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Abstract: As the Earth entering into the Anthropocene, global sustainable development requires ecological re-
search to evolve into the large-scale, quantitative, and predictive era. It necessitates a revolution of ecological ob-
servation technology and a long-term accumulation of scientific data. The ecosystem flux tower observation tech-
nology is the right one to meet this requirement. However, the unique advantages and potential values of
global-scale flux tower observation are still not fully appreciated. Reviewing the development history of global me-
teorological observation and its scientific contributions to the society, we can get an important enlightenment to

re-cognize the scientific mission of flux observation.
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Earth is now in a new era — the Anthropocene (Crutzen and
Steffen 2003). Human beings in the Anthropocene have
surpassed all other creatures in excessively exploiting natu-
ral resources (food, fresh water, timber, and fuel, etc.), re-
sulting in substantial potentially irreversible changes to the
planet and threatening the maintenance of human society
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(Millennium Ecosystem Assessment 2005). Planning for a
sustainable future of human must be underpinned by new
ecological research that has the capacity to make large-scale,
guantitative prediction and give early-warnings for
eco-catastrophe (Barnosky et al. 2012; Mace 2013). A revo-
lution in both ecologica observation technology and scien-
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tific research that values long-term accumulation of datais
imperative. Gratefully, the developing ecosystem flux tower
observation technology can provide solid scientific data
foundation. Yet, the unique advantages and potential values
of global-scale flux tower observation are still not fully ap-
preciated. By referring to the development history of global
meteorological observation and its scientific contributions to
society, we can be enlightened to re-cognize the scientific
mission of flux tower observation networks.

1 Ecology needs turning into a new era

Ecology, as a branch of biological science, has experienced
a long-term incubation, episodic leaps, and incessant devel-
opment. Traditionally, ecology mainly focuses on biological
interactions between organisms and their living environment
at local scale. Since the 1960s, the development of the con-
cept of ecosystem has led to ecological research gradually
shifting its focus to regiona and globa ecological issues
with the guide of severa international programs (e.g. Inter-
national Biological Program (IBP), Man and Biosphere
Program (MAB), Internationa Geosphere Biosphere Pro-
gram (IGBP), etc.,).

Increasingly, regional and global ecological issues re-
ceive greater attention. Ther large consumption of natural
resources by human beings has fundamentally influenced
the supporting biological and environmenta systems (Fig.
1). Accompanied with the world's population keep expand-
ing, it will exacerbate the ecological and environmental is-
sues associated with global climate change, biodiversity,
biogeochemical cycles and ecosystem services (Barnosky
et al. 2012; IPCC 2014) (Fig. 1). To tackle these global
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problems that requires a new framework of ecology:
large-scale, quantitative, predictive and capable of providing
long-range early warnings for eco-catastrophe. This new
framework must be able to not only provide comprehensive
and predictive information on how ecosystem structure and
function, pattern and process will change at a given place
and a given time (Mace 2013),but also quantify and predict
the impact of human activities and climate change on eco-
system and society sustainable development, specifically (i)
could cognize the relationships among ecosystem change,
climate change and Earth system change, (ii) evaluate the
effect of human activities on those relationships, (iii) syn-
thetically quantify and predict the impact of human activi-
ties on sustainable development in the context of global
environment change.

To achieve this goal, we must overcome some constraints.
Most ecologists focus on ecological phenomenon observa-
tion and its explanation and conduct researches in isolation
with a label of “persona ownership” (Mace 2013; Reichman
et al. 2011). In addition, a more important constraint is the
absence of direct integrated observation system of ecosys-
tem structure and function. If these constraints are not
overcome, ecology would be hard to make the step changes
from qualitative to quantitative, from local to region/global
scale, and from phenomenon analysis and mechanism inter-
pretation to scientific forecasting.

2 Global Flux Observation Networks have
unigue advantage and great potential value

Modern science and technology provide good opportunity
for ecology to enter into an era of new measurements

Precipitation pattern change

Global climate change

Note: The interactions between human activities, biological and environmental systems and sustainable development. Population, energy consumption and
crop production quantities changes on the left and its influences on climatic, biological, land and social systems on the right. Population data is from United
Nations (UN) (World Population Prospects 2013). Energy consumption datais from International Energy Agency (IEA) (Key World Energy Statistics 2014).
Crop production quantities data is from Food and Agriculture Organization (FAO) (FAOSTAT 2014).
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(Chave 2013). The invention of eddy covariance flux meas-
urement (EC) has undoubtedly created a great technological
revolution in ecological observations at ecosystem scales
because it allows direct in situ measurements of the fluxes
of material and energy and ecosystem productivity (Wofsy
et al. 1993). Continuous and synchronous flux measurement
of CO,, H,0, and energy at the ecosystem-scale can now be
steadily and reliably conducted with EC. Measurements on
fluxes of CH4, N,O, other trace gases and stable isotope are
also successfully incorporated into the EC systems (Bal-
docchi 2014). As the EC technique further develop and the
cost of EC equipment economize with the technology ad-
vance, EC observationa systems will be more broadly ap-
plied worldwide. As Baldocchi said, EC measurement pro-
vides a promising approach to examine how ecosystem
carbon and water fluxes may change in response to biotic
and abiotic factors, and is adept at discovering the emergent
properties of ecosystems (Baldocchi 2014). As the fluxes of
water, energy and greenhouse gases (GHGSs) can be as-
sumed as the proxy for the responses of ecosystem structure
and function to global change, EC has become the core
technique in the comprehensive monitoring system inte-

grated with ground survey and remote sensing for changes
in ecosystem structure and function (Fig. 2), which facili-
tates our understanding and prediction on the ‘breathing’ of
the biosphere under global change (Baldocchi 2008). The
gradual accumulation of data from the flux tower observa
tion has become the essentia resource for analyzing the
dynamic changes in ecosystem GHGs exchange and energy
budget , revealing the biogeographic mechanism, assessing
ecosystem productivity and carbon source/sink capacity, and
evaluating the impacts of globa climate change and human
activities, across regional, continental and global scales.
However, the unique advantage and potential value of
flux data for macro-ecological research and global sustain-
able development has not yet been fully appreciated by the
research community, the general public and the governmen-
tal agencies. Although some researchers have paid attention
to the large-scale macro-ecological issues, majority of flux
communities still focus on the progress of the observation
theories and knowledge of ecological phenomenon at a
small or individual-site scale. Therefore, the general public
and government agencies have not fully realized the potential
value of the flux network observation in addressing the
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ecological issues related to global change and human welfare.
This under-evaluation results in tremendous difficulties in
expanding the global network of flux observation, developing a
standardized observation system and achieving the data sharing.

3 Development of meteorology science
provides a valuable enlightenment

The development of meteorology provides good enlighten-
ment for us to re-cognize the scientific mission of networ-
ked flux observation. Meteorology started to accumulate
knowledge around the 16™ century and gradually advanced
its development at each stage of technology innovation (Fig. 3a).
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After entering the 1950s, some new atmospheric detection
technologies such as radar, rockets and satellites, etc. were
applied in monitoring the meteorological environment and
its changes at different spatial and temporal scales. Mete-
orological data is made freely available in near real-time,
allowing high-speed computers to be applied in automatic
and large-volume data processing. With the continuous
promotion of World Meteorological Organization (WMO),
meteorological observation has transformed from pure sci-
entific research to routine operation, and such transforma-
tion has greatly accelerated the development of numerica
weather forecasting and atmospheric science.
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The progress of meteorology illustrates that after hun-
dreds of years development, the meteorological observation
has gradually advanced from manual observation of major
meteorological elements to an automated multi-elements
satellite and radar stereoscopic observation. The meteorol-
ogy accordingly advances to global-scale weather forecast-
ing, and thus allows the parallel rapid development of cli-
mate change science (Fig. 3a).

Ecology is experiencing a similar development process as
the meteorology does (Fig. 3b). It has developed from the
ecological phenomenon observation, stand inventory, and
site-level ecological elements measurement, to ecosys
tem-scale observation. Ecological data acquisition also has
experienced the step stages from traditional field investiga
tion, positioning and discrete observation to long-term,
in-situ coordinated observation (Fig. 3b). However, the de-
velopment of weather forecasting and climate science re-
minds us that without 50-100 years accumulation of net-
work observational data, achieving the capacity of ecologi-
cal forecasting and prediction may till be afootless “dream”.

4 Following the developing roadmap of
meteorology, achieving ecological
prediction and security warning

“A thousand mile journey begins with a single step, and the
century-dream entails generations to struggle for”. For eco-
logical science to prosper, we need to grasp the current his-
torical opportunity presented by the revolution of observa-
tion technique and the new “big data and big science” era of
ecology. (Boyle 2013; Marx 2013; Michener and Jones
2012). We must promote the transition from the traditional
observation of ecological elements to the integrated obser-
vation of ecosystem structure and function, and promote
transition from individual site study to large-scale synthe-
sized studies across vast geographic zones and time periods.
At the same time, we need to enhance our capability for
scientific prediction on ecosystem change and ecosystem
service, which is a prerequisite for solving ecological issues
related to sustainable development at regional and global scales.

To achieve this goal, a series coordinated actions have to
be adopted. First, a World Ecological Organization (WEO),
similar to the World Meteorological Organization (WMO) is
needed. The WEO will make efforts to unite the global-scale
network resources involving the International Long-Term
Ecological Research network (ILTER), FLUXNET and the
aircraft and satellite remote sensing observation networks,
and other regional/national-scale networks to construct a
Global Ecological Observation Network (GEON) (Fig. 2).
Second, due to the unique role of EC data for understanding
the mutual effect of biotic and abiotic factors on ecosystem
processes and functions, the flux-centric integrated observa-
tion system combined ground-based ecological measure-
ment and space-based observation should be established to
create an automatic, standardized three-dimensional obser-

vatory system. Third, an advanced model system combined
the ecosystem processes and biogeochemical cycles should
be develop and optimized with the multi-source data through
model-data fusion. Finally, we use the approach of “multi-
scale observations, multi-method validation, multi process
integration, cross-scale cognition, cross-scale simulation” to
explore the principles of ecosystem structure and function,
and how ecosystem pattern and process changes in the con-
text of global climate cha

Only if 50-100 years of continuous effort in advancing
fluxes observation technology and along-term accumulation
of scientific data from the united constructed GEON, eco-
logical science could finally achieve the transitions from
being qualitative to quantitative, and from ecological analy-
sisto ecological forecasting. Such an ecological science can
provide more efficient services for global sustainable de-
velopment in fields of scenario analysis, scientific forecast-
ing, ecological safety warning and decision-making. Thisis
a universal expectation of ecologists, and is the scientific
mission for the world's flux tower observation network
community.
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