlike NPP, ecosystem C res-
idence time of Harvard Forest is much longer than that of Duke Forest (Figure 4b), resulting in higher Xc in
Harvard Forest than in Duke Forest (Figure 2a). Moreover, trajectories of C residence time show different
trends between the two ecosystems. Specifically, C residence time in Duke Forest increases with time,
whereas that in Harvard Forest decreases (Figure 4b). By the end of the 21st century, NPP increases by 0.55
and 0.42 kg C m22 yr21 in Duke Forest and Harvard Forest, respectively (Figure 4c), compared to those dur-
ing the historical period. C residence time in Duke Forest increases by 0.29 year by the end of the 21st cen-
tury but that in Harvard Forest decreases by 0.55 year.

3.4. Environmental Scalars
Environmental scalar, which represents control of temperature and precipitation on C residence time and
redistribution matrix in this study, is higher in Duke Forest than that in Harvard Forest throughout the simu-
lation period (Figure 5a). While environmental scalars in both Duke and Harvard Forests become greater
and greater along the proceeding of time, indicating less and less limitations of temperature and moisture
on soil C decomposition. Accordingly, residence time and redistribution matrix in both ecosystems are neg-
atively affected. The increment of environmental scalar by the end of the 21st century in Harvard Forest is
doubled of that in Duke Forest (Figure 5b).

3.5. Allocation Coefficients
Allocation coefficients of NPP to leaf, wood and root, as represented by b1, b2, and b3 in Figure 6a, exhibit
different time courses between Duke Forest and Harvard Forest. In detail, allocation coefficients of NPP to
leaf and root, i.e., b1 and b3, in Duke Forest decrease over time, but allocation coefficient to wood, i.e., b2, is
substantially enhanced. In Harvard Forest, in contrast, only allocation coefficient to root, b3, declines and
those to leaf and wood, i.e., b1 and b2, both increase. The changes in b1, b2, and b3 by the end of the 21st
century are characterized by a considerable decrease in b1 and a dramatic increase in b2 in Duke Forest (Fig-
ure 6b).

3.6. Redistribution Matrix and Net Ecosystem Production
As shown in equation (2) and Figure 1, C storage potential, Xp, is codetermined by redistribution matrix and
net C pool change, X’, or at ecosystem scale, NEE or NEP. Figure 7 shows the correlation between Xp and
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NEP. The correlation coefficients, R2, are high in both Duke Forest (0.80) and Harvard Forest (0.79). This indi-
cates that, at a given place, Xp is mostly determined by NEP rather than redistribution matrix. Redistribution
matrix, represented by the slopes of the linear regressions between Xp and NEP, is an indicator of an
approximate time needed for ecosystem transient C storage to reach C storage capacity if current net eco-
system production and C storage capacity had been constant. Comparing between different places, Xp can

Figure 3. Transient carbon storage (X), carbon storage capacity (Xc), and carbon storage potential (Xp) of each carbon
pool in Duke and Harvard Forests.
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be influenced by redistribution matrix. According to Figure 7, having
shorter redistribution matrix, Xp in Duke Forest is lower than that in
Harvard Forest.

4. Discussion

Transient C storage dynamics are critical for predictions of future
C storage status and therefore climate. Identifying sources in model-
model uncertainties is required in order to improve model perfor-
mance and better represent the reality. The theoretical analysis of
transient C storage dynamics by Luo et al. (2017) provides the basis
for extending the steady state traceability framework by Xia et al.
(2013) to the transient traceability framework proposed in this study.
The transient traceability framework (Figure 1) decomposes the tran-
sient C storage into C storage capacity and C storage potential, and
both of them can be further decomposed into different components
that are related to model parameters or climate forcing. We imple-
ment the transient traceability framework in the TECO model to simu-
late transient C storage dynamics from 1850 to 2100 in two forest
ecosystems, Duke Forest and Harvard Forest. The framework works
well as shown in supporting information Figure S4. With the transient
traceability framework, we are able to track how each component of
transient C storage responds to rising CO2 and climate change in the
two distinct ecosystems. Therefore, not only the dynamics of transient
C storage are explored but also the mechanisms behind the different
responses of the two ecosystems to CO2 and climate change can be
recognized.

4.1. Transient Carbon Storage Dynamics, Capacity, and Potential
Transient C storage can be decomposed into two major components,
C storage capacity and C storage potential. By doing this, we can
explore the differences in the responses of transient C storage dynam-
ics to rising CO2 and climate change in Duke and Harvard Forests.
Although systematic differences in C pool size exist between Duke
Forest and Harvard Forest due to the inherent differences in the two
forests, there are many similarities in transient C storage, C storage
capacity and C storage potential between the two ecosystems. For
instance, X closely chases Xc, both increasing over time in the two eco-
systems (Figure 2a), indicating that both Duke Forest and Harvard For-
est will act as C sink until 2100. Xp accounts for a small proportion of
Xc throughout the simulation period in both ecosystems. Moreover, Xp

is always positive in this case study although theoretically it can be
negative, i.e., C source, at any time (Luo et al., 2017).

Duke Forest and Harvard Forest will sequester more C under future
atmospheric CO2 concentration and climate. Our results are consistent
with global terrestrial C storage projected by ESMs (Arora et al., 2013;
Friedlingstein et al., 2014; Jones et al., 2013; Peng et al., 2014). In

ESMs, increasing C storage can be as a result of many covarying factors, e.g., rising CO2, warmer tempera-
ture, dynamics of vegetation, land use change, and disturbances. However, in the present study, increase of
C storage is mainly a product of elevated CO2 and climate change because we did not explore how other
factors may influence C storage dynamics.

Plants and soils in Duke Forest have been found to store more C under elevated CO2 than ambient CO2

according to the studies in the Free-Air Carbon dioxide Enrichment (FACE) experiment conducted in Duke
Forest for 6–10 years (Lichter et al., 2005; McCarthy et al., 2010). In Harvard Forest, in situ observations

Figure 4. (a) Net primary production (NPP) and (b) ecosystem carbon residence
time in Duke and Harvard Forests and (c) their changes by the end of the 21st
century.
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showed that C storage in wood and soils was both increasing with time (Barford et al., 2001; Urbanski et al.,
2007). However, the results from the soil warming experiment conducted in Harvard Forest revealed that
warming soil alone stimulated C gains in wood, but accelerated C losses from soils, resulting in a net C
source from this ecosystem (Melillo et al., 2011). Due to the challenges in conducting factorial design of
global change experiments, there is no experimental evidence on how C storage changes under combined
elevated CO2 and climate change in these two ecosystems.

4.2. Contrasting Mechanisms Underlying Transient Carbon Storage Dynamics Between Duke Forest
and Harvard Forest
The response of Xc to elevated CO2 and climate change is similar between Duke Forest and Harvard Forest
(Figure 2a). However, the similar trajectories between the two ecosystems are actually as a result of different
mechanisms: in Duke Forest, the two components of Xc, NPP and C residence time, both increase with time;
in contrast, in Harvard Forest, NPP also increases over time as in Duke Forest, but its C residence time gradu-
ally decreases (Figure 4).

Simulated NPP often increases with elevated CO2 and temperature (Friend et al., 2014; Sitch et al., 2008;
Todd-Brown et al., 2014; Wieder et al., 2015). Our result is consistent with previous studies. C residence time
was usually predicted to decline as a result of warmer temperature (Carvalhais et al., 2014; Todd-Brown
et al., 2014). In this study, however, the TECO model simulates different trends of C residence time over
time between Duke Forest and Harvard Forest. The differences can be explained by decomposing C resi-
dence time into its components. As shown in Figure 1, C residence time is determined by allocation coeffi-
cients, B, transfer coefficients, A, environmental scalar, n, and exit rate, K. In the TECO model, A and K are set
as constants, but B varies with time. Therefore, time-varying n and B will be indicative for the differences
in changes of C residence time between the two ecosystems. Decline of C residence time in Harvard
Forest can be attributed to climate warming and changes in precipitation as reflected by the less and less
limitations of environmental conditions on C turnover (Figure 5). n becomes higher and higher in both

Figure 5. (a) Environmental scalar for carbon storage in Duke and Harvard Forests and (b) their changes by the end of the
21st century.

Figure 6. (a) Allocation coefficients of net primary production (NPP) to leaf (b1), wood (b2), and root (b3) in Duke and Har-
vard Forests and (b) their changes by the end of the 21st century.
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ecosystems and that means future climate will favor C turnover. The
increment of n in Harvard Forest is much more than that in Duke For-
est, and the substantial reduction of environmental limitations on C
turnover in Harvard Forest may result in shorter residence time over
time. Environmental scalars represent responses of C cycle to changes
in climate (e.g., temperature and moisture), nutrients, litter quality,
and soil texture (Luo et al., 2017). In this study, the environmental sca-
lars only refer to control of climate (temperature and precipitation) on
C residence time as we did not examine the effects of other factors.

Unlike in Harvard Forest, C residence time of Duke Forest increases
over time although environmental scalar in Duke Forest also increases.
The increase of C residence time in Duke Forest is a result of more
allocation of NPP to wood. Ecosystem C residence time is the sum of
C residence time of each C pool, therefore, changes in size of each C
pool and their respective residence time will result in changes of eco-
system C residence time. In this study, modeled allocation of NPP to
different plant pools, i.e., leaf, wood, and root, is found to respond to

rising CO2 and climate change differently between the two ecosystems. Significantly more NPP allocated to
wood and much less NPP allocated to leaf in Duke Forest (Figure 6) may explain increased C residence time
in this ecosystem since C resides longer through the pathway of wood than that of leaf. This result is coin-
cided with an analysis on partitioning of NPP at FACE experiments in Duke Forest and three broadleaf for-
ests, in which it concluded that the fraction of aboveground NPP partitioned to wood biomass was not
enhanced by elevated CO2 in the three broadleaf forests, whereas was enhanced in the conifer forest in
Duke (McCarthy et al., 2006), but the changes in partitioning of C among plant pools in the Duke Forest
FACE experiment could be caused by underestimation of allometrically determined plant biomass (McCar-
thy et al., 2010).

4.3. Implications of the Transient Traceability Framework and Future Research
The transient traceability framework extends the steady state traceability framework developed by Xia et al.
(2013) to decompose transient C storage into different components. It works well to investigate the similari-
ties and differences in transient C storage dynamics between Duke Forest and Harvard Forest. We have
addressed how transient C storage dynamics will respond to rising CO2 and climate change in the two eco-
systems and are able to attribute the differences in transient C storage dynamics to different components
with this transient traceability framework. In this case study, other than rising CO2 and climate change, we
did not explore how other global change factors such as N deposition, vegetation dynamics, land use
change, and disturbance (e.g., fire, drought and insect breakout) influence transient C dynamics. Shift in dis-
turbance regimes can also move ecosystem C storage toward a new dynamic disequilibrium (Luo & Weng,
2011). However, if an ecosystem model or an ESM simulates the effects of N deposition, vegetation dynam-
ics, land use change, and disturbance, the application of the transient traceability framework to such a
model can address those questions because those processes do not conflict with the assumptions on which
the transient traceability framework is built (Luo et al., 2017).

It is no doubt that the ecosystem models can be run at multiple sites to compare more ecosystems. It can
also be run under different scenarios for a specific ecosystem. Another potential application of the transient
traceability framework is to implement it in an ESM to compare the differences in various biomes or under
different scenarios. When it is applied to multiple ESMs such as in MIPs, the framework can help identify the
causes for the uncertainties in transient C storage dynamics across models. A frustration faced by climate
change research is that ESMs generate large uncertainties in their projections of future land C storage and
this makes policy making to mitigate climate change a tough task. With the models becoming more and
more complex, it is even more challenging to identify the causes for the uncertainties in model projections
(Luo et al., 2015, 2016). Efforts have been made to identify the causes for the differences in model projec-
tions of C storage or uptake (e.g., Anav et al., 2013; Arora et al., 2013; Brovkin et al., 2013; Cox et al., 2013;
Friedlingstein et al., 2006; Tian et al., 2015; Todd-Brown et al., 2013). These efforts contribute to help recog-
nize the sources for the uncertainties across models. However, the lack of systematical analysis on model
performance, which is due partly to the complex model structures and large numbers of parameters in

Figure 7. Correlation between net ecosystem production (NEP) and carbon
storage potential (Xp) in Duke and Harvard Forests.
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ESMs, impedes model improvements to reduce the uncertainties across models. Since the transient trace-
ability framework tracks the model differences deeply into the specific processes or parameters, this would
explicitly guide the modelers to improve their models. This framework using matrix representation will also
enable data assimilation to be easily applied in ecosystem models or other complex models. Model projec-
tions of ecosystem models such as the TECO model (Shi et al., 2015) or complex models such as global land
C models (Hararuk et al., 2014; Hararuk & Luo, 2014; He et al., 2016) have been substantially improved via
data assimilation using matrix representation of these models. Data assimilation technique was recognized
as the highest priority to improve predictions of soil C dynamics in ESMs (Luo et al., 2015). By combining
with data assimilation to improve model performance, the transient traceability framework has potential to
substantially reduce the uncertainties among ESMs and therefore to gain more reliable projections.

With the transient traceability framework, we quantified the C storage potential, Xp, in Duke Forest and Harvard
Forest. Xp is novel in C cycle research and has never been quantified before the theoretical study by Luo et al.
(2017). C storage potential represents the internal capacity of transient C storage to reach maximum C storage
at equilibrium and it indicates the direction and rate of transient C movements at a time step (Luo et al., 2017).

5. Conclusions

The transient traceability framework we developed in this study can decompose modeled transient C stor-
age dynamics in Duke Forest and Harvard Forest into two components, C storage capacity and C storage
potential, both of which can be further decomposed and traced. With this framework, we are able to distin-
guish different responses of C storage dynamics between Duke Forest and Harvard Forest to rising CO2 and
climate change and the underlying mechanisms. This framework has potential to reveal the mechanisms
behind transient C storage dynamics in response to various global change factors in different ecosystems. It
can also help identify the sources of uncertainties in predicted transient C storage across models and, there-
fore, can be useful for model intercomparison and model improvement.
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