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Abstract Accurate simulation of soil thermal dynamics is essential for realistic prediction of soil
biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and
Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature
module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics,
and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil
temperature and snow depth observations through data assimilation before the model was used for
forecasting. The constrained model reproduced variations in observed temperature from different soil layers,
the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The
conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow,
and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused
stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil
temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem
warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow
and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil
temperature but large for snow and frozen depths. Timely and effective soil thermal forecast, constrained
through data assimilation that combines process-based understanding and detailed observations, provides
boundary conditions for better predictions of future biogeochemical cycles.

1. Introduction

Soil temperature is a key regulator of numerous biophysical and biogeochemical processes. Soil temperature
has been shown to strongly affect gases exchange [Li et al., 2000; Elberling et al., 2008], soil hydrological
dynamics [Hopmans and Dane, 1986], soil organic matter (SOM) decomposition [Melillo et al., 2002;
Davidson and Janssens, 2006; Allison et al., 2010], plant nutrient uptake [Melillo et al., 2002], and growing sea-
son length [Euskirchen et al., 2006]. Among various processes affected by soil temperature, SOM decomposi-
tion is especially important for understanding the carbon cycle-climate change feedback as soil stores the
largest portion of organic carbon in terrestrial ecosystems [Ciais et al., 2013; Luo et al., 2016]. However, large
uncertainties still remain on SOM dynamics despite decades of studies. For example, Todd-Brown et al. [2013]
pointed out a large range of contemporary soil carbon storage (510–3040 Gt C) reported by 11 Earth system
models. As a result, projected soil organic carbon change ranges from a loss of 72 Gt C to a gain of 253 Gt C
over the 21st century (2090–2099minus 1997–2006) among these 11 Earth systemmodels [Todd-Brown et al.,
2014]. The large uncertainties in modeled SOM are at least partly due to variations in soil environmental con-
ditions among the models [Betts and Ball, 1997; Verry et al., 2011; Luo et al., 2016]. Thus, accurately simulating
soil environmental variables, such as temperature, is essential for better predicting of future terrestrial carbon
cycling [Luo et al., 2016].

Air temperature is one of the main drivers of soil temperature [Farouki, 1981; DeGaetano et al., 1996; Peng
et al., 2016]. Therefore, soil temperature is frequently extracted from air temperature based on the empirical
relationship between air and soil temperatures [Toy et al., 1978; Zhang, 2005; Mackiewicz, 2012], leaving the
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real soil temperature less well known compared to air temperature. Snow cover provides an effective insulat-
ing barrier, decoupling the soil thermal dynamics from localized air temperatures especially during winter in
northern ecosystems [Zhang, 2005; Schaefer et al., 2009; Ge and Gong, 2010]. The insulation impact of snow is
evident from the lagged or asymmetric response of soil temperature to changing meteorological conditions
[Mackiewicz, 2012]. For example, Park et al. [2014] reported a stronger warming rate of soil temperature
compared to air temperature in Russia over 1921–2011 with the potential contribution from snow depth.
Snow cover also alters surface energy balance response due to surface albedo change and to a smaller extent,
the insulating effects of snow cover on diffusive heat fluxes and the latent heat flux from snowmelt [Pomeroy
and Brun, 2001; Ge and Gong, 2010]. Soil freeze and thaw events can temporarily alter soil temperature by
releasing and absorbing large amount of latent heat [Williams and Smith, 1989]. And explicit incorporation
of heat exchanges during soil freeze-thaw cycles is reported to improve the simulation of soil temperatures
and its variability at seasonal and interannual scales [Luo et al., 2003].

In regions such as the northern peatland and permafrost where snow and ice play an important role, soil
carbon density is high but potentially vulnerable to soil temperature changes [Granberg et al., 1999; Roulet
et al., 2007; Koven et al., 2011; Ciais et al., 2013; Schuur et al., 2015; Hanson et al., 2016a]. Future climate warm-
ing is expected to enhance the decomposition of SOM from thawing permafrost and/or drying and aerating
peatlands, which is expected to trigger a positive feedback to climate warming through releasing of green-
house gases such as CO2 and CH4 [Koven et al., 2011; Tfaily et al., 2014; Schuur et al., 2015; Hanson et al., 2016a].
Themagnitude of such feedback depends partially on the temperature sensitivity of SOM decomposition and
partially on the degree of soil temperature change. There are, however, large discrepancies in current predic-
tion of soil temperature dynamics in these ecosystems [Koven et al., 2013; Peng et al., 2016], which limit our
understanding of how such ecosystems will respond and feedback to future climate change. Koven et al.
[2013] revealed that current disagreement in modeled mean soil temperatures from the Coupled Model
Intercomparison Project phase 5 (CMIP5) in permafrost region is mediated mainly by snow in winter. And
accurate prediction of snow impacted soil temperature dynamics is therefore an important step forward
for understanding the carbon response in these vulnerable ecosystems.

Realistic prediction of soil temperature dynamics relies on models that combine our current best knowledge
related to processes or mechanisms that govern soil temperature dynamics. Prediction becomes more effec-
tive when models are timely informed by observations through techniques such as data assimilation [Luo
et al., 2011]. Numerical weather forecasting is the classic example that benefits from constantly updating
process-basedmodels through assimilation of observations [Kalnay, 2002]. Similarly, when the process-based
modeling of soil temperature is trained by observations through data assimilation, the prediction accuracy of
soil temperature is expected to be improved since data assimilation techniques aim to minimize the differ-
ence between observations and mechanistic understanding of soil temperature dynamics [Xu et al., 2006;
Luo et al., 2011]. In addition, data assimilation such as Markov Chain Monte Carlo method allows for the
estimation of model uncertainty [Gelman and Rubin, 1992; Xu et al., 2006], which is useful in providing prob-
abilistic information on forecasting. However, current process-oriented modeling of soil thermal dynamics
has not taken full advantage of data assimilation techniques. Most of the modeling studies fix or tune model
parameters without quantification of uncertainty [Zhang et al., 2003; Zhang et al., 2008; Schaefer et al., 2009;
Jungqvist et al., 2014]. In this study, we integrated process-based understanding of soil thermal dynamics
(including the snow cover and the freeze-thaw cycle) with data through data assimilation to obtain better
probabilistic predictions of future soil thermal dynamics which will be beneficial for predicting terrestrial
biogeochemical cycles.

2. Methods
2.1. SPRUCE Project and Site Description

We took the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experi-
ment as our case study. SPRUCE is a project designed to study the response of northern peatland to climate
warming and elevated atmospheric CO2 concentration [Hanson et al., 2016c] with long-term whole ecosys-
tem manipulations (planned for 10 years). SPRUCE site is located in the U.S. Department of Agriculture
(USDA) Forest Service Marcell Experimental Forest (MEF, 47°30.4760N, 93°27.1620W) in northern Minnesota
[Kolka et al., 2011]. MEF is a temperate bog forest located at the southern end of boreal forest with rapid
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diurnal and seasonal temperature fluctuations, which is vulnerable to climate change and also plays an
important role in feeding back to future climate change with its large storage of SOM [Hanson et al.,
2016c]. Themean annual precipitation is 780 mm. And themean annual temperature is 3.3°C with daily mean
minimum andmaximum of!38°C and 30°C, respectively. Approximately two thirds of precipitation occurs as
rainfall and the remaining as snowfall. Mean annual air temperatures have increased ~0.4°C per decade over
the last 40 years [Sebestyen et al., 2011]. In this study, we focus mainly on the S1-bog, a Picea-Sphagnum bog
where the pretreatment measurements were collected. The S1-bog is part of the USDA Forest Service
Northern Research Station that has been studied for more than 50 years. Vegetation within the S1-bog is
dominated by Sphagnum sp. moss and tree species Picea mariana and Larix laricina. Peat depth in this area
is around 2–4 m with a maximum depth of 11 m [Tfaily et al., 2014; Shi et al., 2015; Hanson et al., 2016c].
Soil in this studying site is composed primarily of organic matter, with a total porosity of 84%–97% [Verry
et al., 2011]. And the water table generally fluctuates within the top 30 cm [Sebestyen et al., 2011; Shi
et al., 2015].

Although SPRUCE experiments focus on ecosystem’s response to temperature and CO2 manipulations, the
pretreatment data collected from SPRUCE (January 2010 to December 2014 for this study) includes environ-
mental variables such as climatic forcing, snow depth (half hourly), soil temperatures (half hourly) at different
layers, water table, and sparsely frozen depth. These pretreatment data provide valuable information to
develop and test the soil temperature model [Krassovski et al., 2015]. The half hourly environmental monitor-
ing data [Hanson et al., 2011] that are used to drive the TECO model were averaged to an hourly time step to
match model simulations for this study. Measurements obtained since the warming treatment period
(2015–2016) served to validate the general pattern of model forecast. Briefly, the climatic forcing, water table,
and snow depth were monitored at the meteorological station EM1 approximately 3 m away from S1-bog.
Climatic forcing were generally recorded 2 m above the surface. Water table was monitored through water
level sensors and recorded through dataloggers [Shi et al., 2015]. Soil temperature has been monitored at
one unchambered plot at different soil depths based on which the soil module was configured.
Meanwhile, chambered plots were set up to manipulate temperature and atmospheric CO2 concentration
since year 2014. Detailed information about the warming treatments is available in section 2.5 and currently
available observations are described in Hanson et al. [2016c]. Relevant measurements were obtained from the
SPRUCE webpage (http://mnspruce.ornl.gov/), the archived ftp site (ftp://sprucedata.ornl.gov), or the specific
location as indicated in citations from following sections.

2.2. Model Description
2.2.1. General Overview
Terrestrial ECOsystem (TECO) model is a process-based ecosystem model that couples terrestrial carbon,
nitrogen, and water cycles. The original TECO model has four major submodules: canopy, soil water, vegeta-
tion dynamics, and soil carbon/nitrogen. Detailed description of TECO is available inWeng and Luo [2008] and
Shi et al. [2016].

Canopy photosynthesis that couples surface energy, water, and carbon fluxes is based on a two-big-leaf
model [Wang and Leuning, 1998]. Leaf photosynthesis and stomatal conductance are similar as in Farquhar
et al. [1980] and Ball et al. [1987], respectively. Transpiration and associated latent heat losses are controlled
by stomatal conductance, soil moisture, and rooting pattern. Soil moisture content in different soil layers is
regulated by water inputs (precipitation and percolation) and outputs (transpiration, evaporation, and run-
off). Evaporation losses of water and associated latent heat are regulated by moisture content in the first soil
layer and atmospheric demand. Vegetation dynamic module takes into account vegetation growth, carbon
allocation, and phenology. Soil carbon/nitrogen module tracks carbon and nitrogen through processes such
as litterfall, SOM decomposition, andmineralization. Vegetation and soil carbon/nitrogen dynamics indirectly
affect surface energy partition that might impact soil thermal dynamics, such as through the amount of leaf
that performs photosynthesis and the transpiration strength.

TECO has been adapted to the SPRUCE site to study the carbon dynamics (by Jiang Jiang and Shuang Ma). As
the SPRUCE site is characterized by frequent water-logged periods (i.e., water table is above the ground), soil
hydrology was slightly modified by allowing water to accumulate above the ground. Meanwhile, a fraction of
the standing water (rpercent) is lost to mimic the runoff and lateral water flowing out of the system. A diagnos-
tic water table module was added to TECO following Granberg et al. [1999]. As the observed historical water
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table rarely went below 30 cm belowground [Sebestyen et al., 2011; Shi et al., 2015], water table depth is there-
fore diagnosed from water content above that 30 cm peat profile (including the standing water). Key para-
meters that regulate carbon dynamics, for example, the maximum rate of carboxylation (Vcmax), specific
leaf area (SLA), and turnover rates of different carbon pools, were constrained through assimilation of
carbon-related observations. The documentation of the constrained model that is suitable for SPRUCE is
available from the github repository (https://github.com/ou-ecolab), and themodel performance is displayed
through the Ecological Platform for Assimilation of Data into models (EcoPAD) (http://ecolab.cybercommons.
org/ecopad_portal/).

In studies mentioned above, soil temperature was treated as an input. We further improved the original TECO
model by incorporating snow dynamics and explicitly tracking heat transfers between different soil layers
and during the freeze-thaw cycle. We followed the original TECO structure by dividing soil into 10 layers.
The thickness for each soil layer is 5 cm, 15 cm, 20 cm, 40 cm, 80 cm, 40 cm, 40 cm, 40 cm, 40 cm, and
40 cm. The first six layers are in line with depths at which observations were reported, and the last four layers
were set up to give a total depth of 3.6 m to reflect the typical depth of the peat profile in the studying area.
The model requires climate variables such as air temperature, relative humidity, vapor pressure deficit,
rainfall, wind speed, photosynthetically active radiation, and shortwave and longwave radiations and predicts
soil temperature, snow mass in water equivalent, snow depth, and frozen depth.
2.2.2. Surface Energy Budget and Boundary Temperature
Surface energy budget (W m!2) is taken largely from the original model that simulates net radiation (long-
wave (L) and shortwave (S)), latent heat (λE), sensible heat (H), and ground heat (G). The net radiation goes
through a radiation submodule which tracks photosynthetically active radiation (PAR), near infrared radia-
tion, and thermal radiation from interactions between the atmosphere, sunlit and shaded leaves, and the soil
surface [Wang and Leuning, 1998; Weng and Luo, 2008]. Latent heat loss is associated with loss of water
through evaportranspiration. Sensible heat is proportional to the temperature difference between soil sur-
face and air. Ground heat flux is related to temperature difference between soil surface and the top soil layer.
Soil surface temperature is derived from surface energy balance similar as in the thermal model from Luo
et al. [1992] and is used as the upper boundary condition for heat transfers within snow and soil layers.

f T0ð Þ ¼ 1! αð ÞS↓þ L↑! L↓ð Þ þ Hþ λE þ G (1)

where T0 is the soil surface temperature and α is albedo. We differentiate the surface albedo during nonsnow
covered and snow covered period. The function f(T0) and derivation of T0 is available from Luo et al. [1992].
2.2.3. Snow Dynamics
Snow cover increases surface albedo which reduces the net radiation at the surface. Meanwhile, the insula-
tion effect of snow acts to prevent heat loss from soil during winter.

A simple one layer snow model at a daily time step is applied in this study and the snow module takes into
account the insulation and albedo effects. Currently, the snow dynamics are directly driven by climatic
forcing with an empirical factor (as a parameter) taking into account the vegetation impact and can be run
independently from the original TECO model. Snow mass dynamics in water equivalent is based on the mass
balance. And snow depth (hsnow) is linked to snow mass through snow density (ρsnow).

dMsnow

dt
¼ Is ! S!M (2)

hsnow ¼ Msnow

ρsnow
(3)

whereMsnow is snowmass in water equivalent (in units of mm or kg/m2), Is is snowfall rate, S is snow sublima-
tion rate, and M is snow melting rate.

A threshold of 0°C in daily air temperature is applied to partition daily precipitation into either rainfall or
snowfall. Sublimation of snow is controlled by a function [Rawlins et al., 2003] which takes into account air
temperature below freezing, daylength and saturated vapor pressure,

S ¼ f sub&D& esat Tað Þ
Ta þ 273:2

(4)
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where fsub is an empirical factor, D is the fraction of the day (daylength), and esat(Ta) is daily saturated vapor
pressure at Ta (°C).

Snowmelt is a function of rainfall, air temperature, and snow age (in days), and currently, the snow module
does not take into account the feedback of soil temperature on snow melting,

M ¼ f v& 2:63þ 2:55&Ta þ 0:0912&Ta&Ptð Þ&e!m&d=365 (5)

where fv (dimensionless) is a vegetation factor which reflects the impact of vegetation cover on snow melt-
ing. Pt (mm d!1) is daily precipitation. d is snow age in days, andm is an empirical factor regulates the impact
of snow age on melting rate.
2.2.4. Soil Temperature
Temperature dynamics within snow and soil layers are based on the equation where the change of tempera-
ture over time ( ∂T∂t) is proportional to the difference in heat influx and efflux. Heat fluxes (influx or efflux) equal

to soil thermal conductivity (k, W m!1 K!1) times the temperature gradient ( ∂T∂z , K m!1),

c
∂T
∂t

¼ ∂
∂z

k
∂T
∂z

! "
(6)

where c is heat capacity (J m!3 K!1). We treat snow as a single layer box which may vary in depth. To repre-
sent the impact of snow depth on the insulation effect [Pomeroy and Brun, 2001; Ge and Gong, 2010], we
incorporate a depth related regulator fd which indicates stronger insulation effect with deeper snow cover,

f d ¼ e !a&hð Þ (7)

where a is an insulation factor and h is snow depth in centimeters.

Soil thermal conductivity and heat capacity in each soil layer i are the weighted averages among different soil
components, where the weights correspond to the volume fraction of each component,

ci ¼ wliq;icwater þ wice;icice þ 1! θsatð Þcsoil þ θsat ! wliq;i ! wice;i
# $

cair (8)

ki ¼ wliq;ikwater þ wice;ikice þ 1! θsatð Þksoil þ θsat ! wliq;i ! wice;i
# $

kair (9)

where cwater , cice , csoil , cair are the heat capacity of water, ice, soil and air, respectively, and kwater , kice ,
ksoil , kair are the corresponding thermal conductivity for each component.wliq , i is the liquid water content
in each soil layer, wice , i is the volumetric ice content for each soil layer, and θsat is the saturated soil water
content. The soil in this study site is formed primarily by organic matter with little mineral components.
Csoil and ksoil are therefore set up to reflect the thermal properties of organic matter [Lawrence and Slater,
2008] which are relatively constant. Thermal properties of water, ice, and air are physical constants. We left
the boundary (between the atmosphere and soil surface) heat conductivity as a free parameter to be con-
strained by observations, and boundary heat capacity is treated the same as that in the first soil layer.

Phase change of water absorbs or releases a large amount of heat. The critical point of freeze-thaw transition is
set at 0°C; that is, when soil temperature drops below 0°C, available soil water turns into ice and releases energy
into soil and vice versa. The amount of heat released during freeze or the heat absorbed to thaw the ice equals
to the latent heat of fusion (Lf) times the amount of soil water/ice involved in the transition.

2.3. Data Assimilation

Markov Chain Monte Carlo (MCMC) method is used to estimate the distribution of model parameters [Xu
et al., 2006]. MCMC is based on Bayesian statistics in which the posterior distribution p(θ|O) of model para-
meters θ for given observations O is proportional to the likelihood function p(O| θ) and the prior
distribution p(θ).

p θjOð Þ∝p Ojθð Þp θð Þ (10)

Here we assume the prior distribution is in uniform and within the range obtained from literature or empirical
knowledge. We also assume errors between observation and model simulation follow Gaussian distribution
with zero means. Therefore, the likelihood function takes the following form,

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003725

HUANG ET AL. FORECAST WITH DATA ASSIMILATION 2050



p Ojθð Þ∝ exp !
X8

i¼1

X

t∈Oi

Oi tð Þ ! X tð Þ½ (2

2σ2i tð Þ

( )
(11)

where Oi(t) is the ith (a total of 8 in this study, soil temperatures from six layers, snow depth and water table)
observation set at time t, X(t) is the simulated corresponding variable, and σi(t) is the standard deviation of
each observation set.

The posterior distribution of parameters were sampled through MCMC with the adaptive Metropolis-
Hastings (M-H) algorithm. We repeatedly proposed a new vector of candidate parameters based on the
accepted parameters in the previous step by a proposal distribution. The new set of candidate parameters
was accepted if it reduced the model observation error or otherwise randomly with a probability of 0.05.
More details on sampling posterior distribution is available in [Xu et al., 2006]. We tested five chains (each with
50,000 simulations) and used the Gelman-Rubin statistic [Gelman and Rubin, 1992] to check the convergence
of these chains. From Gelman et al. [2003] and previous tests in TECO [Xu et al., 2006], five chains are sufficient
for convergence tests. We used only the second half of these accepted parameters for posterior analysis,
while the first half was taken as in a burn-in period which is sufficient in this study.

We first selected eight parameters that directly regulate snow and soil temperature dynamics for data assim-
ilation. They are snow conductivity (ksnow), snow heat capacity (csnow), surface boundary layer conductivity
(kboudary), insulation factor (a), vegetation factor on snow melting (fv), an empirical factor on snow sublima-
tion rate (fsub), snow density (ρsnow), and the aging factor on snow melting rate (m). In addition, we selected
three parameters that control soil hydrology and surface energy status which may have important indirect
consequences on soil thermal dynamics. They are total peat porosity, i.e., the saturated soil water content
(Ɵsat), the fraction of standing water lost as runoff or lateral flows (rpercent), and the nonsnow covered surface
albedo (α). Detailed information on these parameters is available in Table 1. Parameter ranges in Table 1 were
determined through combining information from literature, previous tests of the model and accumulated
knowledge about the studying site. Soil temperature and snow depth measured during the pretreatment
stage (2011–2014) were used as observations to constrain model parameters.

2.4. Stochastic Weather Generation and Forecasting

Air temperature and precipitation directly affect snow dynamics. We generated 300 sets of 10 year climate
forcing (2015–2024). Daily air temperature and precipitation were stochastically generated based on histor-
ical data (1961–2014) from the USDA MEF station using a vector autoregressive model (Figure 1).

To match the model time step, hourly temperature was interpolated from daily maximum and minimum,
while hourly precipitation was obtained from evenly distributing daily precipitation for each hour. The rest
of forcing variables were randomly drawn from frequency distributions at a given hour of each month based
on historical observations. Specifically for air temperature, the generated temperature generally follows the
same distribution as the historical temperature (Figure 1a). The standard deviation of generated temperature
decreases with increasing daily mean temperature (Figure 1c). Therefore, the uncertainty of generated future
temperature is larger in winter compared to summer. Stochastically generated future precipitation is similar
to the historical precipitation with a slightly higher variation (Figures 1b and 1d).

Table 1. Parameters Involved in Data Assimilation

Range Unit Long Name Reference

csnow [20,909, 1,150,000] J m!3 K!1 Heat capacity of snow Pomeroy and Brun [2001]
ksnow [0.01, 0.56] W m!1 K!1 Heat conductivity of snow Pomeroy and Brun [2001]
kboudary [0.023, 0.23] W m!1 K!1 Heat conductivity of the upper boundary layer Williams and Smith [1989]
a [0, 0.1] Insulation factor
wsmax [0.85, 0.98] Total porosity Granberg et al. [1999] and Verry et al. [2011]
rpercent [0.0001, 0.02] Fraction of water leaves the system as runoff Weng and Luo [2008]
α [0.06, 0.2] Albedo Betts and Ball [1997]
fv [0.1, 1] Vegetation factor on snow melting and Rawlins et al. [2003]
fsub [0.1, 1] Empirical factor affects snow sublimation rate Rawlins et al. [2003]
ρsnow [50, 500] kg m!3 Snow density Pomeroy and Brun [2001]
m [0.1, 10] Aging factor on snow melting Rawlins et al. [2003]
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With stochastically generated weather variables, we conducted 100 forecasting runs by randomly choosing
climate forcing or/and parameter sets from their posterior distributions.

2.5. Warming Treatment

In SPRUCE field manipulations, warming treatments include ambient (+ 0.0°C), +2.25°C, +4.5°C, +6.75°C and
+9°C. The field warming treatments heat both the deep peat and the air (i.e., whole ecosystem warming). The
whole ecosystem warming was achieved through two steps: the first step was achieved by sustaining the
deep peat warming since June 2014, and in the second step, the air warming was turned on starting from
August 2015 [Hanson et al., 2016c]. The manipulative field soil warming is sustained through automatically
adding heat into the system when soil temperature falls below the target, while the air warming is realized
through modified open-top chambers (115 m2). The whole ecosystem warming is unique in its up to 3 m
deep peat heating and the inclusion of tall trees in the air warming chambers. The goal of the field manipula-
tions is to provide a plausible ecosystemwarming conditions with a regression-based experimental design to
study responses of biological activities and ecosystem functions. In addition to warming, the manipulations
also have elevated CO2 treatments. Warming plots were selected to minimize background differences and
each treatment was not accompanied by replicates. So there are 10 chambers in total (5 with warming treat-
ments and 5 with both warming and elevated CO2 treatments) [Hanson et al., 2016c]. In this study, we focus
mainly on the warming-only responses.

As the manipulative field warming measurements are ongoing and associated environmental data are not
readily available at this stage, we do not aim to reproduce the exact chambered conditions for each treat-
ment. The enclosure by chambers is likely to alter the climatic conditions. As a first step, we explore the
plausible thermal responses to warming treatments through imposing warming treatments under informa-
tion obtained from nonchambered conditions assuming the alterations in climatic conditions caused by
chambers are the same for each warming treatment. In this way, we aim to reveal a general response pattern
instead of the exact response value. We mimicked SPRUCE warming treatments by increasing soil

Figure 1. Characteristic of historical and future stochastically generated air temperature and precipitation. (a) Probability
distribution of daily mean temperature. Gray bars represent historical observations (1961–2014), and black curves
represent the ensemble of generated future temperatures. (b) Cumulative precipitation within a year. Curve and shaded
areas representmean and standard deviation, respectively. Gray is historical observations, and black is the generated future
predictions. (c and d) Standard deviations versus means for daily air temperature and precipitation, respectively. Credits
from Jiang Jiang.
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temperature according to each of the treatment starting from June 2014 and adding air temperature starting
from August 2015 in model simulations. In model simulations, soil temperatures were read from the control
simulation plus the corresponding warming treatments (e.g., +2.25°C, +4.5°C, +6.75°C, and +9°C) instead of
explicitly tracking the manipulative heat additions. Other climate variables for warming treatment
simulations (June 2014 to August 2016) are available in Hanson et al. [2015] and Hanson et al. [2016b] in
addition to sources mentioned in previous sections.

It is difficult to separate the sensitivity of soil temperature to air warming from the field manipulation
protocol as heat is constantly added in the whole ecosystem warming treatment to sustain targeted soil
temperatures. In addition to mimic the SPRUCE field warming protocols, we tested the sensitivity of soil
temperature to air warming through increasing air temperature by 0°C (control), 2.25°C, 4.5°C, 6.75°C,
and 9°C, respectively. This sensitivity test provides information on how soil temperature responses to air
temperature considering snow dynamics and freeze-thaw cycles. In this test, we ran the model forward
for 4 years (after the 2011–2014 data assimilation period) for diagnostic purpose. The monthly average
response, that is, the difference between each warming treatment and the control, was used to indicate
the sensitivity.

3. Results
3.1. Posterior Distribution of Parameters

The snow density (ρsnow) and the aging factor that affects snow melting (m) (Figure 2) are well constrained
with bell shape posterior distributions. The heat capacity of snow (Csnow, Figure 2a), heat conductivity of

Figure 2. Posterior distributions of parameters involved in data assimilation. (a) Heat capacity of snow; (b) heat conductivity of snow; and (c) diffusivity of snow, i.e.,
the ratio between heat conductivity and capacity of snow. Note the diffusivity is calculated based on the posterior distributions from Figures 2a and 2b; (d) heat
conductivity of the boundary layer, (e) the insulation factor, (f) saturated soil water content, (g) the fraction of water losses, (h) surface albedo in nonsnow covered
season, (i) the factor reflects vegetation impacts on snow melting, (j) factor affects snow sublimation rate, (k) snow density, and (l) aging factor on snow melting.
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depth. And the predicted frozen depth is generally small (<0.1 m) after 2015 if forecasting is conducted with
stochastically generated weather forcing.

3.4. Response to Warming

As shown in Figure 9, the response of soil temperature to air warming varies with time and soil depth. Soil
temperature generally responds more strongly to summer warming compared to winter warming largely
due to the presence of snow and ice in winter. Among different soil layers, deep soil layers show stronger
temperature response in winter, while shallow soil layers are more sensitive to summer warming compared
to winter. The direction of winter warming impact remains largely uncertain with both increase and reduction
in soil temperature especially for surface soil layers, depending on the snow cover. Among different warming
treatments, higher air temperature generally results in higher average soil temperature.

In line with SPRUCE whole ecosystem warming manipulations (peat + air warmings), snow depth is reduced
with different warming treatments (Figure 10). TECO reproduces the observed relative (compared to +0.0°C)
small snow depths in 2016 when warming treatment is no smaller than +4.5°C. However, TECO underesti-
mates the relative snow depths on 27 January, 3 March, and 31 March 31 while overestimated the relative
snow depth on 23 March. There is no snow remains in the +9°C treatment from observations, which is gen-
erally reproduced from TECO except on 3 March with 5% snow remaining.

TECO generally captures the relative frozen depths in response to different whole ecosystem warming treat-
ments (peat + air warmings) in different days of 2016 when observations are available (Figure 10). However,
TECO overestimates the relative soil frozen depths in the +2.25°C treatment on 3 March and 31 March, while
underestimates the relative frozen depths on 27 January and 31 March 31. Overestimations of frozen depth
are also evident for the +4.5°C treatment on 27 January and 3 March and 23 March.

4. Discussion

We combined detailed measurements and process-based simulation of soil temperature through data assim-
ilation before forecasting soil temperature dynamics in the coming ~10 years at the SPRUCE plot. As a first
step, we also explored the plausible response directions of soil thermal dynamics through mimicking field
warming treatments. The soil temperature module in TECO captures overall patterns of soil temperature,
snow, and freeze-thaw dynamics in data assimilation and validation/forecasting stages. Here we discuss
simulated soil temperature dynamics and implications for better understanding and forecasting of soil
biogeochemical dynamics.

Figure 10. Responses of (top row) snow and (bottom row) frozen depths to whole ecosystem warming treatments (peat + air warmings) in 4 days in 2016 when
observations are available. The x axis is the warming treatment (°C) and y axis represent the relative snow (Figure 10, top row) or frozen depth (Figure 10, bottom
row) in percentage compared to the control (0°C treatment). Black stars are results from model simulations and green dots are from observations. Error bars
correspond to 1 standard deviations from 100 random draws using nonparametric bootstrapping.
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4.1. Model Performance

For simulated soil temperature, the performance is good especially at surface (5 cm) and bottom (200 cm)
layers. The top 5 cm soil temperature depends more on air temperature and the top boundary layer condi-
tions (compared to deeper soil layers), which are constrained through data. The 200 cm soil temperature
relies more on the model structure, such as the bottom layer location. Zhang et al. [2008] revealed that the
depth of soil column affected soil temperature simulation in a boreal aspen forest. Alexeev et al. [2007]
discussed the importance of soil layer configuration and column depth on simulating soil temperature in
permafrost region using CLM3. We also tested different bottom boundary layer locations (data not shown)
assuming very small (almost 0) heat exchange at the bottom boundary layer. The impact of boundary layer
location on near term (e.g., 5 years) soil temperature forecasting is small since forecasting through data
assimilation relies partly on information from observations. However, as in Alexeev et al. [2007], soil column
thickness affects long-term (e.g., 100 years) soil temperature predictions. Thinner soil shows a stronger
warming trend when TECO is forced with long term weather forcing (e.g., 100 years) since less soil is available
to store and buffer heat changes from CMIP5. The slight warming trend in 10 year forecasting with stochas-
tically generated weather forcing may partly reflect the slow change of soil thermal dynamics to evolving
ecosystem conditions as vegetation status and soil carbon are not in steady state.

Soil temperatures of middle layers come out from interactions among heat transfer, freeze-thaw cycle, and
soil water dynamics especially when the heat conductance and capacity in each soil layer are dynamically
linked with different soil components in TECO. Mismatches (compared to observations) in middle layer soil
temperature simulations are likely to be reduced if free variables are brought to dynamically adjust middle
layer heat conductance and capacity according to observations. Although no parameter is adjusted through
data assimilation for middle layers in the current setup, TECO is sufficient in capturing middle layer
soil temperatures.

Snow depth and frozen depth can be reasonably reproduced by TECO with appropriate weather forcing.
Deep snow depth generally indicates shallower frozen depth due to the insulation effect of snow [Zhang,
2005; Yi et al., 2015]. Similar to observations, TECO simulates almost no frost in the year 2011 (with deep
snow) and strong frozen depth in 2012 (with shallow snow). Although the prediction accuracy for snow depth
and frozen depth is lower compared to that for soil temperature with stochastically generated weather
forcing, results are comparable with measurements when forecasting is conducted with observed weather
variables during 2015–2016. Snow depth and frozen depth are more sensitive to the accuracy of forecasted
weather conditions. The stochastic weather generator creates synthetic weather data based on characteris-
tics of historical observed weather conditions. The accuracy of the generated weather forcing is difficult to
assess. Figure S1 compares the stochastically generated air temperature and precipitation with these from
the Earth system models that participated in CMIP5 on a daily time scale. Air temperature is generally in line,
while precipitation varies largely between these two approaches. The forecasted mean snow depth and
frozen depth are closer to observations but with even larger uncertainties if we conducted forecasting with
forcing from CMIP5 (data not shown), partly due to the large variations in forecasted weather among these
models. Nevertheless, TECO is adequate for short-term (such as weekly) snow depth and frozen depth
forecasting if we take advantage of the reliability of near-real-time weather forecasting.

Snow depth and frozen depth from TECO generally respond to air warming and deep peat warming in a simi-
lar direction as from observations. As expected, air warming and deep soil warming together reduce snow
depth and frozen depth. The quick reduction of snow depth in +2.25°C treatment on 27 January does not
strongly reduce the frozen depth with both positive effect from higher-energy input and negative effect of
reduced snow insulation. Although it is intuitive that future climate warming is likely to cause warmer soils,
Groffman et al. [2001] proposed colder soils in a warmer world in snow seasons since warming reduces snow
cover based on their experimental results. Removal of the snow cover is reported to decrease soil tempera-
ture with reduced snow insulation effect from different studies [Pilon et al., 1994; Groffman et al., 2001]. As a
result, the interaction between frozen depth, snow depth, and warming is nonlinear. We represented both
deep peat heating and air warming in TECO simulations but did not track the heating processes conducted
in SPRUCE explicitly. For example, we did not take into account the time required to reach the treatment level
after initialization of the warming experiment, which may contribute to mismatches between modeled and
observed responses. In addition, we assume that observed field level responses come only from the
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treatment effect while in fact field responses are afflicted by the background differences such as the species
composition and the microtopography.

4.2. Model Structure and Parameterization

Parameters such as the heat conductivity and capacity are known to directly regulate soil thermal dynamics
through the heat diffusivity (i.e., the ratio between conductivity and capacity). The heat diffusivity of snow is
well constrained through data assimilation in this study. We did not parameterize the heat capacity and con-
ductivity in different soil layers to better match middle soil layer soil temperature observations. Instead, the
current model setup adopts the approach that relies largely on the physical properties of the soil systemswith
minimal parameters to be tuned. Soil thermal properties of each individual components are relatively well
known, especially for air, ice, and water. The mineral component of the peat is slight [Verry et al., 2011], and
the thermal properties of the solid phase (nonice) of soil largely reflect these from organic matter, which var-
ies in a small range [Farouki, 1981; Lawrence and Slater, 2008]. We use the volume to weight the contribution
of each soil component to the overall heat conductivity and capacity in each soil layer. Such approach is sim-
ple but may not capture the integrated soil thermal properties best. For example, some researches applied
the geometric mean to weight different components [Farouki, 1981; Lawrence and Slater, 2008].

Snow and ice are important in regulating thermal dynamics of this northern peatland. With detailed snow
depth observations, snow density that plays a key role in transferring snow water equivalent into snow depth
is well constrained by data. We did not explicitly track physical processes that may alter snow density due to
lack of sufficient data. Snow density may change as snow ages, such as throughmetamorphism [Pomeroy and
Brun, 2001]. Nevertheless, our current approach is sufficient based on available data. We only have several
data points in ice-related observations, and these data points are associated with large uncertainty. In addi-
tion, the ice content or frozen depth is emergent from soil thermal dynamics. Ice forms as soil temperature
drops below zero, and the amount of ice that can be formed depends on soil available water content, soil
temperature, and the thermal budgets. Parameters that directly regulate ice formation, such as the latent
heat of fusion, are generally physical constants. We therefore did not incorporate ice related observations
into our data assimilation. Instead, ice related observations are used to diagnose the model performance.

The soil thermal module presented in this study is only one part of the complex ecosystem model that cou-
ples hydrology, biogeochemical cycles, and energy dynamics. Factors or processes that alter different aspects
of the model have indirect impacts on soil thermal dynamics. For example, nitrogen availability regulates
plant photosynthesis, which modifies evapotranspiration loss of soil water and the surface energy budgets.
Soil hydrology is linked tomiddle layer soil thermal conductivity and capacity as well as soil thermal dynamics
in ice-water transitions. However, parameters related to surface energy budgets (nonsnow covered albedo, α)
and the hydrological properties (the saturated soil water content θsat and the fraction of water losses rpercent)
are not well constrained through data assimilation. The regulation of surface albedo in nonsnow covered sea-
son is likely to be compensated by the boundary heat conductivity when assimilating observed soil tempera-
ture. Previous studies from Shi et al. [2015] revealed that the water table seldom drops below 30 cm during
2011–2014. The range of rpercent is chosen to reflect the relatively high moisture content in this peatland.
Under current conditions, changes in soil water content and the impact on soil thermal dynamics are not
dramatic. However, future warming is likely to significantly alter peatland soil hydrology and its impact on soil
thermal dynamics. More soil hydrological or surface energy related observations are needed to thoroughly
constrain and quantify their impacts on soil thermal dynamics.

4.3. Nonuniform Response of Soil Temperature to Air Warming

We showed in this study that air warming triggered differentiated responses of soil temperature. These dif-
ferentiated responses may obscure the temperature sensitivity of SOM decomposition [Rustad et al., 2001;
Davidson and Janssens, 2006]. Despite that the scientific community has spent considerable efforts in under-
standing how soil organic carbon responds to warming, the magnitude and direction of warming induced
soil carbon changes remain controversial [Arora et al., 2013; Liang et al., 2015]. Many factors, such as SOM
composition [Xu et al., 2012], soil microbial activities [Allison et al., 2010], and methodology concerns [Liang
et al., 2015], are reported to contribute to the temperature sensitivity of SOM decomposition. Since air warm-
ing can induce different warming effects in soil temperature in different soil layers or during different time in
a year, manipulative experiments based on air warming, such as through field chambers, may incorporate
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responses from soil temperature itself in addition to the temperature sensitivity of SOM if soil temperature is
extrapolated from air warming.

Our result also posted a question on using a single-layer soil temperature to represent the whole soil
temperature dynamics especially when deep soil is involved such as in studies carried out in peatland and
permafrost regions. With strong radiative forcing, heat generally transfers from the upper soil layer to the
lower soil layer in summer. Heat that is available for rising soil temperature is reduced as it transfers along
the soil profile since some heat is used to increase the upper soil layer temperature. As a result, the response
to air warming is stronger from the upper soil layer compared to the lower soil layer. Deep soil layer tempera-
ture is more uniform between seasons and the winter soil temperature in deep layers may carry lagged
impact from warmer seasons. Winter soil temperature dynamics are actually more complex when snow
and frozen soil are involved. Warming treatment reduces snow depth and therefore the insulation effect of
snow. Certain amount of air warming may actually reduce soil temperature especially in the uppermost soil
layer as shown by the negative value in this study. If the top soil layer response is applied to deep soil layers,
warming response is likely to be overestimated in summer.

4.4. Limitations and Moving Forward

Although the SPRUCE field plots are well selected to minimize background differences caused by heteroge-
neities in vegetation and soil and to focus on response patterns and mechanisms in a regression-based
design, detailed studies on thermal dynamics require plot-specific data to constrain the model. In addition
to background heterogeneities, different warming treatments are likely to result in divergent alternations
in vegetation growth, energy transfer and hydrological cycles, and therefore different mechanisms in regu-
lating soil thermal dynamics. For example, the snow cover is almost zero in the +9.0°C treatment year round
and soil thermal responses might be different from plots with snow cover. As observations accumulate,
detailed studies that apply our current data assimilation approach will provide more information on how soil
thermal dynamics response and feedback to ecosystem dynamics at the SPRUCE site. However, the reliance
on detailed field monitoring limits its application to other sites or to a large scale since belowground soil
states is heterogeneous and not widely measured.

One of the motivations to improve soil thermal studies is to facilitate the predictions of terrestrial biogeo-
chemical cycles. SOM is an important but largely uncertain component in terrestrial carbon cycle
[Friedlingstein et al., 2006], and improvements in model structure, parameterization, and external forcing
are key steps toward realistic projection of SOM dynamics [Luo et al., 2016]. Here we focus on soil tempera-
ture. We argue for the importance of monitoring and simulating soil temperature dynamics in order to better
understand SOM dynamics since the response of soil temperature itself to global changes is nonuniform. As
the current soil thermal module is configured within the ecosystem model framework, future studies can
quantify the extent that biogeochemical studies benefit from improved soil thermal understandings. The
web-based EcoPAD we developed for the SPRUCE project (http://ecolab.cybercommons.org/ecopad_
portal/) can provide some improvement. As the 10 year long SPRUCE research project goes on, EcoPAD
can constantly fetch new observations and assimilate these observations into TECO to update model para-
meters and forecast future dynamics in a most informed manner similarly to the weather forecasting. With
future EcoPAD forecasting of both soil thermal and biogeochemical states, it is feasible to provide a detailed
picture about the impacts of soil thermal conditions on SOM dynamics.

5. Conclusions

We developed a soil temperature module inside Terrestrial ECOsystem (TECO) model that takes into account
snow dynamics, underground heat transfer among different soil layers, and during freeze and thaw events.
After detailed observations were combined with TECO by data assimilation techniques, we forecasted soil
temperature dynamics in the Spruce and Peatland Responses Under Climatic and Environmental change
(SPRUCE) experimental site. Our results demonstrated that with appropriate weather forcing, soil tempera-
ture can be reasonably forecasted and is beneficial to carbon forecasting studies. Uncertainty is smaller for
forecasting soil temperature but large for snow and frozen depths. In addition, we call for caution when extra-
polating manipulative air warming experiments to understand warming impact on soil organic matter
decomposition since soil temperature responds nonuniformly to air warming with higher elevated soil
temperature in summer than winter and stronger warming in shallow than deep soil layers in summer.
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