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• A novel method was developed to de-
tect extreme drought-induced loss of
ecosystem function globally.

• Large well-known extreme drought
events were detected mainly in semi-
arid regions.

• GPP reduction caused by functional loss
could explain ≥70% of the interannual
variation in GPP in drought-affected
areas.
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Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand
the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production
(GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novelmethod based onmax-
imum rain-use efficiency (RUEmax) was developed to detect losses of ecosystem function globally. Three global
GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-
BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were
used to develop annual global RUE datasets for 2001–2011. Large, well-known extreme drought events were de-
tected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results
show that extreme drought-induced loss of ecosystem function could impact 0.9% ± 0.1% of earth's vegetated
land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional
loss (0.14 ± 0.03 PgC/yr) could explain N70% of the interannual variation in GPP in drought-affected areas (p ≤
0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipi-
tation variability and dry land expansion expected in the future.
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1. Introduction
Climate change is projected to increase the frequency and intensity
of drought in the mid- to late 21st century (Stocker et al., 2013).
Droughts can alter the terrestrial carbon cycle by affecting the composi-
tion, structure and functioning of ecosystems. Under extreme climate
conditions, enhanced droughts and heat waves could fundamentally
alter the structure or function of terrestrial ecosystems, outside the
bounds of what is typical or normal variability (Smith, 2011;
Reichstein et al., 2013). Currently, the methods to investigate extreme
ecological responses to extreme climate events, as well as the mecha-
nisms and processes determining ecosystem responses are still lacking
(Smith, 2011). Thus, quantifying the spatiotemporal patterns of ecolog-
ical responses to extreme drought is critical to predict future drought
impacts under climate change.

Ecological responses to droughts has been observed variable ranging
from little ecosystem impacts tomajor alteration of ecosystem structure
and function (Smith, 2011). The ability of an ecosystem to maintain its
normal function during droughts greatly relies on the resistance of the
ecosystem to environmental stresses, which is fundamentally deter-
mined by processes of drought tolerance and functionality of plant com-
munities and the availability of water in the ecosystem (Mariotte et al.,
2013). Extreme drought-induced loss of ecosystem function may occur
when drought-resistant measures utilized by plant communities (e.g.
closure of stomata, favoring drought-resistant plants) become
overwhelmed by plant hydraulic limitations or mortality with further
stress (Reyer et al., 2013). Loss of ecosystem function during extreme
drought could cause an ecosystem to shift from carbon sink to carbon
source, which can strongly influence the carbon exchange between
the land and atmosphere (Frank et al., 2015).

At the beginning of the 21st century, large-scale, extreme droughts
have occurred throughout the world, attracting the attention of scien-
tists (Breshears et al., 2005; Ciais et al., 2005; Schwalm et al., 2012;
Doughty et al., 2015). Many studies have examined the regional or
global impacts of droughts on terrestrial ecosystems and the carbon
cycle by identifying drought events from a meteorological perspective
(Ciais et al., 2005; Zhao and Running, 2010; Schwalm et al., 2012;
Huang et al., 2016). In these studies, droughts were usually identified
by climate variables or other environmental drivers (e.g. precipitation,
drought indices). There have also been some efforts to quantify the spa-
tiotemporal ecological extremes using statistical techniques (Liu et al.,
2013; Hoover et al., 2014; Zscheischler et al., 2014). Extreme ecological
responses were identified by classifying the deviation of ecosystem var-
iables (e.g. GPP, NDVI) from thenormsderived from long-termdatasets.
A wide range of ecosystem responses to drought has been identified,
from little impact on vegetation function in some instances, tomajor re-
ductions in primary production in others (Ciais et al., 2005; Zhao and
Running, 2010; Jentsch et al., 2011; Zscheischler et al., 2014). However,
integrating ecological processes of how ecosystems functionally re-
spond to extreme droughts have not been broadly considered in identi-
fying drought impacts. Thus, the patterns of extreme ecological
responses to droughts have not been well quantified globally from the
ecological perspective.

On a global scale, it is widely reported that severe droughts caused
by precipitation reduction can induce extensive plant mortality and an
associated reduction in productivity (Allen et al., 2010; Peng et al.,
2011; Doughty et al., 2015). How ecosystems respond to greater precip-
itation variability is a new frontier for ecologists (Knapp et al., 2017; Luo
et al., 2017). Generally, ecosystems are composed of plant communities
that have adapted to current water conditions to be fully functional
under a wide range of conditions. Thus, ecosystems can withstand the
effects of moderate water shortage and sustain productivity by increas-
ing plant water-use efficiency through the closure of stomata or favor-
ing high water-use efficiency species, and less water is lost through
runoff and evaporation (Mariotte et al., 2013; Ponce Campos et al.,
2013). However, when water shortage becomes more severe (i.e.
extreme drought), more water could be lost through evaporation
resulting from increasing ratio between evaporation and carbon uptake
or plant mortalities due to carbon starvation or hydraulic failure)
(McDowell et al., 2008; Choat et al., 2012). Thus, loss of ecosystem func-
tion could occur when the plant communities are not able to use the
existing water resources to maintain resistance (e.g. increasing water-
use efficiency) during extreme drought. And there must exist thresh-
olds at which ecosystems function turns to decline in extreme drought,
which is still largely unknown and has great scientific significance
(Estiarte et al., 2016).

Here, we developed a new method to detect the extreme drought-
induced loss of ecosystem function globally from an ecological perspec-
tive. In this study, rain-use efficiency (RUE; GPP/precipitation) was uti-
lized as the typical indicator of ecosystem function. We assumed that
RUE increases with decreasing precipitation to a maximum (RUEmax)
during moderate drought (Huxman et al., 2004; Ponce Campos et al.,
2013), and that RUEwill declinewhenwater shortage is beyond the tol-
erance of current vegetation, leading to loss of ecosystem function. The
main objective of this study was to detect the ecological patterns of ex-
treme drought-induced loss of ecosystem function globally for the be-
ginning of this century (2001−2011) and understand its implications
for the carbon cycle. Three global GPP datasets were used to establish
three RUE datasets and each RUE dataset was used to detect loss of eco-
system function individually. The spatiotemporal extent of ecosystem
function loss and its impact on the terrestrial carbon cycle were further
analyzed in this study.
2. Materials and methods

2.1. Data sources

We used three different GPP datasets and a precipitation dataset to
establish three global RUE datasets. All datasets used are listed in
Table 1.

TheMODISGPP product (MOD17.055)was produced by theNumer-
ical Terradynamic Simulation Group (NTSG)/University of Montana
(UMT) (http://www.ntsg.umt.edu/project/mod17). It provides
monthly GPP data with a 0.05° spatial resolution for the period 2000–
2015 (Zhao and Running, 2010). This product was developed from pro-
duction efficiency model usingMODIS vegetation indices and meteoro-
logical information as inputs. Its accuracy has been independently
assessed for scientific research and it is a primary data source used to
evaluate the spatial distribution and long term trend of vegetation pro-
ductivity (Anav et al., 2015).

The BESS GPP product was generated from a simplified process-
based model (Breathing Earth System Simulator) which couples at-
mosphere and canopy radiative transfers, photosynthesis, evapo-
transpiration, and energy balance (Jiang and Ryu, 2016). It provides
monthly GPP data at 0.5° spatial resolution from 2001 to 2015
(http://environment.snu.ac.kr/bess/). This new process model-
based GPP product serves as a dataset independent from remote
sensing and ground observations.

TheMPI-BGC GPP product from theMax Planck Institute for Biogeo-
chemistry were up-scaled from ground FLUXNET observations of CO2,
water, and energy fluxes to global scale using the model tree ensemble
(MTE) technique (Jung et al., 2011). The MTEmodel was first trained to
predict site-level GPP based on remote sensing indices andmeteorolog-
ical data, and then it was applied globally to generate GPP at a 0.5° spa-
tial resolution and a monthly temporal resolution from 1982 to 2011
(http://www.bgc-jena.mpg.de/geodb/). As a proxy for FLUXNET obser-
vations, this empirically derived GPP product has been commonly con-
sidered as the benchmark or reference for calibration and evaluation of
other model results (Piao et al., 2013; Anav et al., 2015). Nevertheless,
large uncertainties still exist in the regions with few observation sta-
tions (e.g. South America, Africa).

http://www.ntsg.umt.edu/project/mod17
http://environment.snu.ac.kr/bess
http://www.bgc-jena.mpg.de/geodb


Table 1
Datasets used in this study.

Variable Description Temporal
resolution

Spatial
resolution

Reference

MODIS GPP Gross primary productivity derived from MODIS (MOD17.055) remote sensing
observations

Monthly
2000–2015

0.05° (Zhao and Running,
2010)

BESS GPP Gross primary productivity derived from process-based model Monthly
2001–2015

0.5° (Jiang and Ryu, 2016)

MPI-BGC
GPP

Gross primary productivity derived from ground FLUXNET observations Monthly
1982–2011

0.5° (Jung et al., 2011)

CRU PRE Precipitation from CRU TS 3.24.01 (Climatic Research Unit at the University of East Anglia) Monthly
1901–2015

0.5° (Harris et al., 2014)
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The global gridded precipitation dataset used in this study was
from Climate Research Unit (CRU), version TS 3.24.01 (Harris et al.,
2014). It provides monthly precipitation at 0.5° spatial resolution
spanning from 1901 to 2015 (https://crudata.uea.ac.uk/cru/data/
hrg/). The global precipitation dataset is based on analysis of N4000
individual meteorological station records and spatially interpolated
using autocorrelation functions. This precipitation product has
been widely evaluated and used in global change studies (de Jong
et al., 2013; Wu et al., 2015).

2.2. Rain-use efficiency datasets

In our study, the common time period of the three GPP datasets
(2001–2011) was chosen as the study period. The MODIS GPP product
were aggregated to a 0.5° spatial resolution to match the other two
GPP datasets. The monthly data of all three GPP datasets were respec-
tively summed annually to estimate the annual GPP datasets. In order
to match the three GPP datasets, monthly precipitation data were also
summed annually for 2001–2011.

Based on the definition of rain-use efficiency (productivity per unit
of precipitation, gC/m2/mm), three annual GPP datasets were divided
by the annual precipitation dataset to generate three global RUE
datasets (MODIS RUE, BESS RUE, and MPI-BGC RUE) at 0.5° spatial res-
olution during 2001–2011. Due to the longer-time data availability of
MODIS GPP and BESS GPP, we also generated an annual average RUE
dataset (AVE RUE) for 2001–2015 using the average of MODIS GPP
and BESS GPP for longer term analysis.

2.3. Detecting ecosystem function loss

For each RUE dataset during 2001–2011, the detection of ecosys-
tem function loss was implemented pixel by pixel globally based on
the relationship between RUE and precipitation. For each pixel, we
assumed that the RUE of an ecosystem increases gradually to a max-
imum (RUEmax) as precipitation decreases, and then declines when
the water shortage exceeds the plant community tolerance (ecosys-
tem resistance) to the extent that ecosystem function declines. To
characterize ecosystem responses to extreme drought, we first iden-
tified RUEmax during the study period. Numerically, we identified the
greatest value of the 11-year RUE estimates as the RUEmax. Then, the
precipitation at RUEmax was selected as a threshold at which abrupt
changes in ecosystem function could occur with further precipitation
reductions. Using this threshold, each RUE dataset was separated
into two parts at the pixel level: 1) Data with precipitation at or
above the threshold for normal years; and 2) data with precipitation
below the threshold for possible drought years. For the data points in
normal years, the precipitation and corresponding RUE estimates
were used to build a linear regression model (Fig. 1). The regression
model was further extended to data points below the precipitation
threshold in drought years with 95% confidence bound. If the data
points during drought years were below the lower 95% confidence
bound of the regression (the lower limit of ecosystem variability),
loss of ecosystem function had occurred (Fig. 1). This algorithm
was applied to obtain the global spatial patterns of ecosystem func-
tion loss for 2001–2011 and 2001–2015, respectively.

In this study, only the pixels with N6 data points (8 data points for
2001–2015) in normal yearswere selected to build the linear regression
model, since this represents the majority of years in the study period
(Fig. S1). Furthermore, only the pixels with statistically significant re-
gressions between RUE and precipitation (p b 0.05) were used to iden-
tify ecosystem function loss (Fig. S1 and Fig. S2). Overall, N85%, 91%, and
82% of the earth vegetated land surface, respectively, in MODIS RUE,
BESS RUE, and MPI-BGC RUE datasets showed significant correlations
between RUE and precipitation. Thus, N80% of the vegetated land was
available to analyze the global patterns of extreme drought-induced
ecosystem function loss.

2.4. Estimation of GPP reduction and its spatiotemporal variation

In this study, for each pixel, the years with ecosystem function losses
were detected and recorded based on themethod shown in Fig. 1. Using
the average of GPP values in non-drought years as the baseline, the GPP
reduction due to ecosystem function loss in each pixel was calculated as
the difference of the GPP value of current drought year and the baseline.
Through the spatial integration of GPP reduction pixel by pixel, annual
regional and global GPP reductions could be estimated. To evaluate
the impact of ecosystem function loss on the terrestrial carbon cycle,
the GPP reduction was then compared with the GPP anomaly in
drought-affected areas. Additionally, we also estimated the GPP reduc-
tions across biomes to analyze the extremedrought impacts on different
terrestrial ecosystems.

3. Results

3.1. Precipitation threshold of ecosystem function loss based on RUEmax

The precipitation at RUEmax was selected as the threshold at
which abrupt alteration of ecosystem function could occur with fur-
ther water shortage. In each pixel, the greatest value of RUE esti-
mates (RUEmax) was first identified during 2001–2011 and then the
precipitation at the RUEmax was recorded as the threshold. The spa-
tial distributions of the precipitation threshold in 2001–2011 were
extracted based on three RUE datasets respectively (Fig. 2). The gen-
eral patterns of the precipitation threshold were similar in all three
RUE datasets. For example, the precipitation thresholds at the forest
site in Europe (3.54° N, 46.48°E) were identified as 673.4 mm in
three datasets, and the precipitation thresholds at the grassland
site in southern U.S. (36.23°N, 98.74°W) were identified 469.1 mm
in three datasets (Fig. 1).

At the global scale, the distribution of the precipitation threshold
follows a latitudinal gradient. It decreases from low latitude to high
latitude and from wet areas to dry areas. In addition, the spatial

https://crudata.uea.ac.uk/cru/data/hrg
https://crudata.uea.ac.uk/cru/data/hrg


Fig. 1. Examples of ecosystem function loss at a forest site and a grassland site for 2001–2011 using MODIS RUE (a and b), BESS RUE (c and d), and MPI-BGC RUE (e and f) datasets
respectively. The forest site was in Europe (3.54° N, 46.48°E) while the grassland site was in southern U.S. (36.23°N, 98.74°W) (Red triangles). The distribution of forest and grassland
was based on Commonwealth Scientific and Industrial Research Organisation (CSIRO) vegetation types used by Community Atmosphere Biosphere Land Exchange (CABLE) model. Red
dashed lines represent the precipitation threshold based on the maximum of RUE (RUEmax), blue solid lines represent the linear regression models built using data points in normal
years, black dashed lines represent the lower 95% confidence boundary of the regression, and blue points represent data points in normal years while red points represent data points
in possible drought years. The red points that fall below the lower 95% confidence boundary were identified as ecosystem function losses (i.e. data points 2011 and 2003).
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variation of the precipitation threshold largely depends on the distri-
bution of land cover types. Tropical forest areas, e.g. the Amazon,
have the highest precipitation threshold, which could be N1600
mm/yr. However, the precipitation threshold in semi-arid and arid
areas could be as low as 200 mm/yr, e.g. Northwestern China,
where shrubland and grassland are largely distributed.



Fig. 2. Spatial distribution of precipitation thresholds based onmaximum rain-use efficiency (RUEmax) during 2001–2011 usingMODIS dataset (a), BESS dataset (b), andMPI-BGC dataset
(c). Extreme drought-induced ecosystem function loss is expected to occur if the precipitation in a given year decreases below the threshold on the map.
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3.2. Spatial distributions of extreme drought-induced loss of ecosystem
function

In this study, annual global distributions of ecosystem function loss
due to extreme drought were captured during 2001–2011 based on
MODIS, BESS, andMPI-BGC datasets. Additionally, the driest year of eco-
system function loss with the largest deviation from the regression
model was also identified in each pixel for each GPP dataset,
representing the most extreme loss of ecosystem function (Fig. 3).
Large well-known extreme drought events during 2001–2011 were
successfully captured in all three RUE datasets (Fig. 3). Extreme
drought-induced loss of ecosystem function was mainly concentrated
in semi-arid regions. For example, the 2001 seasonal drought in North
China (Liu et al., 2014), the prolonged droughts around 2002 in central
North America (Michaelian et al., 2011; Schwalm et al., 2012), the 2003
Europe drought induced by heat wave (Ciais et al., 2005), the 2010
drought in Russian (Barriopedro et al., 2011), and the 2011 Southern
Great Plains drought in the U.S (Tadesse et al., 2015). In particular, the
2010 Russian drought was identified as the largest ecological response
to extreme drought in the study period, which caused approximately
520,000 km2 of area to lose function on average, over 60% of which
was cropland. Based on the global patterns of ecosystem function loss
for the period of 2001–2015 (Fig. S3), more recent extreme drought
events with ecosystem function loss were also captured, such as the



Fig. 3. Spatiotemporal distribution of extreme drought-induced loss of ecosystem function during 2001–2011. Each color on themaps represents the driest year of ecosystem function loss
with the largest deviation from the regressionmodel. Extreme droughts inNorth China (2001), central North America (2002), central Europe (2003),western Russia (2010), and southern
U.S. (2011) stand out as exceptional instances of ecosystem function loss in the MODIS (a), BESS (b), and MPI-BGC (c) datasets.
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2012 drought in northern central U.S. following the 2011 drought in
southern U.S. (http://www.ncdc.noaa.gov/sotc/briefings/201209.pdf),
and the 2015 drought in Europe after the 2003 drought (Ionita et al.,
2017).

We quantitatively compared the distribution and years of ecosys-
tem function loss in this study with the drought-induced plant mor-
tality events reviewed in (Allen et al., 2010) before 2010 for
validation (Table S1). We overlapped 42 forest mortality cases oc-
curred in 1999–2010 from (Allen et al., 2010) with our results (Fig.
S4). Specific latitude and longitude information for each mortality
case were collected based on references noted in (Allen et al.,
2010). For those drought cases without exact latitude and longitude,
we located their position by using the specific name of the drought
location and Google Earth. Generally, our method matched the ex-
treme droughts very well in Asia (e.g. North China, 2001), Europe
(e.g. Central Europe, 2003) and North America (e.g. Central North
America, 2002), where the drought year of major ecosystem function
loss in this study was within the range of documented years of
drought-induced plant mortality events in (Allen et al., 2010)
(Table S1). However, in this study, the tropical forest areas did not
show much extreme drought signal, e.g. the Amazon drought in
2005 and 2010 were not well detected.

http://www.ncdc.noaa.gov/sotc/briefings/201209.pdf
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3.3. Spatiotemporal variation of ecosystem function loss and its impact on
carbon cycle

In the study period of 2001–2011, extreme drought-induced loss of
ecosystem function affected 8% ± 1% of global vegetated land area
(9.28 ± 1.33million km2), an area roughly the size of China, which re-
sulted in GPP reduction of 1.5 ± 0.3 PgC in total. Here, the vegetated
land area estimated in this study was ~120 million km2. On average,
up to 0.9% ± 0.1% of earth's vegetated land (1.13 ± 0.17 million km2)
experienced loss of ecosystem function and 0.14 ± 0.03 PgC GPP was
reduced per year. Thus, there was an average decrease in carbon uptake
of 120.5 ± 9.9 gC/m2/yr. In this study, 2002 and 2010 were shown as
the major ecological drought years based on the three RUE datasets
(Fig. 4a–b), whichweremainly attributed to the loss of ecosystem func-
tion in central North America (2002) and the droughts in Russia (2010)
respectively. In addition, we also analyzed the annual drought-affected
area and GPP reduction at the biome level (Fig. 4c–d). Based on the re-
sults from the three RUE datasets, cropland and C3 grassland showed
relatively high values of affected area and GPP reduction while decidu-
ous needle leaf forest (DNF) and shrubland displayed the lowest values
of affected area and GPP reduction.

Ecosystem function loss was distributed mostly in semi-arid re-
gions and exhibited strong interannual variation. We compared the
variation in GPP reduction with the variation in GPP anomaly in
drought-affected areas (8% ± 1% of vegetated land area). The GPP re-
ductions estimated from the three GPP datasets all showed signifi-
cant correlation with their GPP anomalies (R2 = 0.70–0.91, p ≤
0.001) (Fig. 5). Additionally, the GPP reduction during 2001–2015
based on the average of MODIS GPP and BESS GPP also showed sig-
nificant correlation with its GPP anomaly in drought-affected areas
(R2 = 0.60, p b 0.001) (Fig. S5).
Fig. 4.Mean drought-affected area and GPP reduction caused by ecosystem function loss at
4. Discussion

4.1. Advantages and limitations of the method

In this study, the relationship between RUE and precipitation was
used to identify the global patterns of extreme drought-induced ecosys-
tem function loss. Based on this, the impacts of ecosystem function loss
on carbon uptake were further analyzed. Our detection of losses of eco-
system functionwas based on the assumption that RUE of an ecosystem
increases to a maximum during moderate drought and then declines
during extreme drought, which ismore ecologically relevant than tradi-
tional approaches which rely onmeteorological variables and statistical
techniques and can further improve our understanding of ecosystem re-
sponses to climate extremes (Ciais et al., 2005; Zhao and Running, 2010;
Liu et al., 2013; Hoover et al., 2014; Zscheischler et al., 2014). Our results
showed that semi-arid regions were hot spots of ecosystem function
loss. There was an average decrease in carbon uptake of 120.5 ± 9.9
gC/m2/yr, which is comparable with multi-year regional averages of
drought impact in western America of 116 gC/m2/yr (Schwalm et al.,
2012) and in Europe of 195 gC/m2/yr (Ciais et al., 2005). The reduced
carbon uptake due to ecosystem function loss could strongly influence
the regional carbon cycle. The simplicity of the method and integration
of an ecological perspective to identify climate extremes are the primary
advantages of this study.

In our method, the lower 95% confidence bound of a regression
model estimated duringnormal conditionswas used to identify the eco-
system function loss induced by extreme drought, which fits the defini-
tion proposed by (Smith, 2011) of “an extreme climatic event is an
episode or occurrence in which a statistically rare or unusual climatic
period alters ecosystem structure and/or functions well outside the
bounds of normal variability” (Smith, 2011). In addition, the exploration
annual global scale (a and b) and biome level (c and d) based on three GPP products.



Fig. 5. Interannual variation in GPP reduction (Red lines) and inverted GPP anomaly (Black lines) in drought-affected areas from 2001 to 2011. GPP reductions and anomalies were
estimated from MODIS datasets (a), BESS datasets (b), and MPI-BGC datasets (c) respectively. GPP anomaly in each year was calculated as the difference of the GPP value of current
year and the average of the study period. R2 is the determination coefficient which represents the percentage of GPP anomaly explained by reduced carbon uptake due to drought.
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of precipitation thresholds provides useful information for the setup of
field rainfall manipulation experiments (Fig. 2). For example, at a
given location, we provide references for what level of precipitation
could be set as the extreme drought condition in a gradient precipita-
tion experiment. While these thresholds are merely starting points
with little published literature to compare with, Verbesselt et al. found
a threshold for ecosystem collapse in Amazon forests during drought
to be 1500mm/yr, which is comparable with the precipitation thresh-
old identified in our study (N1600 mm/yr) (Verbesselt et al., 2016).
Using RUE as a metric of ecosystem function, we were also able to con-
nect the estimates derived from remote sensing and model simulations
to field experimentswhere RUE ismost commonly used (Huxman et al.,
2004; Yang et al., 2010; Yan et al., 2014).

Significant relationships between RUE and precipitation (p b

0.05) were found in N80% of earth's vegetated area, and were further
used to analyze ecosystem function loss. Most of the insignificant (p
≥ 0.05) RUE-precipitation relationships were concentrated in semi-
arid regions. Irrigation, which is quite common in semi-arid regions
(e.g. Central U.S. and Inner Mongolia, China), could be one of the rea-
sons for insignificant regressions. Also, the accuracy of precipitation
data in those regions needs to be improved (Schneider et al., 2013).
In this study, short-term, seasonal droughts within a year may not
be well detected from the relationship between RUE and precipita-
tion since these variables are estimated at the annual scale. More-
over, in Fig. 1, a spurious pattern could emerge in the correlation
between RUE and precipitation if GPP and precipitation were unre-
lated in this study (Brett, 2004). All global estimates in our results
could be conservative due to the limitations in the method and the
available analyzed pixels (Fig. S1).

4.2. Well-known extreme drought events in this study

Ecosystem function loss was detected in manywell-known extreme
drought events, especially in semi-arid areas (e.g. central North Amer-
ica, central Africa, and northwestern China, where cropland and C3
grassland are largely distributed) (Fig. 3). However, for tropical areas,
e.g. Amazon forest, we didn't see much extreme drought signal (e.g.
2005 drought or 2010 drought) from any of the three GPP RUE datasets,
which could also result in underestimation of ecosystem function loss in
this study. Because of the cloudy weather in tropical areas, optical re-
mote sensing images usually have low quality, which may impact the
quality of GPP derived from remote sensing (Anav et al., 2015). For
the up-scaled GPP from FLUXNET, due to the few flux towers located
in tropical forests, high error exists in the GPP estimates (Kumar et al.,
2016). Additionally, process model-based GPP simulations in tropical
areas still remains a challenge due to the uncertainty caused by climatic
forcing data (Wu et al., 2017). In this study, tundra areas also showed a
strong signal of ecosystem function loss, especially in 2004 (Fig. 3). Due
to large amounts of peatland distributed in tundra, fire frequently oc-
curs in the dry season (Mack et al., 2011). The high carbon content of
the peatlandmay largely contribute to the fire occurrence in association
with extremedrought (Turetsky et al., 2014). In this study, thosefire oc-
currences were recognized as ecosystem function loss due to extreme
droughts, as drought likely initiated higher fire probability. For crop-
land, human management also has strong influence on the production
of plants (i.e. harvest) and may thus influence drought detection. How-
ever, we didn't remove the cropland in this study. Usually, at a cropland
site, the timing of seeding, growing and harvesting remains the same,
thus the GPP estimates of this site are still comparable at the annual
scale.
4.3. Implication of ecosystem function loss on carbon cycle

In this study, semi-arid regions were shown to be hot spots of
ecosystem function loss, and contributed to N70% of the annual GPP
variation in drought-affected areas (Fig. 5). However, the extreme
drought-induced ecosystem function loss was found to have little
impact on global GPP variability. In semi-arid regions, GPP variability
is strongly controlled by precipitation variability, which could be one
of the reasons that local ecosystems are more predisposed to loss of
ecosystem function. Also, studies have shown that the productivity
in semi-arid regions strongly contributes to the interannual variabil-
ity of global GPP or NPP (Huang et al., 2016; Zhang et al., 2016). In
our results, even though 0.14 ± 0.03 PgC/yr GPP reduction due to
ecosystem functional loss didn't show a strong impact on the global
carbon cycle (results not shown), it was still a major threat at the re-
gional scale and could potentially influence the global carbon cycle.
No increasing trend of GPP reduction was found in this study, and
there was even a decreasing trend in ecosystem function loss from
2001 to 2015 (Fig. S5). The continually increasing atmospheric CO2

concentration may stimulate higher water-use efficiency of ecosys-
tems despite the warming during the period (Keenan et al., 2013).
However, as ecosystem function loss still largely depends on the cli-
mate variability, considering the increasing precipitation variability
and expansion of dry land (Huang et al., 2015), extreme drought-in-
duced ecosystem function loss may have a larger effect on the future
of regional and global carbon cycles.
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5. Conclusions

Quantifying the ecological patterns of extreme drought-induced
ecosystem function loss is an important first step to understand how
ecosystems respond to ecological drought against the background of cli-
mate change. Here, we developed a novel method based on plant com-
munity rain-use efficiency to detect ecosystem function loss globally.
We produced spatial patterns of extreme drought-induced ecosystem
function loss during 2001–2011 based on three different GPP products.
Large well-known extreme drought events with ecosystem function
loss were well captured in semi-arid regions. Extreme drought-induced
loss of ecosystem function could explain N70% of the GPP variability in
drought-affected areas. Our study demonstrates the importance of
semi-arid regions in terrestrial carbon cycle studies and provides a
new simple way to quantify extreme droughts from the ecological
perspective.
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